Academic literature on the topic 'Operator split'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Operator split.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Operator split"
Zhao, Jing, and Hang Zhang. "Solving Split Common Fixed-Point Problem of Firmly Quasi-Nonexpansive Mappings without Prior Knowledge of Operators Norms." Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/389689.
Full textBandrauk, André D., and Hai Shen. "Higher order exponential split operator method for solving time-dependent Schrödinger equations." Canadian Journal of Chemistry 70, no. 2 (February 1, 1992): 555–59. http://dx.doi.org/10.1139/v92-078.
Full textGupta, Nishu, Mihai Postolache, Ashish Nandal, and Renu Chugh. "A Cyclic Iterative Algorithm for Multiple-Sets Split Common Fixed Point Problem of Demicontractive Mappings without Prior Knowledge of Operator Norm." Mathematics 9, no. 4 (February 13, 2021): 372. http://dx.doi.org/10.3390/math9040372.
Full textJailoka, Pachara, and Suthep Suantai. "Viscosity approximation methods for split common fixed point problems without prior knowledge of the operator norm." Filomat 34, no. 3 (2020): 761–77. http://dx.doi.org/10.2298/fil2003761j.
Full textLi, Meixia, Xueling Zhou, and Haitao Che. "Mixed Simultaneous Iterative Algorithms for the Extended Multiple-Set Split Equality Common Fixed-Point Problem with Lipschitz Quasi-Pseudocontractive Operators." Mathematical Problems in Engineering 2019 (March 7, 2019): 1–10. http://dx.doi.org/10.1155/2019/3606294.
Full textYevick, D., W. Bardyszewski, B. Hermansson, and M. Glasner. "Split-operator electric field reflection techniques." IEEE Photonics Technology Letters 3, no. 6 (June 1991): 527–29. http://dx.doi.org/10.1109/68.91023.
Full textKitkuan, Duangkamon, Poom Kumam, Vasile Berinde, and Anantachai Padcharoen. "Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms." Analele Universitatii "Ovidius" Constanta - Seria Matematica 27, no. 3 (December 1, 2019): 153–75. http://dx.doi.org/10.2478/auom-2019-0039.
Full textDATTA, ALAKABHA, and XINMIN ZHANG. "VACUUM STABILITY IN SPLIT SUSY AND LITTLE HIGGS MODELS." International Journal of Modern Physics A 21, no. 11 (April 30, 2006): 2431–45. http://dx.doi.org/10.1142/s0217751x06029521.
Full textČiegis, Raimondas, Aleksas Mirinavičius, and Mindaugas Radziunas. "Comparison of Split Step Solvers for Multidimensional Schrödinger Problems." Computational Methods in Applied Mathematics 13, no. 2 (April 1, 2013): 237–50. http://dx.doi.org/10.1515/cmam-2013-0004.
Full textRistow, Dietrich, and Thomas Rühl. "Fourier finite‐difference migration." GEOPHYSICS 59, no. 12 (December 1994): 1882–93. http://dx.doi.org/10.1190/1.1443575.
Full textDissertations / Theses on the topic "Operator split"
Braga, João Philipe Macedo. "Técnica Split Operator em Coordenadas Generalizadas." reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/7721.
