To see the other types of publications on this topic, follow the link: Optical communications Optical fibers.

Journal articles on the topic 'Optical communications Optical fibers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical communications Optical fibers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Takahashi, Shiro. "Fibers for Optical Communications." Advanced Materials 5, no. 3 (March 1993): 187–91. http://dx.doi.org/10.1002/adma.19930050306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carmo, J. P., and J. E. Ribeiro. "Optical Fibers on Medical Instrumentation." International Journal of Biomedical and Clinical Engineering 2, no. 2 (July 2013): 23–36. http://dx.doi.org/10.4018/ijbce.2013070103.

Full text
Abstract:
This paper provides a revision with the state-of-the-art related to the use of optical fiber sensors on medical instrumentation. Two types of optical fiber sensors are the focus of review: conventional optical fibers for communications and fiber Bragg gratings (FBGs).
APA, Harvard, Vancouver, ISO, and other styles
3

Ali Muse, Haider Ali Muse. "PHOTONIC CRYSTAL AND PHOTONIC CRYSTAL FIBERS COMMUNICATIONS." EUREKA: Physics and Engineering 1 (January 29, 2016): 3–13. http://dx.doi.org/10.21303/2461-4262.2016.00020.

Full text
Abstract:
The development of all optical communications could benefit from the index guiding photonic crystal fibers. In communication the photonic crystal fibers could provide many new solutions. Conventional optical fibers have within the last decades revolutionized the communications industry and it is today a mature technology being pushed to its limit with respect to properties such as losses, single mode operation and dispersion. The spectra have been used by others to develop optical frequency standards. The process can potentially be used for frequency conversion in fiber optic network. In this system the dispersive properties can be controlled by the optical lattice making it possible to achieve phase-matched four wave mixing, like look the process taking place in the photonic crystal fibers. In this paper we will discuss the use of photonic crystal fibers in communications.
APA, Harvard, Vancouver, ISO, and other styles
4

Jóźwicki, Mateusz Łukasz, Mateusz Gargol, Małgorzata Gil-Kowalczyk, and Paweł Mergo. "Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 79. http://dx.doi.org/10.4302/plp.v12i3.1036.

Full text
Abstract:
The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF ReferencesO. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schlüter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef
APA, Harvard, Vancouver, ISO, and other styles
5

Morioka, Toshio, Yoshinari Awaji, Roland Ryf, Peter Winzer, David Richardson, and Francesco Poletti. "Enhancing optical communications with brand new fibers." IEEE Communications Magazine 50, no. 2 (February 2012): s31—s42. http://dx.doi.org/10.1109/mcom.2012.6146483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saitoh, Kunimasa. "Large Capacity Optical Communications by Optical Fibers for Space Division Multiplexing." IEICE Communications Society Magazine 13, no. 3 (2019): 166–76. http://dx.doi.org/10.1587/bplus.13.166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Shiva, and Dong Yang. "Optical backpropagation for fiber-optic communications using highly nonlinear fibers." Optics Letters 36, no. 7 (March 16, 2011): 1038. http://dx.doi.org/10.1364/ol.36.001038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niedźwiedź, Malwina Julita, Małgorzata Gil, Mateusz Gargol, Wiesław Marian Podkościelny, and Paweł Mergo. "Determination of the optimal extrusion temperature of the PMMA optical fibers." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 7. http://dx.doi.org/10.4302/plp.v11i1.889.

Full text
Abstract:
The aim of this work was to determine optimal extrusion temperature for polymer optical fibers. For preliminary studies poly(methyl methacrylate) (PMMA) granulate was used. Samples of commercially available PMMA were subjected to four different temperatures in which were kept in oven for three different period of time. To examine the changes in the chemical structure of the polymer, an ATR-FT-IR (Attenuation Total Reflection Fourier Transform Infrared Spectroscopy) was chosen. Full Text: PDF ReferencesK. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct. 20, 013002 (2011) CrossRef O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, "POF Polymer Optical Fibers for Data Communication" (New York, Springer-Verlag Berlin Heidelberg 2002). CrossRef M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C. Martijn de Sterke, N.A.P. Nicorovici, "Microstructured polymer optical fibre", Opt Express 9, 319 (2001). CrossRef O. Çetinkaya, G. Wojcik, P. Mergo, "Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions", Mater Res Express 5, 1 (2018). CrossRef P. Mergo, M. Gil, K. Skorupski, J. Klimek, G. Wójcik, J. Pędzisz, J. Kopec, K. Poruraj, L. Czyzewska, A. Walewski, A. Gorgol, "Low loss poly(methyl methacrylate) useful in polymer optical fibres technology", Phot. Lett. Poland, 5, 170 (2013). CrossRef J. Grdadolnik, "ATR-FTIR Spectroscopy: Its advantages and limitations", Acta Chim Slov. 49, 631 (2002). DirectLink P. Borowski, S. Pasieczna-Patkowska, M. Barczak, K. Pilorz, "Theoretical Determination of the Infrared Spectra of Amorphous Polymers", J Phys Chem A 116, 7424 (2012). CrossRef G. Socrates, "Infrared and Raman Characteristic Group Frequencies Tables and Charts" Third Edition (Baffins Lane Chichester, John Wiley & Sons Ltd 2001). DirectLink W. Schnabel, Polymer Degradation Principles and Practical Applications (Berlin, Akademie-Verlag 1981). DirectLink
APA, Harvard, Vancouver, ISO, and other styles
9

