To see the other types of publications on this topic, follow the link: Opsin gene evolution.

Journal articles on the topic 'Opsin gene evolution'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Opsin gene evolution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Neal, S., D. M. de Jong, and E. C. Seaver. "CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva." Proceedings of the Royal Society B: Biological Sciences 286, no. 1904 (2019): 20182491. http://dx.doi.org/10.1098/rspb.2018.2491.

Full text
Abstract:
Many marine animals depend upon a larval phase of their life cycle to locate suitable habitat, and larvae use light detection to influence swimming behaviour and dispersal. Light detection is mediated by the opsin genes, which encode light-sensitive transmembrane proteins. Previous studies suggest that r-opsins in the eyes mediate locomotory behaviour in marine protostomes, but few have provided direct evidence through gene mutagenesis. Larvae of the marine annelid Capitella teleta have simple eyespots and are positively phototactic, although the molecular components that mediate this behaviour are unknown. Here, we characterize the spatio-temporal expression of the rhabdomeric opsin genes in C. teleta and show that a single rhabdomeric opsin gene, Ct-r-opsin1 , is expressed in the larval photoreceptor cells. To investigate its function, Ct-r-opsin1 was disrupted using CRISPR/CAS9 mutagenesis. Polymerase chain reaction amplification and DNA sequencing demonstrated efficient editing of the Ct-r-opsin1 locus. In addition, the pattern of Ct-r-opsin1 expression in photoreceptor cells was altered. Notably, there was a significant decrease in larval phototaxis, although the eyespot photoreceptor cell and associated pigment cell formed normally and persisted in Ct-r-opsin1 -mutant animals. The loss of phototaxis owing to mutations in Ct-r-opsin1 is similar to that observed when the entire photoreceptor and pigment cell are deleted, demonstrating that a single r-opsin gene is sufficient to mediate phototaxis in C. teleta . These results establish the feasibility of gene editing in animals like C. teleta , and extend previous work on the development, evolution and function of the C. teleta visual system . Our study represents one example of disruption of animal behaviour by gene editing through CRISPR/CAS9 mutagenesis, and has broad implications for performing genome editing studies in a wide variety of other understudied animals.
APA, Harvard, Vancouver, ISO, and other styles
2

Fleming, James F., Roberto Feuda, Nicholas W. Roberts, and Davide Pisani. "A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans." Genome Biology and Evolution 12, no. 2 (2020): 3906–16. http://dx.doi.org/10.1093/gbe/evaa015.

Full text
Abstract:
Abstract Our ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct. Opsin phylogeny illustrates this problem clearly. Opsins are G-protein coupled receptors utilized in photoreceptive processes across Metazoa and their protein sequences are roughly 300 amino acids long. A number of incongruent opsin phylogenies have been published and opsin evolution remains poorly understood. Here, we present a novel approach, the canary sequence approach, to investigate and potentially circumvent errors in single-gene phylogenies. First, we demonstrate our approach using two well-understood cases of long-branch attraction in single-gene data sets, and simulations. After that, we apply our approach to a large collection of well-characterized opsins to clarify the relationships of the three main opsin subfamilies.
APA, Harvard, Vancouver, ISO, and other styles
3

Friedrich, Markus. "Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers." Insects 14, no. 9 (2023): 774. http://dx.doi.org/10.3390/insects14090774.

Full text
Abstract:
Expanding on previous efforts to survey the visual opsin repertoires of the Hemiptera, this study confirms that homologs of the UV- and LW-opsin subfamilies are conserved in all Hemiptera, while the B-opsin subfamily is missing from the Heteroptera and subgroups of the Sternorrhyncha and Auchenorrhyncha, i.e., aphids (Aphidoidea) and planthoppers (Fulgoroidea), respectively. Unlike in the Heteroptera, which are characterized by multiple independent expansions of the LW-opsin subfamily, the lack of B-opsin correlates with the presence of tandem-duplicated UV-opsins in aphids and planthoppers. Available data on organismal wavelength sensitivities and retinal gene expression patterns lead to the conclusion that, in both groups, one UV-opsin paralog shifted from ancestral UV peak sensitivity to derived blue sensitivity, likely compensating for the lost B-opsin. Two parallel bona fide tuning site substitutions compare to 18 non-corresponding amino acid replacements in the blue-shifted UV-opsin paralogs of aphids and planthoppers. Most notably, while the aphid blue-shifted UV-opsin clade is characterized by a replacement substitution at one of the best-documented UV/blue tuning sites (Rhodopsin site 90), the planthopper blue-shifted UV-opsin paralogs retained the ancestral lysine at this position. Combined, the new findings identify aphid and planthopper UV-opsins as a new valuable data sample for studying adaptive opsin evolution.
APA, Harvard, Vancouver, ISO, and other styles
4

Bloch, Natasha I. "Evolution of opsin expression in birds driven by sexual selection and habitat." Proceedings of the Royal Society B: Biological Sciences 282, no. 1798 (2015): 20142321. http://dx.doi.org/10.1098/rspb.2014.2321.

Full text
Abstract:
Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes ( Lws, Rh2, Sws2 and Sws1 ) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures.
APA, Harvard, Vancouver, ISO, and other styles
5

Fleming, James F., Reinhardt Møbjerg Kristensen, Martin Vinther Sørensen, et al. "Molecular palaeontology illuminates the evolution of ecdysozoan vision." Proceedings of the Royal Society B: Biological Sciences 285, no. 1892 (2018): 20182180. http://dx.doi.org/10.1098/rspb.2018.2180.