Full textSubmitted by francisco lima (admir@ufc.br) on 2014-03-18T12:27:21Z No. of bitstreams: 1 2010_dis_jpmbraga.pdf: 953031 bytes, checksum: 788517c406c012d339bc8fe1d2fb7079 (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-03-18T21:51:08Z (GMT) No. of bitstreams: 1 2010_dis_jpmbraga.pdf: 953031 bytes, checksum: 788517c406c012d339bc8fe1d2fb7079 (MD5)
Made available in DSpace on 2014-03-18T21:51:08Z (GMT). No. of bitstreams: 1 2010_dis_jpmbraga.pdf: 953031 bytes, checksum: 788517c406c012d339bc8fe1d2fb7079 (MD5) Previous issue date: 2010
Quantum mechanics plays a fundamental role in the description and understanding of the natural phenomena. Actually, the phenomena that take place in atomic and subatomic scale can not be well explained without the quantum mechanics approach. Furthermore, there are a lot of phenomena in macroscopic scale that reveals the quantum behavior of nature. In this sense, we can say that quantum mechanics is fundamental for the understanding of all natural phenomena. In Quantum Mechanics the state of a particle is mathematically described by the wave function Ψ(r,t) and its time evolution is governed by time-dependent Schrödinger equation. Thus, we can state that the fundamental problem of quantum mechanics is to solve the Schrödinger Equation in an arbitrary situation. In this work, we study a numerical technique to solve the time-dependent and time-independent Schrödinger Equation known as Split Operator technique. This aproach uses approximations for the exponencial of sum of operators that do not commute in order to implement the time-evolution operator. It makes possible to reduce the solution of the Schrödinger equation to a successive processes of multiplication and solution of tridiagonal system of linear equations. It can be easily performed using a computer. The technique was studied in detail using cartesian coordinates, and we also explained how to use the technique with periodic or finite boundary conditions. We make use this technique to study the behavior of an electron subjected to a random potential. In this situation we face the Anderson Localization phenomena. Furthermore, we developed the Split Operator technique using generalized coordinates, and studied the problem of an electron confined to a cylinder surface. It was verified that the numerical results agree with the analytical ones. So we can conclude that the Split Operator technique using generalized coordinates produce reliable results.
A mecânica quântica desempenha um papel fundamental na descrição e entendimento dos fenômenos naturais. De fato, os fenômenos que ocorrem em uma escala muito pequena (atômica ou sub-atômica) não podem ser corretamente explicados fora do contexto da mecânica quântica. Além disso, existem muitos fenômenos em escala macroscópica que revelam o comportamento quântico da natureza. Nesse sentido, podemos dizer que a mecânica quântica é a base de todo nosso atual conhecimento sobre os fenômenos naturais. O estado de uma partícula em quântica é descrito matematicamente pela sua função de onda Ψ(r,t) e a evolução temporal de Ψ(r,t) é governada pela Equação de Schrödinger dependente do tempo. Dessa forma, podemos enunciar que o problema fundamental da mecânica quântica consiste em solucionar a Equação de Schrödinger numa situação arbitrária. Neste trabalho, estudamos uma técnica numérica de solução da Equação de Schrödinger dependente ou independente do tempo conhecida como Split Operator. Essa técnica utiliza formas aproximadas para a exponencial da soma de operadores que não comutam para implementar o operador evolução temporal, permitindo reduzir o processo de solução da Equação de Schrödinger a sucessivos processos de simples multiplicação e de solução de sistemas de equações lineares tridiagonais, que podem ser facilmente realizados por um computador. O formalismo da técnica em coordenadas cartesianas foi estudado em detalhes, onde mostramos como aplicá-lo para sistemas com condições de com torno periódicas ou com condições de contorno finitas. Utilizamos essa forma da técnica para estudar o comportamento de um elétron confinado numa região de energia potencial aleatória, onde nos deparamos com o fenômeno de Localização de Anderson. Além disso, desenvolvemos a técnica Split Operator em coordenadas generalizadas, aplicando-a para estudar o problema de um elétron confinado na superfície de um cilindro. Os resultados obtidos numericamente concordam muito bem com os resultados obtidos analiticamente, mostrando que a técnica Split Operator em coordenadas generalizadas nos leva a resultados confiáveis.
Braga, JoÃo Philipe Macedo. "TÃcnica Split Operator em Coordenadas Generalizadas." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5493.
