To see the other types of publications on this topic, follow the link: Optical cryptography.

Journal articles on the topic 'Optical cryptography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical cryptography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Hong-Chao, and Wen Chen. "Optical ghost cryptography and steganography." Optics and Lasers in Engineering 130 (July 2020): 106094. http://dx.doi.org/10.1016/j.optlaseng.2020.106094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Yishi, and Xiubo Yang. "Optical hiding with visual cryptography." Journal of Optics 19, no. 11 (2017): 115703. http://dx.doi.org/10.1088/2040-8986/aa895e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DONATI Silvano, 唐士文, ANNOVAZZI-LODI Valerio ANNOVAZZI-LODI Valerio, and 王昭 WANG Zhao. "Recent advances in optical cryptography." Chinese Journal of Optics and Applied Optics 7, no. 1 (2014): 89–97. http://dx.doi.org/10.3788/co.20140701.0089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Franson, J. D., and H. Ilves. "Quantum cryptography using optical fibers." Applied Optics 33, no. 14 (1994): 2949. http://dx.doi.org/10.1364/ao.33.002949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Townsend, Paul D. "Quantum Cryptography on Optical Fiber Networks." Optical Fiber Technology 4, no. 4 (1998): 345–70. http://dx.doi.org/10.1006/ofte.1998.0270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogura, Yusuke, Masahiko Aino, and Jun Tanida. "Microscale optical cryptography using a subdiffraction-limit optical key." Japanese Journal of Applied Physics 57, no. 4 (2018): 040309. http://dx.doi.org/10.7567/jjap.57.040309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pham, Hai, Rainer Steinwandt, and Adriana Suárez Corona. "Integrating Classical Preprocessing into an Optical Encryption Scheme." Entropy 21, no. 9 (2019): 872. http://dx.doi.org/10.3390/e21090872.

Full text
Abstract:
Traditionally, cryptographic protocols rely on mathematical assumptions and results to establish security guarantees. Quantum cryptography has demonstrated how physical properties of a communication channel can be leveraged in the design of cryptographic protocols, too. Our starting point is the AlphaEta protocol, which was designed to exploit properties of coherent states of light to transmit data securely over an optical channel. AlphaEta aims to draw security from the uncertainty of any measurement of the transmitted coherent states due to intrinsic quantum noise. We present a technique to
APA, Harvard, Vancouver, ISO, and other styles
8

Aswad, Firas Mohammed, Ihsan Salman, and Salama A. Mostafa. "An optimization of color halftone visual cryptography scheme based on Bat algorithm." Journal of Intelligent Systems 30, no. 1 (2021): 816–35. http://dx.doi.org/10.1515/jisys-2021-0042.

Full text
Abstract:
Abstract Visual cryptography is a cryptographic technique that allows visual information to be encrypted so that the human optical system can perform the decryption without any cryptographic computation. The halftone visual cryptography scheme (HVCS) is a type of visual cryptography (VC) that encodes the secret image into halftone images to produce secure and meaningful shares. However, the HVC scheme has many unsolved problems, such as pixel expansion, low contrast, cross-interference problem, and difficulty in managing share images. This article aims to enhance the visual quality and avoid t
APA, Harvard, Vancouver, ISO, and other styles
9

Liñares-Beiras, Jesús, Xesús Prieto-Blanco, Daniel Balado, and Gabriel M. Carral. "Autocompensating Measurement-Device-Independent quantum cryptography in few-mode optical fibers." EPJ Web of Conferences 238 (2020): 09002. http://dx.doi.org/10.1051/epjconf/202023809002.

Full text
Abstract:
We present an autocompensating quantum cryptography technique for Measurement-Device-Independent quantum cryptography devices with different kind of optical fiber modes. We center our study on collinear spatial modes in few-mode optical fibers by using both fiber and micro-optical components. We also indicate how the obtained results can be easily extended to polarization modes in monomode optical fibers and spatial codirectional modes in multicore optical fibers.
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Xiangyu, Aimin Yan, and Hongbo Zhang. "Ciphertext-only attack on optical scanning cryptography." Optics and Lasers in Engineering 126 (March 2020): 105901. http://dx.doi.org/10.1016/j.optlaseng.2019.105901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Phoenix, Simon J. D., Stephen M. Barnett, Paul D. Townsend, and K. J. Blow. "Multi-user Quantum Cryptography on Optical Networks." Journal of Modern Optics 42, no. 6 (1995): 1155–63. http://dx.doi.org/10.1080/09500349514551001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Townsend, Paul D. "Quantum cryptography on multiuser optical fibre networks." Nature 385, no. 6611 (1997): 47–49. http://dx.doi.org/10.1038/385047a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Poon, Ting-Chung, Taegeun Kim, and Kyu Doh. "Optical scanning cryptography for secure wireless transmission." Applied Optics 42, no. 32 (2003): 6496. http://dx.doi.org/10.1364/ao.42.006496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