Full text
Abstract:
Colour vision is known to have arisen only twice—once in Vertebrata and once within the Ecdysozoa, in Arthropoda. However, the evolutionary history of ecdysozoan vision is unclear. At the molecular level, visual pigments, composed of a chromophore and a protein belonging to the opsin family, have different spectral sensitivities and these mediate colour vision. At the morphological level, ecdysozoan vision is conveyed by eyes of variable levels of complexity; from the simple ocelli observed in the velvet worms (phylum Onychophora) to the marvellously complex eyes of insects, spiders, and crustaceans. Here, we explore the evolution of ecdysozoan vision at both the molecular and morphological level; combining analysis of a large-scale opsin dataset that includes previously unknown ecdysozoan opsins with morphological analyses of key Cambrian fossils with preserved eye structures. We found that while several non-arthropod ecdysozoan lineages have multiple opsins, arthropod multi-opsin vision evolved through a series of gene duplications that were fixed in a period of 35–71 million years (Ma) along the stem arthropod lineage. Our integrative study of the fossil and molecular record of vision indicates that fossils with more complex eyes were likely to have possessed a larger complement of opsin genes.
APA, Harvard, Vancouver, ISO, and other styles
6

Musilova, Zuzana, Fabio Cortesi, Michael Matschiner, et al. "Vision using multiple distinct rod opsins in deep-sea fishes." Science 364, no. 6440 (2019): 588–92. http://dx.doi.org/10.1126/science.aav4632.

Full text
Abstract:
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin–based vision in vertebrates.
APA, Harvard, Vancouver, ISO, and other styles
7

Upton, Brian A., Nicolás M. Díaz, Shannon A. Gordon, Russell N. Van Gelder, Ethan D. Buhr, and Richard A. Lang. "Evolutionary Constraint on Visual and Nonvisual Mammalian Opsins." Journal of Biological Rhythms 36, no. 2 (2021): 109–26. http://dx.doi.org/10.1177/0748730421999870.

Full text
Abstract:
Animals have evolved light-sensitive G protein–coupled receptors, known as opsins, to detect coherent and ambient light for visual and nonvisual functions. These opsins have evolved to satisfy the particular lighting niches of the organisms that express them. While many unique patterns of evolution have been identified in mammals for rod and cone opsins, far less is known about the atypical mammalian opsins. Using genomic data from over 400 mammalian species from 22 orders, unique patterns of evolution for each mammalian opsins were identified, including photoisomerases, RGR-opsin (RGR) and peropsin (RRH), as well as atypical opsins, encephalopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5). The results demonstrate that OPN5 and rhodopsin show extreme conservation across all mammalian lineages. The cone opsins, SWS1 and LWS, and the nonvisual opsins, OPN3 and RRH, demonstrate a moderate degree of sequence conservation relative to other opsins, with some instances of lineage-specific gene loss. Finally, the photoisomerase, RGR, and the best-studied atypical opsin, OPN4, have high sequence diversity within mammals. These conservation patterns are maintained in human populations. Importantly, all mammalian opsins retain key amino acid residues important for conjugation to retinal-based chromophores, permitting light sensitivity. These patterns of evolution are discussed along with known functions of each atypical opsin, such as in circadian or metabolic physiology, to provide insight into the observed patterns of evolutionary constraint.
APA, Harvard, Vancouver, ISO, and other styles
8

Chinen, Akito, Takanori Hamaoka, Yukihiro Yamada, and Shoji Kawamura. "Gene Duplication and Spectral Diversification of Cone Visual Pigments of Zebrafish." Genetics 163, no. 2 (2003): 663–75. http://dx.doi.org/10.1093/genetics/163.2.663.

Full text
Abstract:
Abstract Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (λmax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.
APA, Harvard, Vancouver, ISO, and other styles
9

Matsumoto, Yoshifumi, Shoji Oda, Hiroshi Mitani, and Shoji Kawamura. "Orthologous Divergence and Paralogous Anticonvergence in Molecular Evolution of Triplicated Green Opsin Genes in Medaka Fish, Genus Oryzias." Genome Biology and Evolution 12, no. 6 (2020): 911–23. http://dx.doi.org/10.1093/gbe/evaa111.

Full text
Abstract:
Abstract Gene duplication of green (RH2) opsin genes and their spectral differentiation are well documented in many teleost fish. However, their evolutionary divergence or conservation patterns among phylogenetically close but ecologically diverse species is not well explored. Medaka fish (genus Oryzias) are broadly distributed in fresh and brackish waters of Asia, with many species being laboratory-housed and feasible for genetic studies. We previously showed that a Japan strain (HNI) of medaka (Oryzias latipes) possessed three RH2 opsin genes (RH2-A, RH2-B, and RH2-C) encoding spectrally divergent photopigments. Here, we examined the three RH2 opsin genes from six Oryzias species representing three species groups: the latipes, the celebensis, and the javanicus. Photopigment reconstitution revealed that the peak absorption spectra (λmax) of RH2-A were divergent among the species (447–469 nm), whereas those of RH2-B and RH2-C were conservative (516–519 and 486–493 nm, respectively). For the RH2-A opsins, the largest spectral shift was detected in the phylogenetic branch leading to the latipes group. A single amino acid replacement T94C explained most of the spectral shift. For RH2-B and -C opsins, we detected tracts of gene conversion between the two genes homogenizing them. Nevertheless, several amino acid differences were maintained. We showed that the spectral difference between the two opsins was attributed to largely the E/Q amino acid difference at the site 122 and to several sites with individually small spectral effects. These results depict dynamism of spectral divergence of orthologous and paralogous green opsin genes in phylogenetically close but ecologically diverse species exemplified by medaka.
APA, Harvard, Vancouver, ISO, and other styles
10

Ogawa, Yohey, Tomoya Shiraki, Yoshimasa Asano, et al. "Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish." Proceedings of the National Academy of Sciences 116, no. 10 (2019): 4651–60. http://dx.doi.org/10.1073/pnas.1812884116.