Sunak, H. R. D. "Optical fiber communications." Proceedings of the IEEE 73, no. 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nishimura, Masayuki. "Optical fibers and fiber dispersion compensators for high-speed optical communication." Journal of Optical and Fiber Communications Reports 2, no. 2 (June 2005): 115–39. http://dx.doi.org/10.1007/s10297-004-0024-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mohammed, Salim Qadir, and Asaad M. Asaad M. Al-Hindawi. "Study of Optical Fiber Design Parameters in Fiber Optics Communications." Kurdistan Journal of Applied Research 2, no. 3 (August 27, 2017): 302–8. http://dx.doi.org/10.24017/science.2017.3.52.

Full text
Abstract:
Fiber optics is an important part in the telecommunication infrastructure. Large bandwidth and low attenuation are features for the fiber optics to provide gigabit transmission. Nowadays, fiber optics are used widely in long distance communication and networking to provide the required information traffic for multimedia applications. In this paper, the optical fiber structure and the operation mechanism for multimode and single modes are analyzed. The design parameters such as core radius, numerical aperture, attenuation, dispersion and information capacity for step index and graded index fibers are studied, calculated and compared for different light sources.
APA, Harvard, Vancouver, ISO, and other styles
12

Kyunghwan Oh, S. Choi, Yongmin Jung, and J. W. Lee. "Novel hollow optical fibers and their applications in photonic devices for optical communications." Journal of Lightwave Technology 23, no. 2 (February 2005): 524–32. http://dx.doi.org/10.1109/jlt.2004.842307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Puttnam, Benjamin J., Georg Rademacher, and Ruben S. Luís. "Space-division multiplexing for optical fiber communications." Optica 8, no. 9 (September 2, 2021): 1186. http://dx.doi.org/10.1364/optica.427631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sakaguchi, S., and S. Takahashi. "Low-loss fluoride optical fibers for midinfrared optical communication." Journal of Lightwave Technology 5, no. 9 (1987): 1219–28. http://dx.doi.org/10.1109/jlt.1987.1075648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Henderson, R. "Understanding optical fiber communications." Optics and Lasers in Engineering 38, no. 6 (December 2002): 606–7. http://dx.doi.org/10.1016/s0143-8166(01)00181-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brain, M. "Coherent Optical Fiber Communications." Journal of Modern Optics 36, no. 4 (April 1989): 552. http://dx.doi.org/10.1080/09500348914550641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Elhajrat, N., O. Elouatssi, A. El Abbassi, F. Essahlaoui, and M. Aftatah. "Study of Optical MIMO Transmission Systems Using the MGDM Multiplexing Technique." Modern Applied Science 14, no. 1 (December 26, 2019): 34. http://dx.doi.org/10.5539/mas.v14n1p34.

Full text
Abstract:
In current local area networks, multimode fibers (MMFs), mainly graded index (GI) MMFs, are the main types of fibers used for data communications. Because of their high bandwidth, they are considered the main method of transmission that allows to offer multiservice broadband services using optical multiplexing techniques. The MGDM (ModeGroup Division Multiplexing) is a Multiplexing technique, which aims to improve the performance of the multimode optical fiber by spatially multiplexing the data streams to be transmitted. In this work, we study optical MIMO (multi-input multi-output) transmission systems on an MMF optical fiber, specifically the adaptation of the architecture of MIMO transmission systems. In this context, we have studied the mode group multiplexing technique (MDGM), to evaluate the transmission capacity. In fact, the latter depends on the injection conditions and the state of the optical fiber.
APA, Harvard, Vancouver, ISO, and other styles
18

BRANDT, RUSSELL, and TEOFILO F. GONZALEZ. "WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL STAR NETWORKS UNDER THE MULTICASTING COMMUNICATION MODE." Journal of Interconnection Networks 06, no. 04 (December 2005): 383–405. http://dx.doi.org/10.1142/s0219265905001484.