VIDAL, G., M. S. BAPTISTA, and H. MANCINI. "FUNDAMENTALS OF A CLASSICAL CHAOS-BASED CRYPTOSYSTEM WITH SOME QUANTUM CRYPTOGRAPHY FEATURES." International Journal of Bifurcation and Chaos 22, no. 10 (2012): 1250243. http://dx.doi.org/10.1142/s0218127412502434.

Full text
Abstract:
We present the fundamentals of a cryptographic method based on a hyperchaotic system and a protocol which inherits some properties of the quantum cryptography that can be straightforwardly applied on the existing communication systems of nonoptical communication channels. It is an appropriate tool to provide security on software applications for VoIP, as in Skype, dedicated to voice communication through Internet. This would enable that an information packet be sent through Internet preventing attacks with strategies similar to that employed if this same packet is transferred in an optical cha
APA, Harvard, Vancouver, ISO, and other styles
15

Risk, William P., and Donald S. Bethune. "Quantum Cryptography." Optics and Photonics News 13, no. 7 (2002): 26. http://dx.doi.org/10.1364/opn.13.7.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Franson, J. D. "Quantum Cryptography." Optics and Photonics News 6, no. 3 (1995): 30. http://dx.doi.org/10.1364/opn.6.3.000030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Horoshko, D. B., and S. Ya Kilin. "Optimal dimensionality for quantum cryptography." Optics and Spectroscopy 94, no. 5 (2003): 691–94. http://dx.doi.org/10.1134/1.1576836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yu, Tao, Dong-Yu Yang, Rui Ma, Yu-Peng Zhu, and Yi-Shi Shi. "Enhanced-visual-cryptography-based optical information hiding system." Acta Physica Sinica 69, no. 14 (2020): 144202. http://dx.doi.org/10.7498/aps.69.20200496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chrien, Thomas G., and George M. Morris. "Optical cryptography using a multifaceted reference-beam hologram." Applied Optics 24, no. 7 (1985): 933. http://dx.doi.org/10.1364/ao.24.000933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Breguet, J., A. Muller, and N. Gisin. "Quantum Cryptography with Polarized Photons in Optical Fibres." Journal of Modern Optics 41, no. 12 (1994): 2405–12. http://dx.doi.org/10.1080/09500349414552251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yan, Aimin, Jianfeng Sun, Zhijuan Hu, Jingtao Zhang, and Liren Liu. "Novel optical scanning cryptography using Fresnel telescope imaging." Optics Express 23, no. 14 (2015): 18428. http://dx.doi.org/10.1364/oe.23.018428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Muruganantham, B., P. Shamili, S. Ganesh Kumar, and A. Murugan. "Quantum cryptography for secured communication networks." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 1 (2020): 407. http://dx.doi.org/10.11591/ijece.v10i1.pp407-414.

Full text
Abstract:
Quantum cryptography is a method for accessing data with the cryptosystem more efficiently. The network security and the cryptography are the two major properties in securing the data in the communication network. The quantum cryptography uses the single photon passing through the polarization of a photon. In Quantum Cryptography, it's impossible for the eavesdropper to copy or modify the encrypted messages in the quantum states in which we are sending through the optical fiber channels. Cryptography performed by using the protocols BB84 and B92 protocols. The two basic algorithms of quantum c
APA, Harvard, Vancouver, ISO, and other styles
23