Full textA mecÃnica quÃntica desempenha um papel fundamental na descriÃÃo e entendimento dos fenÃmenos naturais. De fato, os fenÃmenos que ocorrem em uma escala muito pequena (atÃmica ou sub-atÃmica) nÃo podem ser corretamente explicados fora do contexto da mecÃnica quÃntica. AlÃm disso, existem muitos fenÃmenos em escala macroscÃpica que revelam o comportamento quÃntico da natureza. Nesse sentido, podemos dizer que a mecÃnica quÃntica à a base de todo nosso atual conhecimento sobre os fenÃmenos naturais. O estado de uma partÃcula em quÃntica à descrito matematicamente pela sua funÃÃo de onda Ψ(r,t) e a evoluÃÃo temporal de Ψ(r,t) à governada pela EquaÃÃo de SchrÃdinger dependente do tempo. Dessa forma, podemos enunciar que o problema fundamental da mecÃnica quÃntica consiste em solucionar a EquaÃÃo de SchrÃdinger numa situaÃÃo arbitrÃria. Neste trabalho, estudamos uma tÃcnica numÃrica de soluÃÃo da EquaÃÃo de SchrÃdinger dependente ou independente do tempo conhecida como Split Operator. Essa tÃcnica utiliza formas aproximadas para a exponencial da soma de operadores que nÃo comutam para implementar o operador evoluÃÃo temporal, permitindo reduzir o processo de soluÃÃo da EquaÃÃo de SchrÃdinger a sucessivos processos de simples multiplicaÃÃo e de soluÃÃo de sistemas de equaÃÃes lineares tridiagonais, que podem ser facilmente realizados por um computador. O formalismo da tÃcnica em coordenadas cartesianas foi estudado em detalhes, onde mostramos como aplicÃ-lo para sistemas com condiÃÃes de com torno periÃdicas ou com condiÃÃes de contorno finitas. Utilizamos essa forma da tÃcnica para estudar o comportamento de um elÃtron confinado numa regiÃo de energia potencial aleatÃria, onde nos deparamos com o fenÃmeno de LocalizaÃÃo de Anderson. AlÃm disso, desenvolvemos a tÃcnica Split Operator em coordenadas generalizadas, aplicando-a para estudar o problema de um elÃtron confinado na superfÃcie de um cilindro. Os resultados obtidos numericamente concordam muito bem com os resultados obtidos analiticamente, mostrando que a tÃcnica Split Operator em coordenadas generalizadas nos leva a resultados confiÃveis.
Quantum mechanics plays a fundamental role in the description and understanding of the natural phenomena. Actually, the phenomena that take place in atomic and subatomic scale can not be well explained without the quantum mechanics approach. Furthermore, there are a lot of phenomena in macroscopic scale that reveals the quantum behavior of nature. In this sense, we can say that quantum mechanics is fundamental for the understanding of all natural phenomena. In Quantum Mechanics the state of a particle is mathematically described by the wave function Ψ(r,t) and its time evolution is governed by time-dependent SchrÃdinger equation. Thus, we can state that the fundamental problem of quantum mechanics is to solve the SchrÃdinger Equation in an arbitrary situation. In this work, we study a numerical technique to solve the time-dependent and time-independent SchrÃdinger Equation known as Split Operator technique. This aproach uses approximations for the exponencial of sum of operators that do not commute in order to implement the time-evolution operator. It makes possible to reduce the solution of the SchrÃdinger equation to a successive processes of multiplication and solution of tridiagonal system of linear equations. It can be easily performed using a computer. The technique was studied in detail using cartesian coordinates, and we also explained how to use the technique with periodic or finite boundary conditions. We make use this technique to study the behavior of an electron subjected to a random potential. In this situation we face the Anderson Localization phenomena. Furthermore, we developed the Split Operator technique using generalized coordinates, and studied the problem of an electron confined to a cylinder surface. It was verified that the numerical results agree with the analytical ones. So we can conclude that the Split Operator technique using generalized coordinates produce reliable results.