Full text
Abstract:
This paper examines the wavelength assignment problem for single, dual, and multimessage multicasting over a star network with optical switching between fibers along the same wavelength. The specific problem we consider is given any star network, a predetermined number of fibers that connect its nodes, and a set of multicasts (or multidestination messages) to be delivered in one communication round, find a conflict free message transmission schedule that uses the least number of wavelengths per fiber. When the least number of wavelengths, λmin, exceeds the number available, λavl, one may transform the schedule into one with ⌈λmin/λavl⌉ communication phases or rounds over the same network, but restricted to λavl wavelengths per fiber.
APA, Harvard, Vancouver, ISO, and other styles
19

Tiburcio, Bruno D., Gil M. Fernandes, Jorge Monteiro, Silvia Rodrigues, Mario Ferreira, Margarida Facão, M. Inês Carvalho, and Armando N. Pinto. "EIT in hollow-core fibers for optical communications devices." Microwave and Optical Technology Letters 57, no. 2 (December 18, 2014): 348–52. http://dx.doi.org/10.1002/mop.28836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Portosi, Vincenza, Dario Laneve, Mario Christian Falconi, and Francesco Prudenzano. "Advances on Photonic Crystal Fiber Sensors and Applications." Sensors 19, no. 8 (April 21, 2019): 1892. http://dx.doi.org/10.3390/s19081892.

Full text
Abstract:
In this review paper some recent advances on optical sensors based on photonic crystal fibres are reported. The different strategies successfully applied in order to obtain feasible and reliable monitoring systems in several application fields, including medicine, biology, environment sustainability, communications systems are highlighted. Emphasis is given to the exploitation of integrated systems and/or single elements based on photonic crystal fibers employing Bragg gratings (FBGs), long period gratings (LPGs), interferometers, plasmon propagation, off-set spliced fibers, evanescent field and hollow core geometries. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and hydrocarbon detection are briefly described.
APA, Harvard, Vancouver, ISO, and other styles
21

Sekulic, Rade, Nikola Slavkovic, Milesa Sreckovic, Milojko Kovacevic, and Miljan Stamenovic. "The influence of gamma radiation on polarization mode dispersion of fibers applied in communications." Nuclear Technology and Radiation Protection 27, no. 2 (2012): 171–77. http://dx.doi.org/10.2298/ntrp1202171s.

Full text
Abstract:
The fiber optics technology is constantly being developed, and is becoming an essential component of contemporary communications, medicine and industry. Fibers, their connections and system components play a major role in optical signal transmission, telecommunications, power transmission, and sensing processes using fiber technology. The two main light propagation characteristics of an optical fiber are attenuation and dispersion. The possibility of controling these parameters is of utmost importance for obtaining the requested transmission quality. This paper reports on an investigation to determine the influence of gamma radiation of 60Co on the variation of optical fiber propagation parameters, such as polarization mode dispersion. In addition, it also considers chosen topics in the field of fiber optics technology.
APA, Harvard, Vancouver, ISO, and other styles
22

Richardson, D. J. "New optical fibres for high-capacity optical communications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2062 (March 6, 2016): 20140441. http://dx.doi.org/10.1098/rsta.2014.0441.

Full text
Abstract:
Researchers are within a factor of 2 or so from realizing the maximum practical transmission capacity of conventional single-mode fibre transmission technology. It is therefore timely to consider new technological approaches offering the potential for more cost-effective scaling of network capacity than simply installing more and more conventional single-mode systems in parallel. In this paper, I review physical layer options that can be considered to address this requirement including the potential for reduction in both fibre loss and nonlinearity for single-mode fibres, the development of ultra-broadband fibre amplifiers and finally the use of space division multiplexing.
APA, Harvard, Vancouver, ISO, and other styles
23

Keck, D. "Fundamentals of optical waveguide fibers." IEEE Communications Magazine 23, no. 5 (May 1985): 17–22. http://dx.doi.org/10.1109/mcom.1985.1092576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tomlinson, W. J., and R. H. Stolen. "Nonlinear phenomena in optical fibers." IEEE Communications Magazine 26, no. 4 (April 1988): 36–44. http://dx.doi.org/10.1109/mcom.1988.982296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Andarawis, Emad, Cheng-Po (Paul) Chen, and Baokai Cheng. "300°C Optical Communications." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2021, HiTEC (April 1, 2021): 000013–17. http://dx.doi.org/10.4071/2380-4491.2021.hitec.000013.