Bykovsky, A. Yu, and I. N. Kompanets. "Quantum cryptography and combined schemes of quantum cryptography communication networks." Quantum Electronics 48, no. 9 (2018): 777–801. http://dx.doi.org/10.1070/qel16732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Abbade, M. L. F., L. A. Fossaluzza Jr., C. A. Messani, G. M. Taniguti, E. A. M. Fagotto, and I. E. Fonseca. "All-optical cryptography through spectral amplitude and delay encoding." Journal of Microwaves, Optoelectronics and Electromagnetic Applications 12, no. 2 (2013): 376–97. http://dx.doi.org/10.1590/s2179-10742013000200011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Petrauskiene, Vilma, Arvydas Survila, Algimantas Fedaravicius, and Minvydas Ragulskis. "Dynamic visual cryptography for optical assessment of chaotic oscillations." Optics & Laser Technology 57 (April 2014): 129–35. http://dx.doi.org/10.1016/j.optlastec.2013.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pan, Zilan, and Leihong Zhang. "Optical Cryptography-Based Temporal Ghost Imaging With Chaotic Laser." IEEE Photonics Technology Letters 29, no. 16 (2017): 1289–92. http://dx.doi.org/10.1109/lpt.2017.2703838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Townsend, P. D., S. J. D. Phoenix, S. M. Barnett, and K. J. Blow. "Design of quantum cryptography systems for passive optical networks." Electronics Letters 30, no. 22 (1994): 1875–77. http://dx.doi.org/10.1049/el:19941255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tao Ye, 陶冶, 祝玉鹏 Zhu Yupeng, 杨栋宇 Yang Dongyu, 吕文晋 Lü Wenjin та 史祎诗 Shi Yishi. "基于视觉密码的远距离光学信息认证系统". Acta Optica Sinica 41, № 16 (2021): 1607001. http://dx.doi.org/10.3788/aos202141.1607001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

CHEN, Wen, and Xudong CHEN. "OS10F070 Optical Cryptography Using a Three-Dimensional Space-Based Strategy and Phase-Shifting Digital Holography." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS10F070——_OS10F070—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os10f070-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Petrauskiene, Vilma, Algiment Aleksa, Algimantas Fedaravicius, and Minvydas Ragulskis. "Dynamic visual cryptography for optical control of vibration generation equipment." Optics and Lasers in Engineering 50, no. 6 (2012): 869–76. http://dx.doi.org/10.1016/j.optlaseng.2012.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yi, Kang, Zhang Leihong, and Zhang Dawei. "Optical encryption based on ghost imaging and public key cryptography." Optics and Lasers in Engineering 111 (December 2018): 58–64. http://dx.doi.org/10.1016/j.optlaseng.2018.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Xomalis, Angelos, Iosif Demirtzioglou, Yongmin Jung, et al. "Cryptography in coherent optical information networks using dissipative metamaterial gates." APL Photonics 4, no. 4 (2019): 046102. http://dx.doi.org/10.1063/1.5092216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Wen, and Xudong Chen. "Optical asymmetric cryptography using a three-dimensional space-based model." Journal of Optics 13, no. 7 (2011): 075404. http://dx.doi.org/10.1088/2040-8978/13/7/075404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, W. "Optical asymmetric cryptography using a three-dimensional space-based model." Journal of Optics 13, no. 7 (2011): 079601. http://dx.doi.org/10.1088/2040-8978/13/7/079601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yi, Sang-Yi, Sung-Min Wi, Seung-Hyun Lee, Ji-Sang Yoo, and Dong-Wook Kim. "Optical Visual Cryptography using the Characteristics of Spatial Light Modulation." Hankook Kwanghak Hoeji 18, no. 3 (2007): 202–7. http://dx.doi.org/10.3807/hkh.2007.18.3.202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gil, Sang Keun. "Asymmetric Public Key Cryptography by Using Logic-based Optical Processing." Journal of the Optical Society of Korea 20, no. 1 (2016): 55–63. http://dx.doi.org/10.3807/josk.2016.20.1.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huttner, B., A. Muller, G. Ribordy, W. Tittel, H. Zbinden, and N. Gisin. "“Plug and Play” Quantum Cryptography." Optics and Photonics News 8, no. 12 (1997): 38. http://dx.doi.org/10.1364/opn.8.12.000038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Putthacharoen, Rattipong. "Novel optical cryptography using PANDA ring resonator for highly secured communication." Optical Engineering 50, no. 7 (2011): 075001. http://dx.doi.org/10.1117/1.3595425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cai, Jianjun, Xueju Shen, and Ming Lei. "Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light." Optics Communications 403 (November 2017): 211–16. http://dx.doi.org/10.1016/j.optcom.2017.07.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Qing, Manuel Sabban, and Philippe Gallion. "Homodyne detection of weak coherent optical pulse: Applications to quantum cryptography." Microwave and Optical Technology Letters 51, no. 8 (2009): 1934–39. http://dx.doi.org/10.1002/mop.24471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Balygin, K. A., A. N. Klimov, S. P. Kulik, and S. N. Molotkov. "Active stabilization of the optical part in fiber optic quantum cryptography." JETP Letters 103, no. 6 (2016): 420–24. http://dx.doi.org/10.1134/s0021364016060023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liñares-Beiras, Jesús, Xesús Prieto-Blanco, Daniel Balado, and Gabriel M. Carral. "Autocompensating high-dimensional quantum cryptography by phase conjugation in optical fibers." EPJ Web of Conferences 238 (2020): 11004. http://dx.doi.org/10.1051/epjconf/202023811004.

