Academic literature on the topic 'Operator spaces (= matricially normed spaces)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Operator spaces (= matricially normed spaces).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Operator spaces (= matricially normed spaces)"
Junge, Marius, Christian le Merdy, and Lahcene Mezrag. "$L^p$-matricially normed spaces and operator space valued Schatten spaces." Indiana University Mathematics Journal 56, no. 5 (2007): 2511–34. http://dx.doi.org/10.1512/iumj.2007.56.3070.
Full textEffros, Edward, and Zhong-Jin Ruan. "On matricially normed spaces." Pacific Journal of Mathematics 132, no. 2 (April 1, 1988): 243–64. http://dx.doi.org/10.2140/pjm.1988.132.243.
Full textBekjan, Turdebek N. "ON Lp -MATRICIALLY NORMED SPACES." Acta Mathematica Scientia 25, no. 4 (October 2005): 681–86. http://dx.doi.org/10.1016/s0252-9602(17)30208-4.
Full textRamasamy, C. T., and C. Ganesa Moorthy. "Strictly unbounded operator on normed spaces." Asian-European Journal of Mathematics 08, no. 03 (September 2015): 1550056. http://dx.doi.org/10.1142/s1793557115500564.
Full textForouzanfar, AM, S. Khorshidvandpour, and Z. Bahmani. "Uniformly invariant normed spaces." BIBECHANA 10 (October 31, 2013): 31–33. http://dx.doi.org/10.3126/bibechana.v10i0.7555.
Full textTaghavi, Ali, and Majid Mehdizadeh. "Adjoint Operator In Fuzzy Normed Linear Spaces." Journal of Mathematics and Computer Science 02, no. 03 (April 10, 2011): 453–58. http://dx.doi.org/10.22436/jmcs.02.03.08.
Full textSukochev, Fedor. "Completeness of quasi-normed symmetric operator spaces." Indagationes Mathematicae 25, no. 2 (March 2014): 376–88. http://dx.doi.org/10.1016/j.indag.2012.05.007.
Full textZHU, YUANGUO. "ON PARA-NORMED SPACE WITH FUZZY VARIABLES BASED ON EXPECTED VALUED OPERATOR." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16, no. 01 (February 2008): 95–106. http://dx.doi.org/10.1142/s0218488508005066.
Full textNakasho, Kazuhisa. "Multilinear Operator and Its Basic Properties." Formalized Mathematics 27, no. 1 (April 1, 2019): 35–45. http://dx.doi.org/10.2478/forma-2019-0004.
Full textF. Al-Mayahi, Noori, and Abbas M. Abbas. "Some Properties of Spectral Theory in Fuzzy Hilbert Spaces." Journal of Al-Qadisiyah for computer science and mathematics 8, no. 2 (August 7, 2017): 1–7. http://dx.doi.org/10.29304/jqcm.2016.8.2.27.
Full textDissertations / Theses on the topic "Operator spaces (= matricially normed spaces)"
Vuong, Thi Minh Thu University of Ballarat. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/12748.
Full textMaster of Mathematical Sciences
Vuong, Thi Minh Thu. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/15540.
Full textMaster of Mathematical Sciences
Kalauch, Anke. "Positive-off-diagonal Operators on Ordered Normed Spaces and Maximum Principles for M-Operators." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1169822895129-71711.
Full textM-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht
Kalauch, Anke. "Positive-off-diagonal Operators on Ordered Normed Spaces and Maximum Principles for M-Operators." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A25013.
Full textM-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht.
Polat, Faruk. "On The Generalizations And Properties Of Abramovich-wickstead Spaces." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610166/index.pdf.
Full textMalý, Lukáš. "Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces." Doctoral thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105616.
Full textZeekoei, Elroy Denovanne. "A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7586.
Full textThesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
"Operators between ordered normed spaces." Chinese University of Hong Kong, 1991. http://library.cuhk.edu.hk/record=b5886856.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1991.
Includes bibliographical references.