Full text
Abstract:
Abstract A high temperature optical link capable of multi-megabits per second data rates at 300°C is presented. The system utilizes wide bandgap optical sources and detectors to achieve extreme temperature operation. Testing was conducted at multiple temperatures between room temperature and 325°C and at multiple light source currents. Light coupling into and out of a UV capable optical fiber was evaluated, and a model was created utilizing the test data of the photodiode dark current and the fiber optic cable insertion loss and attenuation and assess optical communications capability to 325°C and beyond.
APA, Harvard, Vancouver, ISO, and other styles
26

Golnabi, H., M. Kavei, and K. Azizi. "Potentials of Plastic Optical Fibers for Sensor Technology." Advanced Materials Research 47-50 (June 2008): 161–64. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.161.

Full text
Abstract:
Optical fibers, in particular, glass fibers, are mostly used in the field of optical communication, however in recent years new optical sensors based on the optical fibers have been reported in literature and produced commercially. Extrinsic and intrinsic character of the fibers have been implemented in development of such sensing devices. Glass Optical Fibers (GOF) because of low attenuation are more suitable for the optical communication purposes while Plastic Optical Fibers are advantageous for the linking purpose and some sensing operations. Considering this point different (POF) optical fiber sensors have been developed by author to show potential applications of POFs in sensor technology. New simple devices at the minimum cost are introduced in this study. Results for light reflection sensing, light leakage sensing, level sensing, and distance gauging are obtained. Presented systems are mostly in bulk form, however, these devices with good results show that in principle, these ideas can be implemented in design of small scale devices. It seems to be a great potential to apply these ideas in order to develop new devices suitable for compact and integrated applications. In this article some examples are given in which the reported results verify the concept and applicability of such devices for future sensing technology.
APA, Harvard, Vancouver, ISO, and other styles
27

Jia, Yan Fei, and Li Quan Zhao. "Design and Implementation of Optical Fiber Line Auto Switch Protection for Power System." Advanced Materials Research 614-615 (December 2012): 949–52. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.949.

Full text
Abstract:
To overcome the problem that the artificial scheduling can not deal with optical fiber switching in time when optical fiber is broken or damage in power system, we designed an optical fiber line auto switch protection system. The system used six 4x4 optical switches to compose an optical switch array that eight working fibers can share four alternate fibers. Comparing with other system, the new system more effectively utilizes alternate fibers, and is more suitable for practical power system. It used single chip microcomputer as control chip of optical switch, when the received optical power is lower than predefined threshold, the control chip will control the optical switch to alternate fiber line in time to ensure the real time and reliability of optical fiber communication. In the same time, the new system can communicate with host computer to alarm, display fault optical fiber line and remote control, and be controlled by button to realize the manual switch of optical fiber line.
APA, Harvard, Vancouver, ISO, and other styles
28

FERREIRA, MÁRIO F. S. "NONLINEAR EFFECTS IN OPTICAL FIBERS: LIMITATIONS AND POSSIBILITIES." Journal of Nonlinear Optical Physics & Materials 17, no. 01 (March 2008): 23–35. http://dx.doi.org/10.1142/s0218863508003920.

Full text
Abstract:
Nonlinear effects in optical fibers impose different limitations on the communications link, and an understanding of such effects is almost a prerequisite for actual lightwave-system designers. On the other hand, they offer a variety of possibilities for all-optical signal processing, amplification and regeneration. The nonlinear effects are enhanced dramatically, and new phenomena are observed in the so-called photonic crystal fibers. In this paper, we review the effects — both detrimental and potentially beneficial — of optical nonlinearities in conventional and in photonic crystal fibers.
APA, Harvard, Vancouver, ISO, and other styles
29

Wan, Bowei, Lianqing Zhu, Xin Ma, Tianshu Li, and Jian Zhang. "Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures." Sensors 21, no. 1 (January 4, 2021): 284. http://dx.doi.org/10.3390/s21010284.