Full text
Abstract:
We present a system based on phase conjugation in optical fibers for autocompensating highdimensional quantum cryptohraphy. Phase changes and coupling effects are auto-compensated by a single loop between Alice and Bob. Bob uses a source of coherent states and next Alice attenuate them up to a single photon level and thus 1-qudit states are generated for implementing a particular QKD protocol, for instance the BB84 one, together with decoy states to detect eavesdropping attacks.
APA, Harvard, Vancouver, ISO, and other styles
43

Petrauskiene, Vilma, and Loreta Saunoriene. "Application of dynamic visual cryptography for optical control of chaotic oscillations." Vibroengineering PROCEDIA 15 (December 1, 2017): 81–87. http://dx.doi.org/10.21595/vp.2017.19353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

CHEN, Wen, and Xudong CHEN. "OS010-2-1 Optical Cryptography Using a Three-Dimensional Space-Based Strategy and Phase-Shifting Digital Holography." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS010–2–1. http://dx.doi.org/10.1299/jsmeatem.2011.10._os010-2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kurochkin, V. L., A. V. Zverev, Yu V. Kurochkin, I. I. Ryabtsev, and I. G. Neizvestny. "Experimental studies in quantum cryptography." Russian Microelectronics 40, no. 4 (2011): 245–53. http://dx.doi.org/10.1134/s1063739711040068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

HUTTNER, BRUNO, NOBUYUKI IMOTO, and STEVE M. BARNETT. "SHORT DISTANCE APPLICATIONS OF QUANTUM CRYPTOGRAPHY." Journal of Nonlinear Optical Physics & Materials 05, no. 04 (1996): 823–32. http://dx.doi.org/10.1142/s0218863596000581.

Full text
Abstract:
We present an identification protocol based on quantum mechanics. The first user, Alice, needs to identify herself in front of a second user, Bob, by means of a password, known only to both. The safety requirement for Alice is that somebody impersonating Bob, who only pretended to know Alice’s password, shall not be able to obtain information on the password from the exchange. This is an example of a potentially practical new application of quantum mechanics to cryptography.
APA, Harvard, Vancouver, ISO, and other styles
47

Luo, Yuhui, and Kam Tai Chan. "Quantum cryptography with perfect multiphoton entanglement." Journal of the Optical Society of America A 22, no. 5 (2005): 1003. http://dx.doi.org/10.1364/josaa.22.001003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Domb, Menachem, and Guy Leshem. "Secured Key Distribution by Concatenating Optical Communications and Inter-Device Hand-Held Video Transmission." Applied System Innovation 3, no. 1 (2020): 11. http://dx.doi.org/10.3390/asi3010011.

Full text
Abstract:
Key distribution is a growing concern for symmetric cryptography. Most of the current key-distribution mechanisms assume the use of the Internet and WAN networks, which are exposed to security hazards. To overcome them, the use of comprehensive and robust cryptographic mechanisms such as Diffie–Hellman (DH) and RSA (Rivest–Shamir–Adleman) algorithms are proposed. These solutions are limited. DH and RSA have been under threat since the introduction of quantum computing. Hence, new ideas are required. This paper introduces a new security approach for a safe key transmission using undetected high
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Wei, Xiangyu Chang, Aimin Yan, and Hongbo Zhang. "Asymmetric multiple image elliptic curve cryptography." Optics and Lasers in Engineering 136 (January 2021): 106319. http://dx.doi.org/10.1016/j.optlaseng.2020.106319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Ren-De, Ya-Ping Zhang, Xu-Feng Zhu, et al. "Multi-section images parallel encryption based on optical scanning holographic cryptography technology." Acta Physica Sinica 68, no. 11 (2019): 114202. http://dx.doi.org/10.7498/aps.68.20190162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!