Silva, Francisco Wellery Nunes. "Transporte eletrônico em semicondutores porosos baseado na equação de Schrodinger dependente do tempo." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/11710.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2015-04-23T21:11:22Z No. of bitstreams: 1 2012_dis_fwnsilva.pdf: 12829801 bytes, checksum: 1fca3d2dc15fc07961d7231c6087fe50 (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-04-29T17:38:22Z (GMT) No. of bitstreams: 1 2012_dis_fwnsilva.pdf: 12829801 bytes, checksum: 1fca3d2dc15fc07961d7231c6087fe50 (MD5)
Made available in DSpace on 2015-04-29T17:38:23Z (GMT). No. of bitstreams: 1 2012_dis_fwnsilva.pdf: 12829801 bytes, checksum: 1fca3d2dc15fc07961d7231c6087fe50 (MD5) Previous issue date: 2012
We propose in this work a theoretical study, of the properties of a electronic pulse, injected under a external bias, on a porous silicon layer, so that we could define fundamentally the shape of T X V and R X V curves, where T is the transmission coefficient and R is the reflection coefficient of the wave packet, trough the porous region. With this, we could make a simple calculation and obtain information about the electrical current in this material, using the very simple model I=Q/t, where we defined the time of transmission, as the time interval necessary for the electronic pulse to be consumed completely. This kind of approach is already known in the literature, propose by Lebedev and co-workers (1998). Using the definition of charge carrier mobility, we obtained information about it, since the principal aim of this work is the electronic transport in this kind of material, that despite a strong research on porous silicon, since the beginning of the nineties, the transport properties still remains a relatively unexplored area. The major incentive for this study is due to the strong possibility of application of this material in new optoelectronic devices such as LEDs. Along the development of this dissertation, we applied well known techniques for the computational modelling such as effective mass theory, for example, associated with methods like the periodic boundary conditions, and the absorbing boundary conditions. Treating of a quantum system, we begin all the work solving the time dependent Schröedinger equation. To do this task, we have used the numerical method known as Split-Operator, in order to obtain the solutions for this equation. Initially, the calculations in this dissertation where based in an isotropic effective mass, in order to optimise the calculation parameters. After this, we made calculations using an anisotropic effective mass for the different valleys of silicon. All these things leads us to believe that this work have a great importance regarding the contribution to the understanding of transport in electronic systems based on porous silicon, to maintain for some time the applications of this kind of material that was so revolutionary in the twentieth.
Neste trabalho, propomos um uma pesquisa teórica onde estudamos as propriedades de um pulso eletrônico em uma camada de silício poroso, injetado sob uma certa voltagem externa V. Desta forma, podemos definir fundamentalmente a forma das curvas T X V e R X V, onde T é o coeficiente de transmissão e R é o coeficiente de reflexão do pacote de onda através da região porosa. Aliado a estes dados, podemos fazer um cálculo simples e obter informações a respeito da corrente elétrica que atravessa o material, utilizando o modelo I=Q/t, onde definimos o tempo como o intervalo necessário para que o pulso seja consumido completamente, como proposto por Lebedev e colaboradores (1998). Utilizando a definição para mobilidade de portadores de carga, obtivemos informações sobre a mesma, pois este trabalho foca-se principalmente no estudo do transporte eletrônico neste tipo de material poroso, que apesar de um estudo intenso em silício poroso desde o início da década de noventa, as propriedades de transporte ainda permanecem um pouco inexploradas. O principal incentivo para que estudemos este material é devido à grande possibilidade da criação de dispositivos em opto-eletrônica tais como LEDs (Light Emissor Diode). Ao longo do desenvolvimento, empregamos técnicas já bem conhecidas para a modelagem de semicondutores, como a teoria da massa efetiva, por exemplo, associadas a técnicas de modelagem computacional, como o emprego de condições periódicas de contorno e condições de contorno absorvente. Por se tratar de um sistema quântico, tudo parte da solução da equação de Schrödinger dependente do tempo, e para executar esta tarefa fizemos uso de um método numérico conhecido como Split-Operator. Assim obtemos as soluções para a equação. Inicialmente, os cálculos realizados neste trabalho foram baseados em uma massa efetiva isotrópica, a fim de otimizar os parâmetros de cálculo, e só em seguida foram feitos cálculos baseando-se em massa efetiva anisotrópica para os diversos vales do silício poroso. Tudo isto nos leva a crer que este trabalho possui uma grande importância no que diz respeito à contribuição para o entendimento do transporte eletrônico em sistemas baseados em silício poroso, de forma a manter por mais algum tempo a aplicação deste tipo de material que foi tão revolucionário no século XX.
Gonzalez, Csaszar Eduardo. "Analysis of optical propagation in isotropic nonlinear devices by the finite element method." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244741.
Full textSilva, Francisco Wellery Nunes. "Transporte eletrÃnico em semicondutores porosos baseado na equaÃÃo de Schrodinger dependente do tempo." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7337.