Full text
Abstract:
Color discrimination in the vertebrate retina is mediated by a combination of spectrally distinct cone photoreceptors, each expressing one of multiple cone opsins. The opsin genes diverged early in vertebrate evolution into four classes maximally sensitive to varying wavelengths of light: UV (SWS1), blue (SWS2), green (RH2), and red (LWS) opsins. Although the tetrachromatic cone system is retained in most nonmammalian vertebrate lineages, the transcriptional mechanism underlying gene expression of the cone opsins remains elusive, particularly for SWS2 and RH2 opsins, both of which have been lost in the mammalian lineage. In zebrafish, which have all four cone subtypes,rh2opsin gene expression depends on a homeobox transcription factor,sine oculishomeobox 7 (Six7). However, thesix7gene is found only in the ray-finned fish lineage, suggesting the existence of another evolutionarily conserved transcriptional factor(s) controllingrh2opsin expression in vertebrates. Here, we found that the reducedrh2expression caused bysix7deficiency was rescued by forced expression ofsix6b, which is asix7-related transcription factor conserved widely among vertebrates. The compensatory role ofsix6bwas reinforced by ChIP-sequencing analysis, which revealed a similar pattern of Six6b- and Six7-binding sites within and near the cone opsin genes. TAL effector nuclease-induced genetic ablation ofsix6bandsix7revealed that they coordinately regulate SWS2 opsin gene expression. Mutant larvae deficient for these transcription factors showed severely impaired visually driven foraging behavior. These results demonstrate that in zebrafish,six6bandsix7govern expression of the SWS2 and RH2 opsins responsible for middle-wavelength sensitivity, which would be physiologically important for daylight vision.
APA, Harvard, Vancouver, ISO, and other styles
11

Cortesi, Fabio, Zuzana Musilová, Sara M. Stieb, et al. "Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes." Proceedings of the National Academy of Sciences 112, no. 5 (2014): 1493–98. http://dx.doi.org/10.1073/pnas.1417803112.

Full text
Abstract:
Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.
APA, Harvard, Vancouver, ISO, and other styles
12

PORTER, MEGAN L., MICHAEL J. BOK, PHYLLIS R. ROBINSON, and THOMAS W. CRONIN. "Molecular diversity of visual pigments in Stomatopoda (Crustacea)." Visual Neuroscience 26, no. 3 (2009): 255–65. http://dx.doi.org/10.1017/s0952523809090129.

Full text
Abstract:
AbstractStomatopod crustaceans possess apposition compound eyes that contain more photoreceptor types than any other animal described. While the anatomy and physiology of this complexity have been studied for more than two decades, few studies have investigated the molecular aspects underlying the stomatopod visual complexity. Based on previous studies of the structure and function of the different types of photoreceptors, stomatopod retinas are hypothesized to contain up to 16 different visual pigments, with 6 of these having sensitivity to middle or long wavelengths of light. We investigated stomatopod middle- and long-wavelength-sensitive opsin genes from five species with the hypothesis that each species investigated would express up to six different opsin genes. In order to understand the evolution of this class of stomatopod opsins, we examined the complement of expressed transcripts in the retinas of species representing a broad taxonomic range (four families and three superfamilies). A total of 54 unique retinal opsins were isolated, resulting in 6–15 different expressed transcripts in each species. Phylogenetically, these transcripts form six distinct clades, grouping with other crustacean opsins and sister to insect long-wavelength visual pigments. Within these stomatopod opsin groups, intra- and interspecific clusters of highly similar transcripts suggest that there has been rampant recent gene duplication. Some of the observed molecular diversity is also due to ancient gene duplication events within the stem crustacean lineage. Using evolutionary trace analysis, 10 amino acid sites were identified as functionally divergent among the six stomatopod opsin clades. These sites form tight clusters in two regions of the opsin protein known to be functionally important: six in the chromophore-binding pocket and four at the cytoplasmic surface in loops II and III. These two clusters of sites indicate that stomatopod opsins have diverged with respect to both spectral tuning and signal transduction.
APA, Harvard, Vancouver, ISO, and other styles
13

Sadier, Alexa, Kalina Tj Davies, Laurel R. Yohe, et al. "Multifactorial processes underlie parallel opsin loss in neotropical bats." eLife 7 (June 12, 2018): e37412. https://doi.org/10.5281/zenodo.13423052.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) The loss of previously adaptive traits is typically linked to relaxation in selection, yet the molecular steps leading to such repeated losses are rarely known. Molecular studies of loss have tended to focus on gene sequences alone, but overlooking other aspects of protein expression might underestimate phenotypic diversity. Insights based almost solely on opsin gene evolution, for instance, have made mammalian color vision a textbook example of phenotypic loss. We address this gap by investigating retention and loss of opsin genes, transcripts, and proteins across ecologically diverse noctilionoid bats. We find multiple, independent losses of short-wave-sensitive opsins. Mismatches between putatively functional DNA sequences, mRNA transcripts, and proteins implicate transcriptional and post-transcriptional processes in the ongoing loss of S-opsins in some noctilionoid bats. Our results provide a snapshot of evolution in progress during phenotypic trait loss, and suggest vertebrate visual phenotypes cannot always be predicted from genotypes alone. , Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats' evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing 'evolution in action', these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats.
APA, Harvard, Vancouver, ISO, and other styles
14

Sadier, Alexa, Kalina Tj Davies, Laurel R. Yohe, et al. "Multifactorial processes underlie parallel opsin loss in neotropical bats." eLife 7 (June 7, 2018): e37412. https://doi.org/10.5281/zenodo.13423052.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) The loss of previously adaptive traits is typically linked to relaxation in selection, yet the molecular steps leading to such repeated losses are rarely known. Molecular studies of loss have tended to focus on gene sequences alone, but overlooking other aspects of protein expression might underestimate phenotypic diversity. Insights based almost solely on opsin gene evolution, for instance, have made mammalian color vision a textbook example of phenotypic loss. We address this gap by investigating retention and loss of opsin genes, transcripts, and proteins across ecologically diverse noctilionoid bats. We find multiple, independent losses of short-wave-sensitive opsins. Mismatches between putatively functional DNA sequences, mRNA transcripts, and proteins implicate transcriptional and post-transcriptional processes in the ongoing loss of S-opsins in some noctilionoid bats. Our results provide a snapshot of evolution in progress during phenotypic trait loss, and suggest vertebrate visual phenotypes cannot always be predicted from genotypes alone. , Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats' evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing 'evolution in action', these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats.
APA, Harvard, Vancouver, ISO, and other styles
15