Introduction --- p.1
Chapter Chapter 0. --- Preliminary --- p.4
Chapter 0.1 --- Topological vector spaces
Chapter 0.2 --- Ordered vector spaces
Chapter 0.3 --- Ordered normed spaces
Chapter 0.4 --- Ordered topological vector spaces
Chapter 0.5 --- Ordered bornological vector spaces
Chapter Chapter 1. --- Results on Ordered Normed Spaces --- p.23
Chapter 1.1 --- Results on e∞-spaces and e1-spaces
Chapter 1.2 --- Complemented subspaces of ordered normed spaces
Chapter 1.3 --- Half injections and Half surjections
Chapter 1.4 --- Strict quotients and strict subspaces
Chapter Chapter 2. --- Helley's Selection Theorem and Local Reflexivity Theorem of order type --- p.55
Chapter 2.1 --- Helley's selection theorem of order type
Chapter 2.2 --- Local reflexivity theorem of order type
Chapter Chapter 3. --- Operator Modules and Ideal Cones --- p.68
Chapter 3.1 --- Operator modules and ideal cones
Chapter 3.2 --- Space cones and space modules
Chapter 3.3 --- Injectivity and surjectivity
Chapter 3. 4 --- Dual and pre-dual
Chapter Chapter 4. --- Topologies and Bornologies Defined by Operator Modules and Ideal Cones --- p.95
Chapter 4.1 --- Generalized polars
Chapter 4.2 --- Topologies and bornologies defined by β and ε
Chapter 4. 3 --- Injectivity and generating topologies
Chapter 4.4 --- Surjectivity and generating bornologies
Chapter 4.5 --- The solid property and the generating topologies
Chapter 4.6 --- The solid property and the generating bornologies
Chapter Chapter 5. --- Semi-norms and Bounded disks defined by Operator Modules and Ideal Cones --- p.129
Chapter 5.1 --- Results on semi-norms
Chapter 5.2 --- Results on bounded disks
References --- p.146
Notations --- p.149
Books on the topic "Operator spaces (= matricially normed spaces)"
(Victor), Vinnikov V., ed. Foundations of free noncommutative function theory. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textKrzysztof, Jarosz, ed. Function spaces in modern analysis: Sixth Conference on Function Spaces, May 18-22, 2010, Southern Illinois University, Edwardsville. Providence, R.I: American Mathematical Society, 2011.
Find full textSimon, Barry. Operator theory. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBárcenas, Noé, and Monica Moreno Rocha. Mexican mathematicians abroad: Recent contributions : first workshop, Matematicos Mexicanos Jovenes en el Mundo, August 22-24, 2012, Centro de Investigacion en Matematicas, A.C., Guanajuato, Mexico. Edited by Galaz-García Fernando editor. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textBook chapters on the topic "Operator spaces (= matricially normed spaces)"
Cho, Yeol Je, Themistocles M. Rassias, and Reza Saadati. "Fuzzy Normed Spaces and Fuzzy Metric Spaces." In Fuzzy Operator Theory in Mathematical Analysis, 11–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93501-0_2.
Full textCho, Yeol Je, Themistocles M. Rassias, and Reza Saadati. "Fundamental Theorems in Fuzzy Normed Spaces." In Fuzzy Operator Theory in Mathematical Analysis, 63–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93501-0_4.
Full textZaanen, Adriaan C. "Normed Riesz Spaces and Banach Lattices." In Introduction to Operator Theory in Riesz Spaces, 83–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60637-3_7.
Full textCho, Yeol Je, Themistocles M. Rassias, and Reza Saadati. "Fixed Point Theorems in Fuzzy Normed Spaces." In Fuzzy Operator Theory in Mathematical Analysis, 263–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93501-0_8.
Full textRao, Geetha S., and T. L. Bhaskaramurthi. "Nonexpansive mappings and proximinality in normed almost linear spaces." In Functional Analysis and Operator Theory, 80–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0093799.
Full text"Projective and free matricially normed spaces." In Banach Algebras and Applications, 151–64. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110602418-008.
Full text"Normed Vector Spaces. Banach Spaces." In An Operator Theory Problem Book, 3–24. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813236264_0001.
Full text"3 Vector Spaces, Normed Vector Spaces, and Banach Spaces." In Elementary Operator Theory, 119–60. De Gruyter, 2020. http://dx.doi.org/10.1515/9783110600988-003.
Full text"Compact Linear Operator." In Classical Analysis on Normed Spaces, 253–65. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812831217_0012.
Full textSaadati, Reza. "Fixed point theorems in random normed spaces." In Random Operator Theory, 53–63. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-805346-1.50005-6.
Full text