Full text
Abstract:
Due to their flexible structure and excellent optical characteristics hollow-core photonic crystal fibers (HC-PCFs) are used in many fields, such as active optical devices, communications, and optical fiber sensing. In this paper, to analyze the characteristics of HC-PCFs, we carried out finite element analysis and analyzed the design for the band gap cladding structure of HC-PCFs. First, the characteristics of HC19-1550 and HC-1550-02 in the C-band were simulated. Subsequently, the structural optimization of the seven-cell HC-1550-02 and variations in characteristics of the optimized HC-1550-02 in the wavelength range 1250–1850 nm were investigated. The simulation results revealed that the optimal number of cladding layers is eight, the optimal core radius is 1.8 times the spacing of adjacent air holes, and the optimal-relative thickness of the core quartz-ring is 2.0. In addition, the low confinement loss bandwidth of the optimized structure is 225 nm. Under the transmission bandwidth of the optimized structure, the core optical power is above 98%, the confinement loss is below 9.0 × 10−3 dB/m, the variation range of the effective mode field area does not exceed 10 μm2, and the relative sensitivity is above 0.9570. The designed sensor exhibits an ultra-high relative sensitivity and almost zero confinement loss, making it highly suitable for high-sensitivity gas or liquid sensing.
APA, Harvard, Vancouver, ISO, and other styles
30

Shikoski, Jovan, Rumen Arnaudov, and Tinko Eftimov. "Photonic powering of sensors with bidirectional communication along a single fiber." Photonics Letters of Poland 12, no. 1 (March 31, 2020): 7. http://dx.doi.org/10.4302/plp.v12i1.919.

Full text
Abstract:
In this paper we propose and study simultaneous transmission of photonic power and bidirectional communication to and from sensors via 840/1310 nm WDMs. The photovoltaic converter is used both for power conversion and data transfer from the high power laser at 808nm up to 1Mb/s while the 1310nm link can be up to 155 Mb/s.Full Text: PDF References:J.C.V.da Silva, E.L.A.S.de Souza, V.Garcia, J.B.Rosolem, C.Floridia, M.A.B.Sanches, "Design of a Multimode Fiber Optic Cable to Transmit Optical Energy for Long Reach in PoF Systems", Proceedings of the 63rd IWCS Conference, International Wire & Cable Symposium, Shrewsbury, PA, USA, 2014, pp.832-839. [CrossRef]J.B. Rosolem, E.K.Tomiyama, D.C.Dini, F.R.Bassan, R.S.Penze, A.A.Leonardi, C. Floridia, J.P.Fracarolli, R.M.Teixeira, "A fiber optic powered sensor designed for partial discharges monitoring on high voltage bushings". Proc. of SBMO/IEEE MTT‐S International Microwave and Optoelectronics Conference (IMOC); 3-6 Nov. 2015; Porto de Galinhas, Brazil, pp. 1-5. [CrossRef]T.C. Banwell, R.C.Estes, L.A.Reith, P.W.Shumate, E.M.Vogel, "Powering the fiber loop optically - a cost analysis", IEEE J. of Lightwave Techn., Vol. 11, No. 3, pp. 481-494, 1993. [CrossRef]M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, "Power Transmission by Optical Fibers for Component Inherent Communication", Systemics, Cybernetics And Informatics, Vol.8, No.1, pp. 55-60, (2010) [DirectLink]C. Gao, J. Wang, L. Yin, J. Yang, J. Jiang, H. Wan, Optically Powered Active Sensing System for Internet Of Things, Proc. SPIE 9270, Optoelectronic Devices and Integration V, 927016 (24 October 2014) [CrossRef]J. Yan, J. Wang, Y. Lu, J. Jiang, H. Wan, Novel Wireless Sensor System Based on Power-over-Fiber Technique, 14th Int. Conf. on Optical Comm. and Networks (ICOCN) 3-5 July 2015, Nanjing, China, 15382393 [CrossRef]Böttger, G.; Dreschmann, M.; Klamouris, C.; Hü bner, M.; Röger, M.; Bett, A. W.; Kueng, T.; Becker, J.; Freu de, W.; Leuthold, J.: An Otically Powered Video Camera Link. IEEE Photonics Technology Letters, Vol. 20, No. 1, pages 39-41, 2008. [CrossRef]M. Matsuura and J. Sato, Bidirectional Radio-Over-Fiber Systems Using Double-Clad Fibers for Optically Powered Remote Antenna Units, IEEE Photonics J., Vol. 7, No. 1, 2015, 7900609 [CrossRef]J. Wang, Q. Li, J. Yan, Y. Ding, Y. Lu, Y. Zhang, H. Wan, Power-Over-Fiber Technique based Sensing System for Internet оf Things, 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, Sep. 24-27, 2016. [CrossRef]S. Kartalopoulos, Optical Bit Error Rate: An Estimation Methodology (2004) Willey- IEEE Press. [CrossRef]J. Shikoski, R. Arnaudov, and T. Eftimov, A study of the frequency characteristics of a photovoltaic convertor РРС-4Е, Photonics Letters of Poland, Vol. 10(3), (2018), pp. 70-72 [CrossRef]J. B. Rosolem, Optical Fiber and Wireless Communications, Ed. by R. Róka, Ch. 13, Power‐Over‐Fiber Applications for Telecommunications and for Electric Utilities, Intech Open Ltd, London, 2017, pp.255-278. [CrossRef]
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Zhuo, Jiajing Tu, Shecheng Gao, Zhaohui Li, Changyuan Yu, and Chao Lu. "Transmission and Generation of Orbital ANGULAR Momentum Modes in Optical Fibers." Photonics 8, no. 7 (June 30, 2021): 246. http://dx.doi.org/10.3390/photonics8070246.

