Academic literature on the topic 'Optical cavity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical cavity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optical cavity"

1

Dongyang Wang, Dongyang Wang, Jiaguang Han Jiaguang Han, and Shuang Zhang Shuang Zhang. "Optical cavity resonance with magnetized plasma." Chinese Optics Letters 16, no. 5 (2018): 050005. http://dx.doi.org/10.3788/col201816.050005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Pengfa, Chen Wang, Tao Jiang, et al. "Optical scrambler using WGM micro-bottle cavity." Chinese Optics Letters 21, no. 6 (2023): 060601. http://dx.doi.org/10.3788/col202321.060601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Fei, Ming Li, Reda Hassanien Emam Hassanien, et al. "Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator." International Journal of Photoenergy 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/895946.

Full text
Abstract:
A theoretical analytical method for optical properties of cavity absorber was proposed in this paper and the optical design software TracePro was used to analyze the optical properties of triangular cavity absorber. It was found that the optimal optical properties could be achieved with appropriate aperture width, depth-to-width ratio, and offset distance from focus of triangular cavity absorber. Based on the results of orthogonal experiment, the optimized triangular cavity absorber was designed. Results showed that the standard deviation of irradiance and optical efficiency of optimized desig
APA, Harvard, Vancouver, ISO, and other styles
4

Maayani, Shai, Leopoldo L. Martin, Samuel Kaminski, and Tal Carmon. "Cavity optocapillaries." Optica 3, no. 5 (2016): 552. http://dx.doi.org/10.1364/optica.3.000552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yeh, Chia Hung, Liang Gie Huang, and Man Yee Chan. "Optimal Lighting of Optical Devices for Oral Cavity." International Journal of Optics 2020 (January 30, 2020): 1–13. http://dx.doi.org/10.1155/2020/1370917.

Full text
Abstract:
Oral surgery mainly provides surgical scope illumination by doctors wearing headlamps, but there are still clinical restrictions on use. The limitations are (1) due to the angle of the head swing and the shadow of the visual field during the operation and (2) due to projection of the light source being worn on the doctor’s head and the length of the wire, and the fiber-optic wire will affect the relative position of the surgical instrument and limit the scope of the doctor’s activity. This study will focus on the development of oral lighting optical microstructure devices to solve and improve
APA, Harvard, Vancouver, ISO, and other styles
6

Moddel, Garret, Ayendra Weerakkody, David Doroski, and Dylan Bartusiak. "Optical-Cavity-Induced Current." Symmetry 13, no. 3 (2021): 517. http://dx.doi.org/10.3390/sym13030517.

Full text
Abstract:
The formation of a submicron optical cavity on one side of a metal–insulator–metal (MIM) tunneling device induces a measurable electrical current between the two metal layers with no applied voltage. Reducing the cavity thickness increases the measured current. Eight types of tests were carried out to determine whether the output could be due to experimental artifacts. All gave negative results, supporting the conclusion that the observed electrical output is genuinely produced by the device. We interpret the results as being due to the suppression of vacuum optical modes by the optical cavity
APA, Harvard, Vancouver, ISO, and other styles
7

Webster, Stephen, and Patrick Gill. "Force-insensitive optical cavity." Optics Letters 36, no. 18 (2011): 3572. http://dx.doi.org/10.1364/ol.36.003572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Son, Jun Ho, SoonGweon Hong, Amanda J. Haack, et al. "Rapid Optical Cavity PCR." Advanced Healthcare Materials 5, no. 1 (2015): 167–74. http://dx.doi.org/10.1002/adhm.201500708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deffner, Sebastian. "Optimal control of a qubit in an optical cavity." Journal of Physics B: Atomic, Molecular and Optical Physics 47, no. 14 (2014): 145502. http://dx.doi.org/10.1088/0953-4075/47/14/145502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petnikova, V. M., and Vladimir V. Shuvalov. "Optimal feedback in efficient single-cavity optical parametric oscillators." Quantum Electronics 40, no. 7 (2010): 619–23. http://dx.doi.org/10.1070/qe2010v040n07abeh014276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Optical cavity"

1

Silander, Isak. "Cavity enhanced optical sensing." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-110278.

Full text
Abstract:
An optical cavity comprises a set of mirrors between which light can be reflected a number of times. The selectivity and stability of optical cavities make them extremely useful as frequency references or discri­mi­nators. With light coupled into the cavity, a sample placed inside a cavity will experience a significantly increased interaction length. Hence, they can be used also as amplifiers for sensing purposes. In the field of laser spectroscopy, some of the most sensitive techniques are therefore built upon optical cavities. In this work optical cavities are used to measure properties of g
APA, Harvard, Vancouver, ISO, and other styles
2

Wen, Pengyue. "Vertical cavity semiconductor optical amplifiers /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3070991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, Bo Elliot, and Bo Elliot Miller. "Cavity Techniques for Volume Holography." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/622970.