Full textNeste trabalho, propomos um uma pesquisa teÃrica onde estudamos as propriedades de um pulso eletrÃnico em uma camada de silÃcio poroso, injetado sob uma certa voltagem externa V. Desta forma, podemos definir fundamentalmente a forma das curvas T X V e R X V, onde T à o coeficiente de transmissÃo e R à o coeficiente de reflexÃo do pacote de onda atravÃs da regiÃo porosa. Aliado a estes dados, podemos fazer um cÃlculo simples e obter informaÃÃes a respeito da corrente elÃtrica que atravessa o material, utilizando o modelo I=Q/t, onde definimos o tempo como o intervalo necessÃrio para que o pulso seja consumido completamente, como proposto por Lebedev e colaboradores (1998). Utilizando a definiÃÃo para mobilidade de portadores de carga, obtivemos informaÃÃes sobre a mesma, pois este trabalho foca-se principalmente no estudo do transporte eletrÃnico neste tipo de material poroso, que apesar de um estudo intenso em silÃcio poroso desde o inÃcio da dÃcada de noventa, as propriedades de transporte ainda permanecem um pouco inexploradas. O principal incentivo para que estudemos este material à devido à grande possibilidade da criaÃÃo de dispositivos em opto-eletrÃnica tais como LEDs (Light Emissor Diode). Ao longo do desenvolvimento, empregamos tÃcnicas jà bem conhecidas para a modelagem de semicondutores, como a teoria da massa efetiva, por exemplo, associadas a tÃcnicas de modelagem computacional, como o emprego de condiÃÃes periÃdicas de contorno e condiÃÃes de contorno absorvente. Por se tratar de um sistema quÃntico, tudo parte da soluÃÃo da equaÃÃo de SchrÃdinger dependente do tempo, e para executar esta tarefa fizemos uso de um mÃtodo numÃrico conhecido como Split-Operator. Assim obtemos as soluÃÃes para a equaÃÃo. Inicialmente, os cÃlculos realizados neste trabalho foram baseados em uma massa efetiva isotrÃpica, a fim de otimizar os parÃmetros de cÃlculo, e sà em seguida foram feitos cÃlculos baseando-se em massa efetiva anisotrÃpica para os diversos vales do silÃcio poroso. Tudo isto nos leva a crer que este trabalho possui uma grande importÃncia no que diz respeito à contribuiÃÃo para o entendimento do transporte eletrÃnico em sistemas baseados em silÃcio poroso, de forma a manter por mais algum tempo a aplicaÃÃo deste tipo de material que foi tÃo revolucionÃrio no sÃculo XX.
We propose in this work a theoretical study, of the properties of a electronic pulse, injected under a external bias, on a porous silicon layer, so that we could define fundamentally the shape of T X V and R X V curves, where T is the transmission coefficient and R is the reflection coefficient of the wave packet, trough the porous region. With this, we could make a simple calculation and obtain information about the electrical current in this material, using the very simple model I=Q/t, where we defined the time of transmission, as the time interval necessary for the electronic pulse to be consumed completely. This kind of approach is already known in the literature, propose by Lebedev and co-workers (1998). Using the definition of charge carrier mobility, we obtained information about it, since the principal aim of this work is the electronic transport in this kind of material, that despite a strong research on porous silicon, since the beginning of the nineties, the transport properties still remains a relatively unexplored area. The major incentive for this study is due to the strong possibility of application of this material in new optoelectronic devices such as LEDs. Along the development of this dissertation, we applied well known techniques for the computational modelling such as effective mass theory, for example, associated with methods like the periodic boundary conditions, and the absorbing boundary conditions. Treating of a quantum system, we begin all the work solving the time dependent SchrÃedinger equation. To do this task, we have used the numerical method known as Split-Operator, in order to obtain the solutions for this equation. Initially, the calculations in this dissertation where based in an isotropic effective mass, in order to optimise the calculation parameters. After this, we made calculations using an anisotropic effective mass for the different valleys of silicon. All these things leads us to believe that this work have a great importance regarding the contribution to the understanding of transport in electronic systems based on porous silicon, to maintain for some time the applications of this kind of material that was so revolutionary in the twentieth.
Keller, Wolfgang Verfasser], and Volker [Gutachter] [Kaibel. "Tightening the Chvátal and split operator via low-codimensional lineality spaces / Wolfgang Keller ; Gutachter: Volker Kaibel." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2019. http://d-nb.info/1220036455/34.