Sadier, Alexa, Kalina Tj Davies, Laurel R. Yohe, et al. "Multifactorial processes underlie parallel opsin loss in neotropical bats." eLife 7 (June 19, 2018): e37412. https://doi.org/10.5281/zenodo.13423052.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) The loss of previously adaptive traits is typically linked to relaxation in selection, yet the molecular steps leading to such repeated losses are rarely known. Molecular studies of loss have tended to focus on gene sequences alone, but overlooking other aspects of protein expression might underestimate phenotypic diversity. Insights based almost solely on opsin gene evolution, for instance, have made mammalian color vision a textbook example of phenotypic loss. We address this gap by investigating retention and loss of opsin genes, transcripts, and proteins across ecologically diverse noctilionoid bats. We find multiple, independent losses of short-wave-sensitive opsins. Mismatches between putatively functional DNA sequences, mRNA transcripts, and proteins implicate transcriptional and post-transcriptional processes in the ongoing loss of S-opsins in some noctilionoid bats. Our results provide a snapshot of evolution in progress during phenotypic trait loss, and suggest vertebrate visual phenotypes cannot always be predicted from genotypes alone. , Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats' evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing 'evolution in action', these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats.
APA, Harvard, Vancouver, ISO, and other styles
16

Sadier, Alexa, Kalina Tj Davies, Laurel R. Yohe, et al. "Multifactorial processes underlie parallel opsin loss in neotropical bats." eLife 7 (July 3, 2018): e37412. https://doi.org/10.5281/zenodo.13423052.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) The loss of previously adaptive traits is typically linked to relaxation in selection, yet the molecular steps leading to such repeated losses are rarely known. Molecular studies of loss have tended to focus on gene sequences alone, but overlooking other aspects of protein expression might underestimate phenotypic diversity. Insights based almost solely on opsin gene evolution, for instance, have made mammalian color vision a textbook example of phenotypic loss. We address this gap by investigating retention and loss of opsin genes, transcripts, and proteins across ecologically diverse noctilionoid bats. We find multiple, independent losses of short-wave-sensitive opsins. Mismatches between putatively functional DNA sequences, mRNA transcripts, and proteins implicate transcriptional and post-transcriptional processes in the ongoing loss of S-opsins in some noctilionoid bats. Our results provide a snapshot of evolution in progress during phenotypic trait loss, and suggest vertebrate visual phenotypes cannot always be predicted from genotypes alone. , Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats' evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing 'evolution in action', these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats.
APA, Harvard, Vancouver, ISO, and other styles
17

Sadier, Alexa, Kalina Tj Davies, Laurel R. Yohe, et al. "Multifactorial processes underlie parallel opsin loss in neotropical bats." eLife 7 (July 10, 2018): e37412. https://doi.org/10.5281/zenodo.13423052.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) The loss of previously adaptive traits is typically linked to relaxation in selection, yet the molecular steps leading to such repeated losses are rarely known. Molecular studies of loss have tended to focus on gene sequences alone, but overlooking other aspects of protein expression might underestimate phenotypic diversity. Insights based almost solely on opsin gene evolution, for instance, have made mammalian color vision a textbook example of phenotypic loss. We address this gap by investigating retention and loss of opsin genes, transcripts, and proteins across ecologically diverse noctilionoid bats. We find multiple, independent losses of short-wave-sensitive opsins. Mismatches between putatively functional DNA sequences, mRNA transcripts, and proteins implicate transcriptional and post-transcriptional processes in the ongoing loss of S-opsins in some noctilionoid bats. Our results provide a snapshot of evolution in progress during phenotypic trait loss, and suggest vertebrate visual phenotypes cannot always be predicted from genotypes alone. , Bats are famous for using their hearing to explore their environments, yet fewer people are aware that these flying mammals have both good night and daylight vision. Some bats can even see in color thanks to two light-sensitive proteins at the back of their eyes: S-opsin which detects blue and ultraviolet light and L-opsin which detects green and red light. Many species of bat, however, are missing one of these proteins and cannot distinguish any colors; in other words, they are completely color-blind. Some bat species found in Central and South America have independently lost their ability to see blue-ultraviolet light and have thus also lost their color vision. These bats have diverse diets – ranging from insects to fruits and even blood – and being able to distinguish color may offer an advantage in many of their activities, including hunting or foraging. The vision genes in these bats, therefore, give scientists an opportunity to explore how a seemingly important trait can be lost at the molecular level. Sadier, Davies et al. now report that S-opsin has been lost more than a dozen times during the evolutionary history of these Central and South American bats. The analysis used samples from 55 species, including animals caught from the wild and specimens from museums. As with other proteins, the instructions encoded in the gene sequence for S opsin need to be copied into a molecule of RNA before they can be translated into protein. As expected, S-opsin was lost several times because of changes in the gene sequence that disrupted the formation of the protein. However, at several points in these bats' evolutionary history, additional changes have taken place that affected the production of the RNA or the protein, without an obvious change to the gene itself. This finding suggests that other studies that rely purely on DNA to understand evolution may underestimate how often traits may be lost. By capturing 'evolution in action', these results also provide a more complete picture of the molecular targets of evolution in a diverse set of bats.
APA, Harvard, Vancouver, ISO, and other styles
18

Poboży, Kamil, Tomasz Poboży, Paweł Domański, Michał Derczyński, Wojciech Konarski, and Julia Domańska-Poboża. "Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review." Biomedicines 13, no. 2 (2025): 429. https://doi.org/10.3390/biomedicines13020429.