Full text
Abstract:
The orbital angular momentum (OAM) of light provides a new degree of freedom for carrying information. The stable propagation and generation of OAM modes are necessary for the fields of OAM-based optical communications and microscopies. In this review, we focus on discussing the novel fibers that are suitable for stable OAM mode transmission and conversion. The fundamental theory of fiber modes is introduced first. Then, recent progress on a multitude of fiber designs that can stably guide or generate OAM modes is reviewed. Currently, the mode crosstalk is regarded as the main issue that damages OAM mode stability. Therefore, the coupled-mode theory and coupled-power power theory are introduced to analyze OAM modes crosstalk. Finally, the challenges and prospects of the applications of OAM fibers are discussed.
APA, Harvard, Vancouver, ISO, and other styles
32

Fang, Zhou, Li Jia Zhang, Bo Liu, and Yong Jun Wang. "Optimal Design of High-Speed Optical Fiber Communication System Spectral Efficiency of New Modulation Formats." Applied Mechanics and Materials 687-691 (November 2014): 3666–70. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3666.

Full text
Abstract:
As human society to the information in the process of moving and growing demand for bandwidth communications capacity, the optical of new modulation formats increasingly attention and quickly play an important role in optical communications. How can the system bit error rate within a certain degree of stability while still maintaining high-speed long-distance dispersal system, has been a popular issue is the optical communications industry. Starting from the optical modulation format herein, the generation process of the system introduced various optical signal modulation format, the optical signal through the optical fiber was studied and the performance of the simulation, on the basis of the design of advanced optical modulation formats in an optical fiber communication system .
APA, Harvard, Vancouver, ISO, and other styles
33

Danaryani, Sri. "Analisis Power Budget pada Jaringan Komunikasi Jarak Jauh Menggunakan SMF 28." JOURNAL OF APPLIED INFORMATICS AND COMPUTING 2, no. 2 (January 4, 2019): 67–71. http://dx.doi.org/10.30871/jaic.v2i2.475.

Full text
Abstract:
The fourth generation of optical fibers is wavelength division multiplexing (DWDM), where several wavelengths propagate in a single optical fiber. This technique strongly supports broadband communication that is currently being developed. An optical amplifier (EDFA) is required for transmitted information to be received at the appropriate distance limits. The problem, where EDFA should be located and how to overcome the chromatic dispersion of signals occurs, especially on remote communications using SMF 28. The power budget analysis starts from the calculation of the distance between the amplifier and the strengthening of EDFA using the solution wave equation, where the large dispersion of chromatic fiber and the desired range becomes the determinant of the optical amplifier. Case study for 200 km of communication distance need three amplifiers with a space of about 80km. When a 1 GHz bandwidth is converted to 10 GHz, OSNR on each amplifier will decrease by 10 dB.
APA, Harvard, Vancouver, ISO, and other styles
34

Sunak, H. "Book reviews - Optical fiber communications." IEEE Communications Magazine 23, no. 2 (February 1985): 40–41. http://dx.doi.org/10.1109/mcom.1985.1092517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Matsumoto, M., and H. A. Haus. "Stretched-pulse optical fiber communications." IEEE Photonics Technology Letters 9, no. 6 (June 1997): 785–87. http://dx.doi.org/10.1109/68.584990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pantelic, Sladjana, Nadezda Borna, Milesa Sreckovic, Aleksander Kovacevic, Aleksandar Bugarinovic, Milojko Kovacevic, and Djordje Lazarevic. "Influence of nuclear radiation and laser beams on optical fibers and components." Nuclear Technology and Radiation Protection 26, no. 1 (2011): 32–38. http://dx.doi.org/10.2298/ntrp1101032p.