Full text
Abstract:
Volume Holographic Data Storage Systems (HDSS) has been of interest for almost seven decades, and are now considered as a viable option for Write Once Read Many (WORM) cold data storage applications. Thanks to the Bragg selectivity of thick volume holograms, HDSS stores several hundreds of holograms on top of each other, called multiplexed data pages, by which data recording density can be substantially increased compared to surface recordings. On the other hand, signal intensity upon reconstruction of such multiplexed data pages inversely scales with number of multiplexing squared. Therefore,
APA, Harvard, Vancouver, ISO, and other styles
4

Adachihara, Hatsuo. "Modulational instability in optical ring cavity." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184744.

Full text
Abstract:
The optical ring cavity has been studied for about ten years, both theoretically and experimentally. In these studies the uniform plane wave approximation has been used. In this work we investigate effects which result from the retention of the transverse diffraction. We establish that transverse structure is inevitable since plane wave fixed points are susceptible to transverse instabilities (modulational instability). We show that this instability is a universal mechanism for initiating various interesting and complicated, yet understandable, dynamical responses in a one and a two transverse
APA, Harvard, Vancouver, ISO, and other styles
5

Hannigan, Justin Michio 1977. "Hemispherical optical microcavity for cavity-QED strong coupling." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10548.

Full text
Abstract:
xv, 204 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.<br>This thesis reports on progress made toward realizing strong cavity quantum electrodynamics coupling in a novel micro-cavity operating close to the hemispherical limit. Micro-cavities are ubiquitous wherever the aim is observing strong interactions in the low-energy limit. The cavity used in this work boasts a novel combination of properties. It utilizes a curved mirror with radius in the range of 40-60 µm that exhibits high refle
APA, Harvard, Vancouver, ISO, and other styles
6

Nyairo, Kennedy Obare. "The multichannel grating cavity laser." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Debnath, Kapil. "Photonic crystal cavity based architecture for optical interconnects." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3870.

Full text
Abstract:
Today's information and communication industry is confronted with a serious bottleneck due to the prohibitive energy consumption and limited transmission bandwidth of electrical interconnects. Silicon photonics offers an alternative by transferring data optically and thereby eliminating the restriction of electrical interconnects over distance and bandwidth. Due to the inherent advantage of using the same material as that used for the electronic circuitry, silicon photonics also promises high volume and low cost production plus the possibility of integration with electronics. In this thesis, I
APA, Harvard, Vancouver, ISO, and other styles
8

Kelly, Stephen C. "EXPLORATION OF QUBIT ASSISTED CAVITY OPTOMECHANICS." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1408097717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wigginton, James Michael. "Optical analysis of cavity solar energy receivers." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mazzei, Andrea. "Cavity enhanced optical processes in microsphere resonators." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15770.

Full text
Abstract:
Diese Arbeit beschreibt eine ausfŸhrliche Untersuchung der physikalischen Eigenschaften von Mikrokugelresonatoren aus Quarzglas. Diese Resonatoren unterstŸtzen sogennante whispering-gallery Moden (WGM), die GŸten so hoch bis 109 bieten. Als experimentelle Hilfsmittel wurden ein Nahfeld- und ein Konfokalmikroskop benutzt, um die Struktur der Moden bezŸglich der Topographie des Resonators eindeutig zu identifizieren, oder um einzelne Quantenemitter zu detektieren und anzuregen. Die resonante †berhšhung des elektromagnetischen Feldes in den Moden des Resonators wurde ausgenutzt, um stimulierte
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Optical cavity"

1

Grelu, Philippe, ed. Nonlinear Optical Cavity Dynamics. Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527686476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kavokin, Alexey, and Guillaume Malpuech. Cavity polaritons. Elsevier, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Michalzik, Rainer. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Michimura, Yuta. Tests of Lorentz Invariance with an Optical Ring Cavity. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3740-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harry, Ling, Lee S. W, and United States. National Aeronautics and Space Administration., eds. Reduction of the radar cross section of arbitrarily shaped cavity structures. Electromagnetics Laboratory, Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bäcker, Alexandra. A TCAD analysis of long-wavelength vertical-cavity surface-emitting lasers. Hartung-Gorre, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

D, Choquette Kent, Deppe Dennis G, Society of Photo-optical Instrumentation Engineers., and United States. Defense Advanced Research Projects Agency., eds. Vertical-cavity surface-emitting lasers: 13-14 February, 1997, San Jose, California. SPIE, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Julian, Cheng, and Dutta N. K. 1953-, eds. Vertical-cavity surface-emitting lasers: Technology and applications. Gordon & Breach, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aikio, Janne K. Extremely short external cavity (ESEC) laser devices: Wavelength tuning and related optical characteristics. VTT Technical Research Centre of Finland, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. Numerical studies of the fluid and optical fields associated with complex cavity flows. MCAT Institute, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Optical cavity"

