Academic literature on the topic 'Optical communications Optical fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical communications Optical fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optical communications Optical fibers"
Takahashi, Shiro. "Fibers for Optical Communications." Advanced Materials 5, no. 3 (March 1993): 187–91. http://dx.doi.org/10.1002/adma.19930050306.
Full textCarmo, J. P., and J. E. Ribeiro. "Optical Fibers on Medical Instrumentation." International Journal of Biomedical and Clinical Engineering 2, no. 2 (July 2013): 23–36. http://dx.doi.org/10.4018/ijbce.2013070103.
Full textAli Muse, Haider Ali Muse. "PHOTONIC CRYSTAL AND PHOTONIC CRYSTAL FIBERS COMMUNICATIONS." EUREKA: Physics and Engineering 1 (January 29, 2016): 3–13. http://dx.doi.org/10.21303/2461-4262.2016.00020.
Full textJóźwicki, Mateusz Łukasz, Mateusz Gargol, Małgorzata Gil-Kowalczyk, and Paweł Mergo. "Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 79. http://dx.doi.org/10.4302/plp.v12i3.1036.
Full textMorioka, Toshio, Yoshinari Awaji, Roland Ryf, Peter Winzer, David Richardson, and Francesco Poletti. "Enhancing optical communications with brand new fibers." IEEE Communications Magazine 50, no. 2 (February 2012): s31—s42. http://dx.doi.org/10.1109/mcom.2012.6146483.
Full textSaitoh, Kunimasa. "Large Capacity Optical Communications by Optical Fibers for Space Division Multiplexing." IEICE Communications Society Magazine 13, no. 3 (2019): 166–76. http://dx.doi.org/10.1587/bplus.13.166.
Full textKumar, Shiva, and Dong Yang. "Optical backpropagation for fiber-optic communications using highly nonlinear fibers." Optics Letters 36, no. 7 (March 16, 2011): 1038. http://dx.doi.org/10.1364/ol.36.001038.
Full textNiedźwiedź, Malwina Julita, Małgorzata Gil, Mateusz Gargol, Wiesław Marian Podkościelny, and Paweł Mergo. "Determination of the optimal extrusion temperature of the PMMA optical fibers." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 7. http://dx.doi.org/10.4302/plp.v11i1.889.
Full textSunak, H. R. D. "Optical fiber communications." Proceedings of the IEEE 73, no. 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.
Full textNishimura, Masayuki. "Optical fibers and fiber dispersion compensators for high-speed optical communication." Journal of Optical and Fiber Communications Reports 2, no. 2 (June 2005): 115–39. http://dx.doi.org/10.1007/s10297-004-0024-y.
Full textDissertations / Theses on the topic "Optical communications Optical fibers"
Hao, Miin-Jong. "Performance evaluation of practival FSK, CPFSK, and ASK detection schemes for coherent optical fiber communication systems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15686.
Full textAlmeida, Álvaro José Caseiro de. "Quantum communications in optical fibers." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/16306.
Full textThis thesis begins by proposing the implementation of a probabilistic photon source based on the stimulated four-wave mixing (FWM) process. This source was implemented experimentally and characterized in terms of its statistical distribution. Next, the impact of the stimulated FWM process in a co-propagating quantum signal was studied experimentally. Finally, the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality was experimentally verified using polarization-entangled photon pairs, which were obtained from the spontaneous FWM process in a Sagnac loop. The experimental evolution of the quantum-bit error rate (QBER) in a system without control of polarization, using this degree of freedom to encode information, was studied. It was found out that the QBER increases with the length of the transmission fiber. It was also verified that the increase in the QBER was due to the random rotation of photon’s polarization. A model for the rigorous estimation of the QBER was derived and developed an automatic method to compensate the random rotations of polarization. The method was validated numerically and experimentally, in a transmission system with 40km, showing that it can compensate for the rotations that photons suffer during propagation in optical fibers. Finally, a quantum bit commitment (QBC) protocol between two untrusted entities was implemented. The encoding was performed using two nonorthogonal states of polarization (SOPs). As quantum channel between the two entities, it was first assumed that the transmitter and the receiver were side by side, and after that, they were separated by 8 km and finally, that they were 16km from each other. The implementation of the protocol was performed with a success rate in measurements exceeding 93%, well above the theoretical security limit of 85%. The best strategy for deceiving the commitment was also implemented, and its security experimentally confirmed with a confidence of 7 standard deviations.