Full textKeller, Wolfgang [Verfasser], and Volker [Gutachter] Kaibel. "Tightening the Chvátal and split operator via low-codimensional lineality spaces / Wolfgang Keller ; Gutachter: Volker Kaibel." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2019. http://d-nb.info/1220036455/34.
Full textPerea-Estrada, Hugo. "Development, Verification, and Evaluation of a Solute Transport Model in Surface Irrigation." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1322%5F1%5Fm.pdf&type=application/pdf.
Full textBezerra, Anibal Thiago. "Modelagem computacional de estruturas de poços quânticos semicondutores para dispositivos optoeletrônicos e spintrônicos." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/4969.
Full textUniversidade Federal de Sao Carlos
In the present thesis, we realize a computational modeling of semiconductor structures based on multiple quantum wells with filter barriers and on quantum wells with semiconductor diluted magnetic layers. We numerically solve the time-dependent Schrödinger s equation within the effective mass approximation, using the Split Operator method. Through the time evolved wave functions we access the dynamics quantities as the light assisted couplings of the states, in which the light is described by the inclusion of an oscillating electric field in the Hamiltonian. Then we determine the probabilities of absorption, oscillator strengths of the intersubband transitions induced by the light. Moreover we analyze the transmission probabilities and, in special, the system s photocurrent. The eigenstates and the eigenfunctions of the stationary states are also obtained within the method by simply making an imaginary time evolution. In the first work, the photocurrent of a multiple quantum well structure with filter barriers modulating the continuum above the wells was analyzed as a function of the applied bias. We find out an interesting dependence of the photocurrent with the applied field, as a differential negative photoconductance controlled by the field. We attribute this negative conductance to the interaction between the localized and extended states in the continuum, expressed by anticrossings between these states and the enhancement of the photocurrent at the crossings by the Landau-Zener-Stückelberg-Majorama like transitions. In the second work, it was evaluated the spin polarized photocurrent arising from quantum well s structures of GaMnAs, under light, electric and magnetic fields of few teslas. The study shows the existence of spectral domains in the THz ranges for which the proposed structure is strongly spin selective. For such photon frequencies, the photocurrent is spin polarized and the application of the external electric field reverts the polarization s signal. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying these results is studied and understood in terms of the spin-dependent coupling strengths emerging from the particular potential profiles of the heterostructures. We present two additional works related to the main ones. In the first additional one, we evaluated the dark current of the multiple quantum well structure with and without filter barriers. For doing this, we add totally the transmission probability through the structure in the Levine s model for the dark current. We observe that dark current is considerably reduced for the structure with the filter barriers when compared to the structure without these barriers. In the second additional work, we calculate the photocurrent in a ZnMnSe structure. We observe the generation of a spin polarized photocurrent controlled by the external electric field, as in the case of the GaMnAs structures.
Na presente tese, realizamos a modelagem computacional de estruturas semicondutoras baseadas em poços quânticos múltiplos com barreiras de filtro e em poços quânticos com camadas de material semicondutor magnético diluído. Para tanto, resolvemos numericamente a equação de Schrödinger dependente do tempo na aproximação de massa efetiva, por meio da evolução temporal das funções de onda do sistema, utilizando o chamado método do Split- Operator. Com as funções de onda evoluídas no tempo temos acesso às variáveis dinâmicas do sistema, como os acoplamentos entre os estados pela presença de luz, descrita na forma de um campo elétrico oscilante. Determinamos assim as probabilidades de absorção, forças de oscilador das transições intersubbandas geradas por essa excitação com luz, as probabilidades de transmissão através da estrutura e, em especial, o espectro de fotocorrente proveniente desses sistemas semicondutores. As autofunções e as autoenergias dos estados estacionários dos sistemas são obtidas pelo mesmo método realizando a evolução em tempo imaginário. No primeiro trabalho, a fotocorrente da estrutura de poços quânticos múltiplos com barreiras de filtro foi analisada em função do campo elétrico aplicado à estrutura. Foi encontrada uma dependência da fotocorrente com o campo elétrico bastante interessante, na forma de uma fotocondutância negativa controlada pelo campo elétrico aplicado à heteroestrutura. Atribuímos essa condutância negativa à interação entre estados localizados e estendidos no continuo se manifestando na forma de anticrossings e o aumento da fotocorrente para os valores de campo elétrico nos quais ocorrem esses crossings foi associado a transições de dois níveis do tipo Landau-Zener-Stückelberg-Majorama. No segundo trabalho, foi calculada a fotocorrente polarizada em spin de estruturas de poços quânticos de GaMnAs, na presença de um campo elétrico varável e um campo magnético de poucos teslas. O estudo mostrou a existência de domínios espectrais na região de THz do espectro eletromagnético, para os quais as estruturas propostas são altamente seletivas em spin. Para tais frequências, encontramos que a fotocorrente é polarizada em spin e a aplicação do campo elétrico é capaz de reverter forma muito eficiente o sinal da polarização. O comportamento observado sugere a possibilidade de mecanismos simples de controle sobre a fotocorrente e a Física por trás de tais efeitos foi entendida em termos dos acoplamentos dependentes de spin dos estados da estrutura, emergentes do perfil de potencial particular das heteroestruturas. Apresentamos dois trabalhos adicionais diretamente relacionados aos trabalhos principais. No primeiro trabalho, calculamos a corrente de escuro proveniente da estrutura de poços quânticos múltiplos com e sem barreiras de filtro, adicionando de forma integral a probabilidade de transmissão através da estrutura no modelo de Levine que determina essa corrente. Observamos que a presença das barreiras de filtro diminui significativamente a corrente de escuro dessa estrutura no regime de altos valores de campo elétrico. No segundo trabalho adicional, foi calculada a fotocorrente de uma estrutura de PQ com camada DMS, composta por ZnMnSe. Observamos a possibilidade de controle da polarização de spin com o campo elétrico, assim como no caso da estrutura composta de GaMnAs.
Harb, Mahdi. "Microscopie de fonction d’onde électronique." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10150/document.
Full textThis work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (~meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, to visualize the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the "Split-operator” method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results
Books on the topic "Operator split"
Chŏn, Hong-t'aek. Nam-Pukhan kyŏngje t'onghap yŏn'gu: Pukhan kyŏngje ŭi hansijŏk pulli unyŏng pangan = A study of inter-Korean economic integration : temporary split operation of North Korean economy. Sŏul T'ŭkpyŏlsi: KDI, 2012.
Find full textSchechter, Elizabeth. Self-Consciousness and "Split" Brains. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809654.001.0001.
Full textSchechter, Elizabeth. Dual Intentional Agency. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809654.003.0003.
Full textSchechter, Elizabeth. Objection from Sub-Cortical Structures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198809654.003.0005.
Full textTrevor C, Hartley. Civil Jurisdiction and Judgments in Europe. Oxford University Press, 2017. http://dx.doi.org/10.1093/law/9780198729006.001.0001.
Full textSalton, Herman T. Dangerous Diplomacy. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198733591.001.0001.
Full textPerliger, Arie. Terrorism Networks. Edited by Jennifer Nicoll Victor, Alexander H. Montgomery, and Mark Lubell. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190228217.013.28.
Full textEllis-Evans, Aneurin. The Kingdom of Priam. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831983.001.0001.
Full textPatberg, Markus. Constituent Power in the European Union. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198845218.001.0001.
Full textBook chapters on the topic "Operator split"
Martı́n, Antonio J. Calderón, and Diouf Mame Cheikh. "Strongly Split Poisson Algebras." In Non-Associative and Non-Commutative Algebra and Operator Theory, 165–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32902-4_11.
Full textEhrhardt, Torsten, and Karla Rost. "Restricted inversion of split-Bezoutians." In The Diversity and Beauty of Applied Operator Theory, 207–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75996-8_12.
Full textBosquetti, D., and J. Sánchez-Dehesa. "The Split-Operator Technique in Acoustical Physics." In IUTAM Symposium on Diffraction and Scattering in Fluid Mechanics and Elasticity, 107–14. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0087-0_12.
Full textBlow, K. J. "System Analysis Using the Split Operator Method." In Optical Solitons, 127–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_6.
Full textKönig, C. "Operator Split for Three Dimensional Mass Transport Equation." In Computational Methods in Water Resources X, 309–16. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_38.