Full text
Abstract:
Retinal degenerations, such as age-related macular degeneration and retinitis pigmentosa, present significant challenges due to genetic heterogeneity, limited therapeutic options, and the progressive loss of photoreceptors in advanced stages. These challenges are compounded by difficulties in precisely targeting residual retinal neurons and ensuring the sustained efficacy of interventions. Optogenetics offers a novel approach to vision restoration by inducing light sensitivity in residual retinal neurons through gene delivery of light-sensitive opsins. This review traces the evolution of opsins in optogenetic therapies, highlighting advancements from early research on channelrhodopsin-2 (ChR2) to engineered variants addressing key limitations. Red-shifted opsins, including ReaChR and ChrimsonR, reduced phototoxicity by enabling activation under longer wavelengths, while Chronos introduced superior temporal kinetics for dynamic visual tracking. Further innovations, such as Multi-Characteristic Opsin 1 (MCO1), optimized opsin performance under ambient light, bridging the gap to real-world applications. Key milestones include the first partial vision restoration in a human patient using ChrimsonR with light-amplifying goggles and ongoing clinical trials exploring the efficacy of opsin-based therapies for advanced retinal degeneration. While significant progress has been made, challenges remain in achieving sufficient light sensitivity for functional vision under normal ambient lighting conditions in a manner that is both effective and safe, eliminating the need for external light-enhancing devices. As research progresses, optogenetic therapies are positioned to redefine the management of retinal degenerative diseases, offering new hope for millions affected by vision loss.
APA, Harvard, Vancouver, ISO, and other styles
19

Sandkam, Benjamin A., Laura Campello, Conor O’Brien, et al. "Tbx2a Modulates Switching of RH2 and LWS Opsin Gene Expression." Molecular Biology and Evolution 37, no. 7 (2020): 2002–14. http://dx.doi.org/10.1093/molbev/msaa062.

Full text
Abstract:
Abstract Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.
APA, Harvard, Vancouver, ISO, and other styles
20

Simon, Noah, Suguru Fujita, Megan Porter, and Masato Yoshizawa. "Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish." PeerJ 7 (December 17, 2019): e8148. http://dx.doi.org/10.7717/peerj.8148.

Full text
Abstract:
Background Animals living in well-lit environments utilize optical stimuli for detecting visual information, regulating the homeostatic pacemaker, and controlling patterns of body pigmentation. In contrast, many subterranean animal species without optical stimuli have evolved regressed binocular eyes and body pigmentation. Interestingly, some fossorial and cave-dwelling animals with regressed eyes still respond to light. These light-dependent responses may be simply evolutionary residuals or they may be adaptive, where negative phototaxis provides avoidance of predator-rich surface environments. However, the relationship between these non-ocular light responses and the underlying light-sensing Opsin proteins has not been fully elucidated. Methods To highlight the potential functions of opsins in a blind subterranean animal, we used the Mexican cave tetra to investigate opsin gene expression in the eyes and several brain regions of both surface and cave-dwelling adults. We performed database surveys, expression analyses by quantitative reverse transcription PCR (RT-qPCR), and light-dependent locomotor activity analysis using pinealectomized fish, one of the high-opsin expressing organs of cavefish. Results Based on conservative criteria, we identified 33 opsin genes in the cavefish genome. Surveys of available RNAseq data found 26 of these expressed in the surface fish eye as compared to 24 expressed in cavefish extraocular tissues, 20 of which were expressed in the brain. RT-qPCR of 26 opsins in surface and cavefish eye and brain tissues showed the highest opsin-expressing tissue in cavefish was the pineal organ, which expressed exo-rhodopsin at 72.7% of the expression levels in surface fish pineal. However, a pinealectomy resulted in no change to the light-dependent locomotor activity in juvenile cavefish and surface fish. Therefore, we conclude that, after 20,000 or more years of evolution in darkness, cavefish light-dependent basal activity is regulated by a non-pineal extraocular organ.
APA, Harvard, Vancouver, ISO, and other styles
21

Paganos, Periklis, Esther Ullrich-Lüter, Filomena Caccavale, et al. "A New Model Organism to Investigate Extraocular Photoreception: Opsin and Retinal Gene Expression in the Sea Urchin Paracentrotus lividus." Cells 11, no. 17 (2022): 2636. http://dx.doi.org/10.3390/cells11172636.

Full text
Abstract:
Molecular research on the evolution of extraocular photoreception has drawn attention to photosensitive animals lacking proper eye organs. Outside of vertebrates, little is known about this type of sensory system in any other deuterostome. In this study, we investigate such an extraocular photoreceptor cell (PRC) system in developmental stages of the sea urchin Paracentrotus lividus. We provide a general overview of the cell type families present at the mature rudiment stage using single-cell transcriptomics, while emphasizing the PRCs complexity. We show that three neuronal and one muscle-like PRC type families express retinal genes prior to metamorphosis. Two of the three neuronal PRC type families express a rhabdomeric opsin as well as an echinoderm-specific opsin (echinopsin), and their genetic wiring includes sea urchin orthologs of key retinal genes such as hlf, pp2ab56e, barh, otx, ac/sc, brn3, six1/2, pax6, six3, neuroD, irxA, isl and ato. Using qPCR, in situ hybridization, and immunohistochemical analysis, we found that the expressed retinal gene composition becomes more complex from mature rudiment to juvenile stage. The majority of retinal genes are expressed dominantly in the animals’ podia, and in addition to the genes already expressed in the mature rudiment, the juvenile podia express a ciliary opsin, another echinopsin, and two Go-opsins. The expression of a core of vertebrate retinal gene orthologs indicates that sea urchins have an evolutionarily conserved gene regulatory toolkit that controls photoreceptor specification and function, and that their podia are photosensory organs.
APA, Harvard, Vancouver, ISO, and other styles
22

Tobler, Michael, Seth W. Coleman, Brian D. Perkins, and Gil G. Rosenthal. "Reduced opsin gene expression in a cave-dwelling fish." Biology Letters 6, no. 1 (2009): 98–101. http://dx.doi.org/10.1098/rsbl.2009.0549.

Full text
Abstract:
Regressive evolution of structures associated with vision in cave-dwelling organisms is the focus of intense research. Most work has focused on differences between extreme visual phenotypes: sighted, surface animals and their completely blind, cave-dwelling counterparts. We suggest that troglodytic systems, comprising multiple populations that vary along a gradient of visual function, may prove critical in understanding the mechanisms underlying initial regression in visual pathways. Gene expression assays of natural and laboratory-reared populations of the Atlantic molly ( Poecilia mexicana ) revealed reduced opsin expression in cave-dwelling populations compared with surface-dwelling conspecifics. Our results suggest that the reduction in opsin expression in cave-dwelling populations is not phenotypically plastic but reflects a hardwired system not rescued by exposure to light during retinal ontogeny. Changes in opsin gene expression may consequently represent a first evolutionary step in the regression of eyes in cave organisms.
APA, Harvard, Vancouver, ISO, and other styles
23

Macias-Muñoz, Aide, Aline G. Rangel Olguin, and Adriana D. Briscoe. "Evolution of Phototransduction Genes in Lepidoptera." Genome Biology and Evolution 11, no. 8 (2019): 2107–24. http://dx.doi.org/10.1093/gbe/evz150.

Full text
Abstract:
Abstract Vision is underpinned by phototransduction, a signaling cascade that converts light energy into an electrical signal. Among insects, phototransduction is best understood in Drosophila melanogaster. Comparison of D. melanogaster against three insect species found several phototransduction gene gains and losses, however, lepidopterans were not examined. Diurnal butterflies and nocturnal moths occupy different light environments and have distinct eye morphologies, which might impact the expression of their phototransduction genes. Here we investigated: 1) how phototransduction genes vary in gene gain or loss between D. melanogaster and Lepidoptera, and 2) variations in phototransduction genes between moths and butterflies. To test our prediction of phototransduction differences due to distinct visual ecologies, we used insect reference genomes, phylogenetics, and moth and butterfly head RNA-Seq and transcriptome data. As expected, most phototransduction genes were conserved between D. melanogaster and Lepidoptera, with some exceptions. Notably, we found two lepidopteran opsins lacking a D. melanogaster ortholog. Using antibodies we found that one of these opsins, a candidate retinochrome, which we refer to as unclassified opsin (UnRh), is expressed in the crystalline cone cells and the pigment cells of the butterfly, Heliconius melpomene. Our results also show that butterflies express similar amounts of trp and trpl channel mRNAs, whereas moths express ∼50× less trp, a potential adaptation to darkness. Our findings suggest that while many single-copy D. melanogaster phototransduction genes are conserved in lepidopterans, phototransduction gene expression differences exist between moths and butterflies that may be linked to their visual light environment.
APA, Harvard, Vancouver, ISO, and other styles
24

Futahashi, Ryo, Ryouka Kawahara-Miki, Michiyo Kinoshita, et al. "Extraordinary diversity of visual opsin genes in dragonflies." Proceedings of the National Academy of Sciences 112, no. 11 (2015): E1247—E1256. http://dx.doi.org/10.1073/pnas.1424670112.

Full text
Abstract:
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.
APA, Harvard, Vancouver, ISO, and other styles
25

Forsell, Johan, Peter Ekström, Iñigo Novales Flamarique, and Bo Holmqvist. "Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts." Journal of Experimental Biology 204, no. 14 (2001): 2517–25. http://dx.doi.org/10.1242/jeb.204.14.2517.

Full text
Abstract:
SUMMARYIn teleostean bony fishes, studies on the adults of various species have shown that pineal photoreceptors are maximally sensitive to short- and middle-wavelength light, possibly utilising both rod-like and pineal-specific opsins. Until recently, however, very little was known about the pineal opsins present in embryonic and larval teleosts and their relationships to opsins expressed by retinal photoreceptors. Our immunocytochemical studies have revealed that, in Atlantic halibut, herring and cod, pineal photoreceptors express principal phototransduction molecules during embryonic life before they appear in retinal photoreceptors. In cDNA from embryonic and adult halibut, we identified two partial opsin gene sequences, HPO1 and HPO4, with highest homology to teleost green and ultraviolet cone opsins (72–83% and 71–83% amino acid identity, respectively). In halibut, these opsins are expressed in the pineal organ of embryos and appear in the retina of larvae. Our recent in situ hybridisation studies with RNA probes for HPO1 and HPO4 demonstrate the presence of green-like opsin mRNAs in the pineal organ and the retina of herring, cod, turbot, haddock, Atlantic salmon, zebrafish and three species of cichlid, and of ultraviolet opsins in the retinas of zebrafish, Atlantic salmon, turbot and the three cichlid species. We conclude that the halibut pineal organ appears to have the potential for both ultraviolet and green photosensitivity from the embryonic stage and that the retina may acquire the same potential during the larval stages. In the other teleosts studied, although both pineal and retinal photoreceptors seem to utilise a green-like opsin from the larval stage, ultraviolet photoreception appears to be restricted to the retina.
APA, Harvard, Vancouver, ISO, and other styles
26

O'Quin, K. E., C. M. Hofmann, H. A. Hofmann, and K. L. Carleton. "Parallel Evolution of Opsin Gene Expression in African Cichlid Fishes." Molecular Biology and Evolution 27, no. 12 (2010): 2839–54. http://dx.doi.org/10.1093/molbev/msq171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13522557.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n ¼ 115; MWS/LWS n ¼ 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
28

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13537493.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
29

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13522557.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n ¼ 115; MWS/LWS n ¼ 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
30

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13537493.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
31

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13522557.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n ¼ 115; MWS/LWS n ¼ 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
32

Simões, Bruno F., Nicole M. Foley, Graham M. Hughes, et al. "As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats." Molecular Biology and Evolution 36, no. 1 (2019): 54–68. https://doi.org/10.5281/zenodo.13522557.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n ¼ 115; MWS/LWS n ¼ 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555–560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
APA, Harvard, Vancouver, ISO, and other styles
33

Ödeen, Anders, Olle Håstad, and Per Alström. "Evolution of ultraviolet vision in shorebirds (Charadriiformes)." Biology Letters 6, no. 3 (2009): 370–74. http://dx.doi.org/10.1098/rsbl.2009.0877.