Nesta tese começou-se por propor a realização de uma fonte de fotões probabilística baseada no processo estimulado de mistura de quatro ondas (FWM). Implementou-se essa fonte no laboratório e caracterizou-se experimentalmente a sua distribuição estatística. Depois, estudou-se experimentalmente o impacto do processo estimulado de FWM num sinal quântico que se propaga na mesma fibra ótica. Por fim, foi verificada experimentalmente a violação da desigualdade de ClauserHorne-Shimony-Holt (CHSH) usando pares de fotões entrelaçados, que foram obtidos a partir do processo espontâneo de FWM num ciclo de Sagnac. Estudou-se a evolução da taxa de erro de bits quânticos (QBER) num sistema sem controlo de polarização, quando este grau de liberdade é usado para codificar a informação. Verificou-se que a QBER aumenta com o comprimento da fibra de transmissão. Verificou-se ainda que o aumento da QBER era devido às variações aleatórias da polarização dos fotões. Derivou-se um modelo para a estimativa rigorosa da QBER e desenvolveu-se um método automático de compensação das rotações aleatórias da polarização. O método foi validado numericamente e experimentalmente, num sistema de transmissão com 40km, verificando se que consegue compensar as rotações que os fotões sofrem durante a sua propagação em fibras óticas. Finalmente, implementou-se um protocolo de compromisso quântico entre duas entidades não confiávéis. Na codificação foram usados dois estados de polarização (SOPs) não ortogonais. Como canal quântico entre as duas entidades foi primeiro considerado que o emissor e o recetor se encontravam lado a lado, depois que estes estavam separados por 8km e finalmente que se encontravam a 16km um do outro. A implementação do protocolo foi feita com uma taxa de sucesso nas medidas superior a 93%, muito acima do limite teórico mínimo de 85%. Implementou-se ainda a melhor estratégia para que o compromisso pudesse ser falseado, tendo sido confirmada experimentalmente a sua segurança com uma confiança de 7 desvios padrão.
Males, Mladen. "Suppression of transient gain excursions in an erbium-doped fibre amplifier /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0157.
Full textHattori, Haroldo Takashi. "Low Nonlinearity Optical Fibers for Broadband and Long-Distance Communications." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29816.
Full textPh. D.
Chen, Hui. "Inline rise-time measurement using amplitude histograms for fiber-optic communication systems /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20CHENH.
Full textIncludes bibliographical references (leaves 64-66). Also available in electronic version. Access restricted to campus users.
Males, Mladen. "Suppression of transient gain excursions in an erbium-doped fibre amplifier." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0157.
Full textMcCoy, Kenneth A. "A recirculating optical loop for short-term data storage." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14871.
Full textThompson, John Russell. "Multiple four-wave mixing processes in single-mode optical fiber." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/30955.
Full textPolley, Arup. "High performance multimode fiber systems a comprehensive approach /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31699.
Full textCommittee Chair: Ralph, Stephen; Committee Member: Barry, John; Committee Member: Chang, G. K.; Committee Member: Cressler, John D.; Committee Member: Trebino. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Boiyo, Duncan Kiboi, and Romeo Gamatham. "Optimization of flexible spectrum in optical transport networks." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14609.
Full textBooks on the topic "Optical communications Optical fibers"
G, Beaven, and Boutruche J. P, eds. Optical fibres. Oxford [Oxfordshire]: Pergamon InfoLine, 1986.
Find full textBuck, John A. Fundamentals of optical fibers. 2nd ed. Hoboken, N.J: John Wiley & Sons, 2004.
Find full textEtten, Wim van. Fundamentals of optical fiber communications. New York: Prentice Hall, 1991.
Find full textMeardon, S. L. Wymer. The elements of fiber optics. Englewood Cliffs, N.J: Regents/Prentice Hall, 1993.
Find full textAtef, Mohamed, and Horst Zimmermann. Optical Communication over Plastic Optical Fibers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30388-3.
Full textVenkitesh, Deepa. Optical fibers for designing multiple applications. Hauppauge, N.Y: Nova Science, 2009.
Find full textBook chapters on the topic "Optical communications Optical fibers"
Sabella, R., and P. Lugli. "Optical Fibers." In High Speed Optical Communications, 56–73. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5275-8_4.
Full textOkoshi, T. "Polarization-Maintaining Optical Fibers." In Optoelectronic Technology and Lightwave Communications Systems, 110–30. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7035-2_4.
Full textKeiser, Gerd. "Nonlinear Processes in Optical Fibers." In Fiber Optic Communications, 477–506. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_12.