Full text
Abstract:
The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc.).
APA, Harvard, Vancouver, ISO, and other styles
37

Seifouri, M., M. M. Karkhanehchi, and S. Rohani. "Design of Multi-Layer Optical Fibers with Ring Refractive Index to Reduce Dispersion and Increase Bandwidth in Broadband Optical Networks." Engineering, Technology & Applied Science Research 2, no. 3 (June 4, 2012): 216–20. http://dx.doi.org/10.48084/etasr.166.

Full text
Abstract:
The main goal in this paper is to design single-mode optical fibers for DWDM networks, which are used today in rapid communications. These networks require low dispersion in a wide range of wavelengths. So, in this paper, multi-layer optical fibers with low dispersion value and flat dispersion slope in wavelength range of 1.5-1.6µm) are designed, using optimization algorithms.
APA, Harvard, Vancouver, ISO, and other styles
38

Downie, John D., Ming-Jun Li, and Sergejs Makovejs. "Optical Fibers for Flexible Networks and Systems [Invited]." Journal of Optical Communications and Networking 8, no. 7 (April 22, 2016): A1. http://dx.doi.org/10.1364/jocn.8.0000a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhu, Min, Jiao Zhang, Dongpeng Wang, and Xiaohan Sun. "Optimal Fiber Link Fault Decision for Optical 2D Coding-Monitoring Scheme in Passive Optical Networks." Journal of Optical Communications and Networking 8, no. 3 (February 17, 2016): 137. http://dx.doi.org/10.1364/jocn.8.000137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ratuszek, M., M. J. Ratuszek, and J. Hejna. "The study of thermal connecting of telecommunication optical fibers (SiO2: GeO2) and EDF (SiO2: Al2O3, Er) fibers." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 1 (March 1, 2013): 279–86. http://dx.doi.org/10.2478/bpasts-2013-0026.

Full text
Abstract:
Abstract. This paper presents the research on optimization of the splicing process in the electric arc of telecommunication optical fibers and erbium doped EDF fibers. The results of the calculations of diffusion coefficients GeO2 in telecommunication optical fibers and diffusion coefficients Er and Al2O3 (together) in the fiber EDF are presented. Diffusion coefficients were determined for the fusion temperature in the electric arc ≈2000°C, on the basis of changes, along the splice, of spliced thermoluminescence intensity profiles of the fibers. On the basis of knowledge of diffusion coefficients simulation calculation of loss joints of MC SMF fiber (Matched Cladding Single Mode Fiber - SiO2: GeO2) and NZDS SMF (Non Zero Dispersion Shifted - Single Mode Fiber - SiO2: GeO2) with EDF (Erbium Doped Fiber - SiO2: Al2O3, Er) was performed and presented as a function of diffusion time. Experimental studies of optimization of thermal connected MC SMF and NZDS SMF with EDF were presented and compared with theoretical results. This paper presents the results of microscopic observations of defects and diffusion, and X-ray microanalysis in the spliced areas of single-mode telecommunication optical fibers: MC SMF, NZDS-SMF and erbium doped active single mode optical fibers. Studies were performed with the use of the scanning electron microscope JSM5800LV and JSM6610A microscope equipped with EDS X-ray spectrometer. Results showing the influence of heating time on the diffusion of core dopants and the formation of deformations in the splice areas were presented.
APA, Harvard, Vancouver, ISO, and other styles
41

BISWAS, ANJAN. "SOLITON–SOLITON INTERACTION IN OPTICAL FIBERS." Journal of Nonlinear Optical Physics & Materials 08, no. 04 (December 1999): 483–95. http://dx.doi.org/10.1142/s0218863599000369.

Full text
Abstract:
In an optical communication system it is necessary to place the solitons close to one another to increase the information carrying capacity of the fiber. The theory of soliton–soliton interaction in a fiber optic communication system, through a single channel, is studied in this paper. In presence of the perturbation terms, the two soliton interaction of the Nonlinear Schrödinger's Equation is investigated. It is analytically proved and numerically supported that the perturbation terms lead to the suppression of the interaction of solitons through an optical fiber.
APA, Harvard, Vancouver, ISO, and other styles
42

Blair, D. A., and G. D. Cormack. "Optimal source linewidth in a coherence multiplexed optical fiber communications system." Journal of Lightwave Technology 10, no. 6 (June 1992): 804–10. http://dx.doi.org/10.1109/50.143081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bahleda, Miroslav, and Karol Blunar. "The Gain of Performance of Optical WDM Networks." Journal of Computer Systems, Networks, and Communications 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/289690.