1

Weik, Martin H. "optical cavity." In Computer Science and Communications Dictionary. Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lange, W., Q. A. Turchette, C. J. Hood, H. Mabuchi, and H. J. Kimble. "Optical Cavity QED." In Microcavities and Photonic Bandgaps: Physics and Applications. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0313-5_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klotzkin, David J. "The Optical Cavity." In Introduction to Semiconductor Lasers for Optical Communications. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9341-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gawad, Shady, Ana Valero, Thomas Braschler, et al. "Optical Cavity Biosensor." In Encyclopedia of Nanotechnology. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weik, Martin H. "optical cavity diode." In Computer Science and Communications Dictionary. Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klotzkin, David J. "The Optical Cavity." In Introduction to Semiconductor Lasers for Optical Communications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24501-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Michimura, Yuta. "Optical Ring Cavity." In Tests of Lorentz Invariance with an Optical Ring Cavity. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3740-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tesfa, Sintayehu. "Cavity Mediated Interaction." In Quantum Optical Processes. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62348-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Egorov, Oleg A., and Falk Lederer. "Cavity Polariton Solitons." In Nonlinear Optical Cavity Dynamics. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Favero, Ivan, Jack Sankey, and Eva M. Weig. "Mechanical Resonators in the Middle of an Optical Cavity." In Cavity Optomechanics. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optical cavity"

1

Widarsson, Max, Patrick Mutter, Staffan Tjörnhammar, and Andrius Zukauskas. "Cavity free optical parametric oscillators." In High-Power Lasers and Technologies for Optical Countermeasures II, edited by Marc Eichhorn, Gareth D. Lewis, and Willy L. Bohn. SPIE, 2024. http://dx.doi.org/10.1117/12.3031621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karampour, Nasrollah, Gebrehiwot Tesfay Zeweldi, Md Hosne Mobarok Shamim, and Martin Rochette. "All Fiber Mid-Infrared Ring Cavity Laser." In Specialty Optical Fibers. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/sof.2024.sow3f.2.

Full text
Abstract:
We demonstrate the first all-fluoride mid-infrared ring cavity laser, comprising a single-mode ZBLAN optical fiber coupler and an Er: ZBLAN gain fiber. The laser exhibits continuous-wave emission at a wavelength of 2.7-2.8 μm.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Lingxiao, Bin Liu, Yuze Liu, et al. "Cavity-driven ultrafast chiral optical switching." In 2D Photonic Materials and Devices VIII, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2025. https://doi.org/10.1117/12.3040577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sheridan, Eoin, Stefan Forstner, Joachim Knittel, Halina Rubinsztein-Dunlop, and Warwick P. Bowen. "Cavity Optomechanical Magnetometer." In Optical Sensors. OSA, 2012. http://dx.doi.org/10.1364/sensors.2012.stu4f.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sheridan, Eoin, Stefan Forstner, Halina Rubinszstein-Dunlop, and Warwick P. Bowen. "Cavity Optomechanical Magnetometry." In Optical Sensors. OSA, 2013. http://dx.doi.org/10.1364/sensors.2013.sm4c.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pluchar, Christian M., Aman R. Agrawal, and Dalziel J. Wilson. "Imaging-based cavity optomechanics." In Optical Trapping and Optical Micromanipulation XX, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2023. http://dx.doi.org/10.1117/12.2676081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haghighi, Nasibeh, Weronika Glowadzka, Tomasz G. Czyszanowski, et al. "VCSELs for optical wireless communication." In Vertical-Cavity Surface-Emitting Lasers XXVII, edited by Chun Lei and Luke A. Graham. SPIE, 2023. http://dx.doi.org/10.1117/12.2655695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chuang, Shun Lien, Chien-Yao Lu, and Akira Matsudaira. "Metal-Cavity Nanolasers." In Optical Fiber Communication Conference. OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.ow1g.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rempe, Gerhard. "Optical cavity quantum electrodynamics." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bowers, John. "Vertical cavity SOAs." In Optical Amplifiers and Their Applications. OSA, 2004. http://dx.doi.org/10.1364/oaa.2004.omb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Optical cavity"

1

Chou, A. Optical Cavity Test Bench. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/993869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peters, Frank H., Jeff W. Scott, M. K. Kilcoyne, and Gerald D. Robinson. Vertical Cavity Surface Emitting Lasers for Optical Signal Processing and Optical Computing Applications. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brueck, S. R. Vertical-Cavity Surface-Emitting Lasers and VCSEL-Based Optical Switches for Parallel Optical Processing. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada310825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yoder, R. C., W. L. Goodwin, and G. K. Werner. Machine reference mirror inspection by optical Fabry-Perot cavity testing. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/6275455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holm, D., and G. ,. Timofeyev, I. Kovacic. Homoclinic orbits and chaos in a second-harmonic generating optical cavity. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/485931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hollarn, Murry John. Novel Light Sources Based on Ultracold Atoms in Collective Optical Cavity Systems. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1086494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zilberter, Ilya A., and Jack R. Edwards. LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow. Defense Technical Information Center, 2016. http://dx.doi.org/10.21236/ad1013250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Mingming, Jonathan A. Kurvits, Yao Lu, et al. Cavity-Free, Matrix-Addressable Quantum Dot Architecture for On-Chip Optical Switching. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada588104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tedela, Getachew. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada596463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Battiato, James M., Thomas W. Stone, Miles J. Murdocca, Rebecca J. Bussjager, and Paul R. Cook. Free Space Optical Memory Based on Vertical Cavity Surface Emitting Lasers and Self-Electro-Optic Effect Devices. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada297049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!