Full textSibley, Martin. "Optical Fibre." In Optical Communications, 9–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0_2.
Full textSibley, M. J. N. "Optical Fibre." In Optical Communications, 6–75. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_2.
Full textSibley, M. J. N. "Optical Fibre." In Optical Communications, 7–46. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3_2.
Full textKapron, Felix P. "Transmission Properties of Optical Fibers." In Optoelectronic Technology and Lightwave Communications Systems, 3–50. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7035-2_1.
Full textHamam, Habib, and Sghaier Guizani. "Optical Fiber Communications." In Handbook of Computer Networks, 692–707. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256053.ch44.
Full textWeik, Martin H. "optical fiber communications." In Computer Science and Communications Dictionary, 1167. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12994.
Full textWeik, Martin H. "optical fiber." In Computer Science and Communications Dictionary, 1165. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12980.
Full textConference papers on the topic "Optical communications Optical fibers"
LaRochelle, Sophie, and Lixian Wang. "Optical Fibers for Next Generation Optical Communications." In Specialty Optical Fibers. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/sof.2016.som2f.1.
Full textRichardson, David J. "Optical Communications using Microstructured Optical Fibers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_si.2016.sw4i.1.
Full textYuan, Xinchang, and Arvind Mallya. "Optical Fiber Communications In China." In OE/FIBERS '89, edited by Paul M. Kopera. SPIE, 1990. http://dx.doi.org/10.1117/12.963299.
Full textHealy, Noel, Haojie Zhang, Li Shen, and Anna Peacock. "Functionalized optical fibers for non-linear optics." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.as3a.1.
Full textCaponi, R., R. Calvani, G. Marone, and P. Poggiolini. "Optical Heterodyne Communications With Polarization Modulation." In OE/FIBERS '89, edited by Roger C. Steele and Harish R. Sunak. SPIE, 1990. http://dx.doi.org/10.1117/12.963274.
Full textChu, K. W., and F. M. Dickey. "Optical Coherence Multiplexing For Interprocessor Communications." In OE/FIBERS '89, edited by James Pazaris and Gerald R. Willenbring. SPIE, 1990. http://dx.doi.org/10.1117/12.963366.
Full textKubota, Hirokazu. "Photonic crystal fibers." In Asia-Pacific Optical Communications, edited by Yan Sun, Shuisheng Jian, Sang Bae Lee, and Katsunari Okamoto. SPIE, 2005. http://dx.doi.org/10.1117/12.580423.
Full textRiza, Nabeel A., John E. Hershey, and Amer A. Hassan. "Novel multidimensional coding scheme for multiaccess optical communications." In Fibers '92, edited by Leonid G. Kazovsky and Karen Liu. SPIE, 1992. http://dx.doi.org/10.1117/12.139338.
Full textMussot, Arnaud, Maxime Droques, Matteo Conforti, Xie Wong, Damien Bigourd, Kenneth Wong, Géraud Bouwmans, et al. "Topographic optical fibers: new perspectives in guided optics." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.ath4c.3.
Full textRoberts, P. J. "Birefringent hollow core fibers." In Asia-Pacific Optical Communications. SPIE, 2007. http://dx.doi.org/10.1117/12.754405.
Full textReports on the topic "Optical communications Optical fibers"
Obarski, Gregory E. Wavelength measurement system for optical fiber communications. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1336.
Full textGosnell, T., Ping Xie, and N. Cockroft. Optical-fiber laser amplifier for ultrahigh-speed communications. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/231323.
Full textHan, I., S. Bond, R. Welty, Y. Du, S. Yoo, C. Reinhardt, E. Behymer, V. Sperry, and N. Kobayashi. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15013953.
Full textKazovsky, Leonid G. Advanced Optical Fiber Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada261802.
Full textBryant, George G. Fatigue Resistant Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237568.
Full textMorse, T. F. Novel Optical Fibers and Devices. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada297050.
Full textRand, S. C. Optical Fibers for Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada174518.
Full textHarris, J. S. Semiconductor In-line Fiber Devices for Optical Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381265.
Full textMiniscalco, W. J., T. Wei, and P. K. Onorato. Radiation Hardened Silica-Based Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, December 1988. http://dx.doi.org/10.21236/ada206910.
Full textMiniscalco, W. J., T. Wei, and P. I. Onorato. Radiation Hardened Silica-Based Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, October 1986. http://dx.doi.org/10.21236/ada178466.
Full text