Full text
Abstract:
Diurnal birds belong to one of two classes of colour vision. These are distinguished by the maximum absorbance wavelengths of the SWS1 visual pigment sensitive to violet (VS) and ultraviolet (UVS). Shifts between the classes have been rare events during avian evolution. Gulls (Laridae) are the only shorebirds (Charadriiformes) previously reported to have the UVS type of opsin, but too few species have been sampled to infer that gulls are unique among shorebirds or that Laridae is monomorphic for this trait. We have sequenced the SWS1 opsin gene in a broader sample of species. We confirm that cysteine in the key amino acid position 90, characteristic of the UVS class, has been conserved throughout gull evolution but also that the terns Anous minutus, A. tenuirostris and Gygis alba , and the skimmer Rynchops niger carry this trait. Terns, excluding Anous and Gygis , share the VS conferring serine in position 90 with other shorebirds but it is translated from a codon more similar to that found in UVS shorebirds. The most parsimonious interpretation of these findings, based on a molecular gene tree, is a single VS to UVS shift and a subsequent reversal in one lineage.
APA, Harvard, Vancouver, ISO, and other styles
34

Betlach, Mary C., Diane Leong, and Herbert W. Boyer. "Bacterio-opsin gene expression in Halobacterium halobium." Systematic and Applied Microbiology 7, no. 1 (1986): 83–89. http://dx.doi.org/10.1016/s0723-2020(86)80128-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dulai, Kanwaljit S., Miranda von Dornum, John D. Mollon, and David M. Hunt. "The Evolution of Trichromatic Color Vision by Opsin Gene Duplication in New World and Old World Primates." Genome Research 9, no. 7 (1999): 629–38. http://dx.doi.org/10.1101/gr.9.7.629.

Full text
Abstract:
Trichromacy in all Old World primates is dependent on separate X-linked MW and LW opsin genes that are organized into a head-to-tail tandem array flanked on the upstream side by a locus control region (LCR). The 5′ regions of these two genes show homology for only the first 236 bp, although within this region, the differences are conserved in humans, chimpanzees, and two species of cercopithecoid monkeys. In contrast, most New World primates have only a single polymorphic X-linked opsin gene; all males are dichromats and trichromacy is achieved only in those females that possess a different form of this gene on each X chromosome. By sequencing the upstream region of this gene in a New World monkey, the marmoset, we have been able to demonstrate the presence of an LCR in an equivalent position to that in Old World primates. Moreover, the marmoset sequence shows extensive homology from the coding region to the LCR with the upstream sequence of the human LW gene, a distance of >3 kb, whereas homology with the human MW gene is again limited to the first 236 bp, indicating that the divergent MW sequence identifies the site of insertion of the duplicated gene. This is further supported by the presence of an incomplete Alu element on the upstream side of this insertion point in the MW gene of both humans and a cercopithecoid monkey, with additional Alu elements present further upstream. Therefore, these Aluelements may have been involved in the initial gene duplication and may also be responsible for the high frequency of gene loss and gene duplication within the opsin gene array. Full trichromacy is present in one species of New World monkey, the howler monkey, in which separate MW and LW genes are again present. In contrast to the separate genes in humans, however, the upstream sequences of the two howler genes show homology with the marmoset for at least 600 bp, which is well beyond the point of divergence of the human MW and LW genes, and each sequence is associated with a different LCR, indicating that the duplication in the howler monkey involved the entire upstream region.[The sequence data described in this paper have been submitted to GenBank under accession nos. AF155218, AF156715, and AF156716.]
APA, Harvard, Vancouver, ISO, and other styles
36

Papatsenko, D., G. Sheng, and C. Desplan. "A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells." Development 124, no. 9 (1997): 1665–73. http://dx.doi.org/10.1242/dev.124.9.1665.

Full text
Abstract:
The photoreceptor cells of the Drosophila compound eye are precisely organized in elementary units called ommatidia. The outer (R1-R6) and inner (R7, R8) photoreceptors represent two physiologically distinct systems with two different projection targets in the brain (for review see Hardie, 1985). All cells of the primary system, R1-R6, express the same rhodopsin and are functionally identical. In contrast, the R7 and R8 photoreceptors are different from each other. They occupy anatomically precise positions, with R7 on top of R8. In fact, there are several classes of R7/R8 pairs, which differ morphologically and functionally and are characterized by the expression of one of two R7-specific opsins, rh3 or rh4. Here, we describe the identification of a new opsin gene, rhodopsin 5, expressed in one subclass of R8 cells. Interestingly, this subclass represents R8 cells that are directly underneath the R7 photoreceptors expressing rh3, but are never under those expressing rh4. These results confirm the existence of two subpopulations of R7 and R8 cells, which coordinate the expression of their respective rh genes. Thus, developmental signaling pathways between R7 and R8 lead to the exclusive expression of a single rhodopsin gene per cell and to the coordinate expression of another one in the neighboring cell. Consistent with this, rh5 expression in R8 disappears when R7 cells are absent (in sevenless mutant). We propose a model for the concerted evolution of opsin genes and the elaboration of the architecture of the retina.
APA, Harvard, Vancouver, ISO, and other styles
37

CARLETON, K. L., C. M. HOFMANN, C. KLISZ, et al. "Genetic basis of differential opsin gene expression in cichlid fishes." Journal of Evolutionary Biology 23, no. 4 (2010): 840–53. http://dx.doi.org/10.1111/j.1420-9101.2010.01954.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Veilleux, Carrie C., and Deborah A. Bolnick. "Opsin gene polymorphism predicts trichromacy in a cathemeral lemur." American Journal of Primatology 71, no. 1 (2009): 86–90. http://dx.doi.org/10.1002/ajp.20621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

HOFMANN, CHRISTOPHER M., KELLY E. O’QUIN, ADAM R. SMITH, and KAREN L. CARLETON. "Plasticity of opsin gene expression in cichlids from Lake Malawi." Molecular Ecology 19, no. 10 (2010): 2064–74. http://dx.doi.org/10.1111/j.1365-294x.2010.04621.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

JACOBS, GERALD H. "Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision." Visual Neuroscience 30, no. 1-2 (2013): 39–53. http://dx.doi.org/10.1017/s0952523812000429.

Full text
Abstract:
AbstractAll mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhao, Zhongming, David Hewett-Emmett, and Wen-Hsiung Li. "Frequent gene conversion between human red and green opsin genes." Journal of Molecular Evolution 46, no. 4 (1998): 494–96. http://dx.doi.org/10.1007/pl00013147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Spady, Tyrone C., Juliet W. L. Parry, Phyllis R. Robinson, David M. Hunt, James K. Bowmaker, and Karen L. Carleton. "Evolution of the Cichlid Visual Palette through Ontogenetic Subfunctionalization of the Opsin Gene Arrays." Molecular Biology and Evolution 23, no. 8 (2006): 1538–47. http://dx.doi.org/10.1093/molbev/msl014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Luehrmann, Martin, Fabio Cortesi, Karen L. Cheney, Fanny Busserolles, and N. Justin Marshall. "Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae)." Functional Ecology 34, no. 5 (2020): 1041–52. http://dx.doi.org/10.1111/1365-2435.13529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Stieb, Sara M., Karen L. Carleton, Fabio Cortesi, N. Justin Marshall, and Walter Salzburger. "Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species." Molecular Ecology 25, no. 15 (2016): 3645–61. http://dx.doi.org/10.1111/mec.13712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Spaethe, J. "Early Duplication and Functional Diversification of the Opsin Gene Family in Insects." Molecular Biology and Evolution 21, no. 8 (2004): 1583–94. http://dx.doi.org/10.1093/molbev/msh162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Da-Wei, Feng-Yu Wang, Jinn-Jy Lin, et al. "The Cone Opsin Repertoire of Osteoglossomorph Fishes: Gene Loss in Mormyrid Electric Fish and a Long Wavelength-Sensitive Cone Opsin That Survived 3R." Molecular Biology and Evolution 36, no. 3 (2018): 447–57. http://dx.doi.org/10.1093/molbev/msy241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wertman, Debra L., Katherine P. Bleiker, and Steve J. Perlman. "The light at the end of the tunnel: photosensitivity in larvae of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae)." Canadian Entomologist 150, no. 5 (2018): 622–31. http://dx.doi.org/10.4039/tce.2018.38.

Full text
Abstract:
AbstractInvestigations of light sensitivity and its physiological effects on insects developing within subcortical tree tissues are limited, presumably due to the assumption that cryptic microhabitats are completely devoid of light. In this study, we documented light-mediated behaviour and opsin gene expression in larvae of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), an extremely important forest insect that is well adapted for development beneath the bark of pine (Pinus Linnaeus; Pinaceae) trees and is eyeless in the larval stage. Larvae were negatively phototactic, as they selected dark over light microhabitats in phototaxis assays. We recovered long-wavelength opsin transcripts from all life stages, including eggs and larvae, suggesting that D. ponderosae is photosensitive throughout its entire life cycle. Our results imply that photosensitivity contributes to immature D. ponderosae survival and that extraocular photoreception could be common among bark beetle larvae.
APA, Harvard, Vancouver, ISO, and other styles
48

Sison-Mangus, M. P. "Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes." Journal of Experimental Biology 209, no. 16 (2006): 3079–90. http://dx.doi.org/10.1242/jeb.02360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nozawa, M., Y. Suzuki, and M. Nei. "Is positive selection responsible for the evolution of a duplicate UV-sensitive opsin gene in Heliconius butterflies?" Proceedings of the National Academy of Sciences 107, no. 23 (2010): E96. http://dx.doi.org/10.1073/pnas.1003657107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

DEEB, SAMIR S., YAN LIU, and TAKAAKI HAYASHI. "Mutually exclusive expression of the L and M pigment genes in the human retinoblastoma cell line WERI: Resetting by cell division." Visual Neuroscience 23, no. 3-4 (2006): 371–78. http://dx.doi.org/10.1017/s0952523806233030.

Full text
Abstract:
The key steps in the evolution of full trichromatic color vision in primates include duplication of the ancestral pigment gene to form the L and M pigment gene array on the X chromosome, mutually exclusive expression of the L and M pigment genes in cone photoreceptors, and formation of a retinal mosaic with randomly distributed L and M cones. Previous work using transgenic mice has indicated that a locus control region adjacent to this array of genes plays an important role in their mutually exclusive expression in respective cone cells (Smallwood et al., 2002). However, the mechanism by which this is accomplished is unknown. We searched for a cellular model system to investigate the mechanism of this mutually exclusive expression. We previously showed that the undifferentiated human retinoblastoma cell line WERI expresses L and M cone opsin but not rod opsin genes. We now show that WERI cells express the L and M pigment genes in a mutually exclusive manner, in that either L or M pigment mRNA is expressed in a single cell. Importantly, clonal analysis showed that single WERI cells that express either L or M generate, upon cell division produce, a mixed population of L- or M-expressing cells. These results indicate, first, that cell division resets L or M pigment gene expression, most likely due to disassembly and reassembly of LCR-promoter DNA-protein complexes during cell division. Second, a retinal mosaic with near-random distribution of L and M cones may have been generated automatically after duplication of the ancestral gene to form the L and M pigment genes. Third, determination of L and M cone identity may not require external molecular cues during differentiation, and is consistent with the idea that L and M cones are not intrinsically different.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!