Full textHeinig, Georg, and Karla Rost. "Split Algorithms for Centrosymmetric Toeplitz-plus-Hankel Matrices with Arbitrary Rank Profile." In The Extended Field of Operator Theory, 129–46. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7980-3_7.
Full textHansen, Jan P., Thierry Matthey, and Tor Sørevik. "A Parallel Split Operator Method for the Time Dependent Schrödinger Equation." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 503–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39924-7_67.
Full textGusev, Alexander, Vladimir Gerdt, Michail Kaschiev, Vitaly Rostovtsev, Valentin Samoylov, Tatyana Tupikova, Yoshio Uwano, and Sergue Vinitsky. "Symbolic-Numerical Algorithm for Solving the Time-Dependent Schrödinger Equation by Split-Operator Method." In Computer Algebra in Scientific Computing, 244–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11555964_21.
Full textGolden, Leslie M. "Linear Operators." In Never Split Tens!, 23–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63486-9_4.
Full textKołaczek, Damian, Bartłomiej J. Spisak, and Maciej Wołoszyn. "P $$\hbar $$ ase-Space Approach to Time Evolution of Quantum States in Confined Systems. The Spectral Split-Operator Method." In Advances in Intelligent Systems and Computing, 307–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18058-4_24.
Full textConference papers on the topic "Operator split"
Schwer, Douglas, and William Green, Jr. "Split-operator methods for computing steady-state reacting flow-fields." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2635.
Full textXin-gang Ren, Zhi-xiang Huang, Xian-liang Wu, Si-long Lu, Yi-cai Mei, Hong-mei Du, and Lei Wu. "A split-operator method to simulate the left hand materials." In 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2011. http://dx.doi.org/10.1109/csqrwc.2011.6036924.
Full textSu, Qichang C., S. Mandel, S. Menon, and R. Grobe. "Split operator solution of the time-dependent Maxwell's equations for random scatterers." In International Workshop on Photonics and Imaging in Biology and Medicine, edited by Qingming Luo, Britton Chance, and Valery V. Tuchin. SPIE, 2002. http://dx.doi.org/10.1117/12.462558.
Full textDeVries, Paul L. "Application of the Split Operator Fourier Transform method to the solution of the nonlinear Schrödinger equation." In AIP Conference Proceedings Volume 160. AIP, 1987. http://dx.doi.org/10.1063/1.36847.
Full textLoRe, Anthony, Paul Stoller, and Robert Hauser. "Maximizing Energy Revenues: Providing the Best Incentive to the Contract Operator." In 14th Annual North American Waste-to-Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/nawtec14-3184.
Full textReiss, Robert, Bo Qian, and Win Aung. "Eigenvalues for Moderately Damped Linear Systems Determined by Eigensensitivity Analysis." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0079.
Full textSilva, Ygor, João Almeida, Gabriel Macedo, and Anibal Bezerra. "Estudo das propriedades óticas de células solares de banda intermediária utilizando o método Split Operator." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05774.
Full textBarnett, Julian, Richard Wilkinson, Alan Kirkham, and Keith Armstrong. "Under Pressure Operations on Dense Phase CO2 Pipelines: Issues for the Operator." In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33309.
Full textLorini, Emiliano, and Francois Schwarzentruber. "Multi-Agent Belief Base Revision." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/270.
Full textSou, Akira, Kosuke Hayashi, and Tsuyoshi Nakajima. "Evaluation of Volume Tracking Algorithms for Gas-Liquid Two-Phase Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45164.
Full textReports on the topic "Operator split"
Chen, X., J. M. Connors, and C. H. Tong. A flexible method to calculate the distributions of discretization errors in operator-split codes with stochastic noise in problem data. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119920.
Full textOstashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Full textDell G. F. and S. Lee. Split tune operation of a hybrid booster lattice ?x = 3.820, ?y = 4.830. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/1150421.
Full textWilliams, Michael, Marcial Lamera, Aleksander Bauranov, Carole Voulgaris, and Anurag Pande. Safety Considerations for All Road Users on Edge Lane Roads. Mineta Transportation Institute, March 2021. http://dx.doi.org/10.31979/mti.2021.1925.
Full text