Full text
Abstract:
We study the blocking probability and performance of single-fiber and multifiber optical networks with wavelength division multiplexing (WDM). We extend the well-known analytical blocking probability model by Barry and Humblet to the general model, which is proposed for both single-fiber and multifiber network paths with any kind of wavelength conversion (no, limited, or full wavelength conversion) and for uniform and nonuniform link loads. We investigate the effect of the link load, wavelength conversion degree, and the number of wavelengths, fibers, and hops on blocking probability. We also extend the definition of the gain of wavelength conversion by Barry and Humblet to the gain of performance, which is fully general. Thanks to this definition and implementation of our model, we compare different WDM node architectures and present interesting results.
APA, Harvard, Vancouver, ISO, and other styles
44

Szentesi, O. "Reliability of Optical Fibers, Cables, and Splices." IEEE Journal on Selected Areas in Communications 4, no. 9 (December 1986): 1502–8. http://dx.doi.org/10.1109/jsac.1986.1146485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Amiri, Iraj, Saaidal Azzuhri, Muhammad Jalil, Haryana Hairi, Jalil Ali, Montree Bunruangses, and Preecha Yupapin. "Introduction to Photonics: Principles and the Most Recent Applications of Microstructures." Micromachines 9, no. 9 (September 11, 2018): 452. http://dx.doi.org/10.3390/mi9090452.

Full text
Abstract:
Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word “photon”, which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.
APA, Harvard, Vancouver, ISO, and other styles
46

Park, Seung Koo, Jung Yun Do, Jung-Jin Ju, Suntak Park, Min-su Kim, and Myung-Hyun Lee. "Transparent Nonlinear Optical Polymers for All-Optical Wavelength Converters in Optical Fiber Communications." Macromolecular Rapid Communications 24, no. 13 (September 2003): 772–77. http://dx.doi.org/10.1002/marc.200350024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

FERREIRA, M. F., M. V. FACÃO, S. V. LATAS, and M. H. SOUSA. "Optical Solitons in Fibers for Communication Systems." Fiber and Integrated Optics 24, no. 3-4 (May 2005): 287–313. http://dx.doi.org/10.1080/01468030590923019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hasegawa, Akira. "Optical Solitons in Fibers for Communication Systems." Optics and Photonics News 13, no. 2 (February 1, 2002): 33. http://dx.doi.org/10.1364/opn.13.2.000033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Veber, Alexander, Zhuorui Lu, Manuel Vermillac, Franck Pigeonneau, Wilfried Blanc, and Laeticia Petit. "Nano-Structured Optical Fibers Made of Glass-Ceramics, and Phase Separated and Metallic Particle-Containing Glasses." Fibers 7, no. 12 (November 30, 2019): 105. http://dx.doi.org/10.3390/fib7120105.

Full text
Abstract:
For years, scientists have been looking for different techniques to make glasses perfect: fully amorphous and ideally homogeneous. Meanwhile, recent advances in the development of particle-containing glasses (PCG), defined in this paper as glass-ceramics, glasses doped with metallic nanoparticles, and phase-separated glasses show that these “imperfect” glasses can result in better optical materials if particles of desired chemistry, size, and shape are present in the glass. It has been shown that PCGs can be used for the fabrication of nanostructured fibers—a novel class of media for fiber optics. These unique optical fibers are able to outperform their traditional glass counterparts in terms of available emission spectral range, quantum efficiency, non-linear properties, fabricated sensors sensitivity, and other parameters. Being rather special, nanostructured fibers require new, unconventional solutions on the materials used, fabrication, and characterization techniques, limiting the use of these novel materials. This work overviews practical aspects and progress in the fabrication and characterization methods of the particle-containing glasses with particular attention to nanostructured fibers made of these materials. A review of the recent achievements shows that current technologies allow producing high-optical quality PCG-fibers of different types, and the unique optical properties of these nanostructured fibers make them prospective for applications in lasers, optical communications, medicine, lighting, and other areas of science and industry.
APA, Harvard, Vancouver, ISO, and other styles
50

Sampson, D. D., and D. A. Jackson. "Coherent optical fiber communications system using all-optical correlation processing." Optics Letters 15, no. 10 (May 15, 1990): 585. http://dx.doi.org/10.1364/ol.15.000585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography