Journal articles on the topic 'Opial inequality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Opial inequality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gudelj, Ana, Kristina Krulić Himmelreich, and Josip Pečarić. "General Opial Type Inequality and New Green Functions." Axioms 11, no. 6 (2022): 252. http://dx.doi.org/10.3390/axioms11060252.
Full textBarbir, Ana, Kristina Krulić Himmelreich, and Josip Pečarić. "General Opial type inequality." Aequationes mathematicae 89, no. 3 (2014): 641–55. http://dx.doi.org/10.1007/s00010-013-0252-4.
Full textAlp, Necmettin, Candan Bilişik, and Mehmet Sarıkaya. "On q-Opial type inequality for quantum integral." Filomat 33, no. 13 (2019): 4175–84. http://dx.doi.org/10.2298/fil1913175a.
Full textMirković, Tatjana, and Tatjana Bajić. "Opial inequalities for a conformable ∆-fractional calculus on time scales." Mathematica Moravica 28, no. 2 (2024): 17–32. https://doi.org/10.5937/matmor2402017m.
Full textKoliha, J. J., and J. Pecaric. "Weighted Opial inequalities." Tamkang Journal of Mathematics 33, no. 1 (2002): 83–92. http://dx.doi.org/10.5556/j.tkjm.33.2002.308.
Full textSARIKAYA, Mehmet Zeki, and Candan Can Bilişik. "Opial-Jensen and functional inequalities for convex functions." Journal of Fractional Calculus and Nonlinear Systems 3, no. 2 (2022): 27–36. http://dx.doi.org/10.48185/jfcns.v3i2.553.
Full textPACHPATTE, B. G. "OPIAL TYPE INEQUALITY IN SEVERAL VARIABLES." Tamkang Journal of Mathematics 22, no. 1 (1991): 7–11. http://dx.doi.org/10.5556/j.tkjm.22.1991.4562.
Full textDeng, Yinbin. "The opial inequality in R N." Acta Mathematica Scientia 21, no. 4 (2001): 572–76. http://dx.doi.org/10.1016/s0252-9602(17)30447-2.
Full textKai-Chen, Hsu, and Tseng Kuei-Lin. "Some New Discrete Inequalities of Opial and Lasota's Type." Journal of Progressive Research in Mathematics 4, no. 2 (2015): 294–302. https://doi.org/10.5281/zenodo.3980472.
Full textPachpatte, B. G. "On Opial type inequalities in two independent variables." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 100, no. 3-4 (1985): 263–70. http://dx.doi.org/10.1017/s0308210500013809.
Full textAgarwal, Ravi, Martin Bohner, Donal O’Regan, Mahmoud Osman, and Samir Saker. "A General Dynamic Inequality of Opial Type." Applied Mathematics & Information Sciences 10, no. 3 (2016): 875–79. http://dx.doi.org/10.18576/amis/100306.
Full textLi, Qiao-Luan, and Wing-Sum Cheung. "An Opial-Type Inequality on Time Scales." Abstract and Applied Analysis 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/534083.
Full textAlzer, Horst. "Note on a discrete Opial-type inequality." Archiv der Mathematik 65, no. 3 (1995): 267–70. http://dx.doi.org/10.1007/bf01195098.
Full textNosheen, Ammara, Anum Saba, Khuram Ali Khan, and Michael Kikomba Kahungu. "q,h-Opial-Type Inequalities via Hahn Operators." Discrete Dynamics in Nature and Society 2022 (October 26, 2022): 1–12. http://dx.doi.org/10.1155/2022/2650126.
Full textAnthonio, Yisa Oluwatoyin, Abimbola Abolarinwa, and Kamilu Rauf. "Some Results on Pachpatte-Type of Opial Inequality." Pan-American Journal of Mathematics 1 (July 7, 2022): 3. http://dx.doi.org/10.28919/cpr-pajm/1-3.
Full textBrown, Richard C., and Michael Plum. "An Opial-type inequality with an integral boundary condition." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2060 (2005): 2635–51. http://dx.doi.org/10.1098/rspa.2005.1449.
Full textSaker, S. H., D. M. Abdou, and I. Kubiaczyk. "Opial and Pólya Type Inequalities Via Convexity." Fasciculi Mathematici 60, no. 1 (2018): 145–59. http://dx.doi.org/10.1515/fascmath-2018-0009.
Full textYang, Gou-Sheng, and Tien-Shou Huang. "On some inequalities related to Opial-Type inequality in two variables." Tamkang Journal of Mathematics 33, no. 4 (2002): 379–86. http://dx.doi.org/10.5556/j.tkjm.33.2002.287.
Full textAgarwal, R. P., and P. Y. H. Pang. "Remarks on the Generalizations of Opial′s Inequality." Journal of Mathematical Analysis and Applications 190, no. 2 (1995): 559–77. http://dx.doi.org/10.1006/jmaa.1995.1091.
Full textPang, P. Y. H., and R. P. Agarwal. "On an Opial Type Inequality Due to Fink." Journal of Mathematical Analysis and Applications 196, no. 2 (1995): 748–53. http://dx.doi.org/10.1006/jmaa.1995.1438.
Full textPACHPATTE, B. G. "A NOTE ON GENERALIZED OPIAL TYPE INEQUALITIES." Tamkang Journal of Mathematics 24, no. 2 (1993): 229–35. http://dx.doi.org/10.5556/j.tkjm.24.1993.4494.
Full textLi, Horng Jaan, and Cheh Chih Yeh. "Inequalities for a function involving its integral and derivative." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125, no. 1 (1995): 133–51. http://dx.doi.org/10.1017/s0308210500030791.
Full textRauf, K., and Y. O. Anthonio. "Results on an integral inequality of the opial- type." Global Journal of Pure and Applied Sciences 23, no. 1 (2017): 151. http://dx.doi.org/10.4314/gjpas.v23i1.15.
Full textAndrić, Maja, Ana Barbir, Sajid Iqbal, and Josip Pečarić. "An Opial-type integral inequality and exponentially convex functions." Fractional Differential Calculus, no. 1 (2015): 25–42. http://dx.doi.org/10.7153/fdc-05-03.
Full textGeorge, A. Anastassiou. "Psi -Hilfer and Hilfer fractional self adjoint operator analytic inequalities." Asia Mathematika 5, no. 1 (2021): 83–102. https://doi.org/10.5281/zenodo.4723438.
Full textSaker, Samir H. "Some Opial Dynamic Inequalities Involving Higher Order Derivatives on Time Scales." Discrete Dynamics in Nature and Society 2012 (2012): 1–22. http://dx.doi.org/10.1155/2012/157301.
Full textAndrić, Maja, Josip Pečarić, and Ivan Perić. "An Opial-Type inequality for fractional derivatives of two functions." Fractional Differential Calculus, no. 1 (2013): 55–68. http://dx.doi.org/10.7153/fdc-03-04.
Full textVivas-Cortez, Miguel, Francisco Martínez, Juan E. Nápoles Valdes, and Jorge E. Hernández. "On Opial-type inequality for a generalized fractional integral operator." Demonstratio Mathematica 55, no. 1 (2022): 695–709. http://dx.doi.org/10.1515/dema-2022-0149.
Full textHe, X. G. "A Short Proof of a Generalization on Opial′s Inequality." Journal of Mathematical Analysis and Applications 182, no. 1 (1994): 299–300. http://dx.doi.org/10.1006/jmaa.1994.1086.
Full textXu, Han, Li Sha, and Li Qiaoluan. "Opial Type Inequalities for Conformable Fractional Derivative and Integral of Two Functions." Journal of Progressive Research in Mathematics 12, no. 3 (2017): 1924–31. https://doi.org/10.5281/zenodo.3975409.
Full textSaker, Samir H., and Mohammed A. Arahet. "Distributions of Zeros of Solutions for Third-Order Differential Equations with Variable Coefficients." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/158460.
Full textAndrić, Maja, Josip Pečarić, and Ivan Perić. "A multiple Opial type inequality for the Riemann-Liouville fractional derivatives." Journal of Mathematical Inequalities, no. 1 (2013): 139–50. http://dx.doi.org/10.7153/jmi-07-13.
Full textAndrić, Maja, Ana Barbir, Ghulam Farid, and Josip Pečarić. "Opial-type inequality due to Agarwal–Pang and fractional differential inequalities." Integral Transforms and Special Functions 25, no. 4 (2013): 324–35. http://dx.doi.org/10.1080/10652469.2013.851079.
Full textGov, Esra, and Orkun Tasbozan. "Some quantum estimates of opial inequality and some of its generalizations." New Trends in Mathematical Science 1, no. 6 (2018): 76–84. http://dx.doi.org/10.20852/ntmsci.2018.247.
Full textAlzer, H. "An Opial-type inequality involving higher-order derivatives of two functions." Applied Mathematics Letters 10, no. 4 (1997): 123–28. http://dx.doi.org/10.1016/s0893-9659(97)00071-2.
Full textGoroncy, Agnieszka, and Udo Kamps. "Relations for m-generalized order statistics via an Opial-type inequality." Journal of Statistical Planning and Inference 142, no. 6 (2012): 1457–63. http://dx.doi.org/10.1016/j.jspi.2011.12.026.
Full textShi, Da, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, and B. A. Younis. "Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type." AIMS Mathematics 8, no. 10 (2023): 23459–71. http://dx.doi.org/10.3934/math.20231192.
Full textSaker, Samir H. "Lyapunov's Type Inequalities for Fourth-Order Differential Equations." Abstract and Applied Analysis 2012 (2012): 1–25. http://dx.doi.org/10.1155/2012/795825.
Full textChouhan, Amit. "On certain new CAUCHY–TYPE fracitioanl integral inequalities and OPIAL–TYPE fractional derivative inequalities." Tamkang Journal of Mathematics 46, no. 1 (2015): 67–73. http://dx.doi.org/10.5556/j.tkjm.46.2015.1586.
Full textEl-Deeb, Ahmed A., and Dumitru Baleanu. "New Weighted Opial-Type Inequalities on Time Scales for Convex Functions." Symmetry 12, no. 5 (2020): 842. http://dx.doi.org/10.3390/sym12050842.
Full textPečarić, Josip, and Ilko Brnetić. "Note on the Generalization of the Godunova–Levin–Opial Inequality in Several Independent Variables." Journal of Mathematical Analysis and Applications 215, no. 1 (1997): 274–82. http://dx.doi.org/10.1006/jmaa.1997.5529.
Full textLin, Faa-Jeng, Chao-Fu Chang, Yu-Cheng Huang, and Tzu-Ming Su. "A Deep Reinforcement Learning Method for Economic Power Dispatch of Microgrid in OPAL-RT Environment." Technologies 11, no. 4 (2023): 96. http://dx.doi.org/10.3390/technologies11040096.
Full textDube, Deepali Y., and Hiren G. Patel. "Suppressing the Noise in Measured Signals for the Control of Helicopters." Fluctuation and Noise Letters 18, no. 01 (2019): 1950002. http://dx.doi.org/10.1142/s0219477519500020.
Full textMirković, Tatjana Z., Slobodan B. Tričković, and Miomir S. Stanković. "Opial inequality in q-calculus." Journal of Inequalities and Applications 2018, no. 1 (2018). http://dx.doi.org/10.1186/s13660-018-1928-z.
Full textAnthonio, Yisa Oluwatoyin, Kamilu Rauf, Abdullai Ayinla Abdurasid, and Oluwaseun Raphael Aderele. "Multivariate Opial-type Inequalities on Time Scales." Earthline Journal of Mathematical Sciences, January 27, 2023, 13–26. http://dx.doi.org/10.34198/ejms.12123.1326.
Full textNasiruzzaman, Md, Aiman Mukheimer, and M. Mursaleen. "Some Opial-type integral inequalities via $(p,q)$-calculus." Journal of Inequalities and Applications 2019, no. 1 (2019). http://dx.doi.org/10.1186/s13660-019-2247-8.
Full textPachpatte, B. G. "ON SOME NEW GENERALIZATIONS OF OPIAL INEQUALITY." Demonstratio Mathematica 19, no. 2 (1986). http://dx.doi.org/10.1515/dema-1986-0203.
Full textBosch, Paul, Ana Portilla, Jose M. Rodriguez, and Jose M. Sigarreta. "On a generalization of the Opial inequality." Demonstratio Mathematica 57, no. 1 (2024). http://dx.doi.org/10.1515/dema-2023-0149.
Full textBARBIR, ANA, KRISTINA KRULIĆ HIMMELREICH, and JOSIP PREČARIĆ. "GENERAL OPIAL TYPE INEQUALITY FOR QUOTIENT OF FUNCTIONS." Sarajevo Journal of Mathematics, 2016. http://dx.doi.org/10.5644/sjm.12.2.06.
Full textPečarić, Josip, and llko Brnetić. "NOTE ON GENERALIZATION OF GODUNOVA-LEVIN-OPIAL INEQUALITY." Demonstratio Mathematica 30, no. 3 (1997). http://dx.doi.org/10.1515/dema-1997-0310.
Full text