Academic literature on the topic 'Optical fiber communications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical fiber communications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optical fiber communications"
Jihad, Noor J., and Murooj A. Abd Almuhsan. "Future trends in optical wireless communications systems: Review." Technium: Romanian Journal of Applied Sciences and Technology 13 (September 15, 2023): 53–67. http://dx.doi.org/10.47577/technium.v13i.9474.
Full textSunak, H. R. D. "Optical fiber communications." Proceedings of the IEEE 73, no. 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.
Full textHenderson, R. "Understanding optical fiber communications." Optics and Lasers in Engineering 38, no. 6 (December 2002): 606–7. http://dx.doi.org/10.1016/s0143-8166(01)00181-6.
Full textBrain, M. "Coherent Optical Fiber Communications." Journal of Modern Optics 36, no. 4 (April 1989): 552. http://dx.doi.org/10.1080/09500348914550641.
Full textMohammed, Salim Qadir, and Asaad M. Asaad M. Al-Hindawi. "Study of Optical Fiber Design Parameters in Fiber Optics Communications." Kurdistan Journal of Applied Research 2, no. 3 (August 27, 2017): 302–8. http://dx.doi.org/10.24017/science.2017.3.52.
Full textIrven, J. "Optical fiber communications, Volume 1: Fiber Fabrication." Optics & Laser Technology 17, no. 5 (October 1985): 274. http://dx.doi.org/10.1016/0030-3992(85)90045-3.
Full textRida, Jafaar Fahad A. "A Survey of the Mechanisms Impairing Optical fiber communications performance." Journal of Electrical Systems 20, no. 5s (April 13, 2024): 2192–215. http://dx.doi.org/10.52783/jes.2581.
Full textCarmo, J. P., and J. E. Ribeiro. "Optical Fibers on Medical Instrumentation." International Journal of Biomedical and Clinical Engineering 2, no. 2 (July 2013): 23–36. http://dx.doi.org/10.4018/ijbce.2013070103.
Full textRizzelli, Giuseppe. "Advances in Optical Fiber Communications." Applied Sciences 12, no. 10 (May 10, 2022): 4818. http://dx.doi.org/10.3390/app12104818.
Full textSunak, H. "Book reviews - Optical fiber communications." IEEE Communications Magazine 23, no. 2 (February 1985): 40–41. http://dx.doi.org/10.1109/mcom.1985.1092517.
Full textDissertations / Theses on the topic "Optical fiber communications"
Boiyo, Duncan Kiboi, and Romeo Gamatham. "Optimization of flexible spectrum in optical transport networks." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14609.
Full textMales, Mladen. "Suppression of transient gain excursions in an erbium-doped fibre amplifier /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0157.
Full textHao, Miin-Jong. "Performance evaluation of practival FSK, CPFSK, and ASK detection schemes for coherent optical fiber communication systems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15686.
Full textHattori, Haroldo Takashi. "Low Nonlinearity Optical Fibers for Broadband and Long-Distance Communications." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29816.
Full textPh. D.
SANTOS, ALEXANDRE BESSA DOS. "POLARIZATION EFFECTS IN OPTICAL FIBER COMMUNICATIONS SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7013@1.
Full textOs efeitos que causam limitações nas comunicações ópticas referentes a polarização se resumem essencialmente na Dispersão dos Modos de Polarização (PMD), nas Perdas Dependentes da Polarização (PDL), e no Ganho Dependente da Polarização (PDG). Estes efeitos podem aparecer na transmissão de forma isolada ou combinada, gerando distorções no sinal. Primeiramente estes efeitos foram estudados individualmente, cada efeito sendo analisado e quantificado sob diversos aspectos. Através de uma analise teórica e experimental foi proposto uma nova técnica de medida de penalidade de potência envolvendo os efeitos estudados. Depois de um estudo detalhado sobre os efeitos isolados, analisou-se os efeitos combinados de PMD e PDL. Diversos emuladores de PMD, elementos com PDL variável e emuladores de PMD e PDL fizeram parte de um longo estudo sobre estes efeitos combinados. Procurou-se ressaltar a importância e os cuidados necessários que se deve tomar para a construção de um emulador de PMD. Na última etapa, foram estudados os efeitos de PMD e PDG oriundos de um sistema utilizando amplificação Raman. Desta forma foi possível evidenciar, caracterizar e relacionar os efeitos da polarização nas fibras ópticas.
The polarization effects that cause limitations in optical communications are essentially the Polarization Mode Dispersion (PMD), the Polarization Dependent Loss (PDL), and the Polarization Dependent Gain (PDG). These effects can appear either isolated or in combinations, generating signal distortion. These effects were first investigated individually under different experimental situations and then combined effects were studied. A new technique for measuring the power penalties corresponding to these effects was proposed. The combined effects of PMD and PDL in PMD emulators were evaluated and quantified. Thumb rules for the manufacture of PDL-free emulators were proposed. The effects of PMD and PDG originated from Raman amplification were also studied and compared with theoretical predictions.
XAVIER, GUILHERME BARRETO. "PRACTICAL ASSETS FOR FIBER OPTICAL QUANTUM COMMUNICATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14226@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
As comunicações quânticas estão rapidamente integrando-se às redes de fibras ópticas, entretanto muitos desafios de engenharia ainda existem para essa aglutinação. Esta tese discute algumas soluções práticas para a melhoria de aplicações reais em comunicações quânticas em fibras ópticas. No primeiro experimento uma fonte de pares de fótons emaranhados não-degenerados, de banda-estreita, empregando conversão espontânea paramétrica descendente (CEPD) é utilizada para demonstrar a viabilidade da distribuição quântica de chaves (DQC) através de 27 km de fibras ópticas, com o canal de sincronismo presente na mesma fibra com uma separação de 0.8 nm em comprimento de onda. A outra demonstração utilizou uma fonte heráldica de fótons únicos também baseada em CEPD para a realização de DQC através de 25 km de fibras ópticas com a utilização do protocolo de decoy states pela primeira vez. Houve também um estudo dos impactos gerados por ruído Raman espontâneo causado por um canal óptico clássico presente na mesma fibra que o canal quântico. Um protocolo para gerar números verdadeiramente aleatórios em um sistema de DQC independente da taxa de transmissão do sistema é proposto, e um experimento prova-de-princípio demonstra a idéia. Finalmente um sistema de controle automático de polarização é utilizado para a realização de uma sessão de DQC através de 16 km de fibras ópticas utilizando codificação em polarização, mesmo sob a presença de um embaralhador rápido do estado de polarização.
Quantum communications is quickly becoming integrated within fiber optical networks and still many engineering challenges remain towards this interweaving. This thesis deals with some practical solutions toward improving real-world applications in quantum communications within optical fibers. In the first experiment, a non-degenerate narrowband entangled pair single-photon source based on spontaneous parametric down-conversion (SPDC) is used to show the feasibility of performing quantum key distribution (QKD) through 27 km of optical fiber, with the synchronization channel wavelength multiplexed in the same fiber with a channel spacing of just 0.8 nm. A second experiment uses a heralded single-photon source also based on SPDC to perform QKD over 25 km of optical fiber with the decoy state modification for the first time. Then there is a study of the problems caused by spontaneous Raman induced noise due to the presence of a classical signal in the same fiber as the quantum channel. A protocol to generate truly random numbers in a QKD setup independent of the system s transmission rate is proposed, and a proof-of-principle experiment demonstrates the idea. Finally an automatic polarization control system is used to perform a QKD session over 16 km of optical fiber using polarization encoding, even in the presence of a fast polarization scrambler.
Modestou, Panayiotis Charalambous 1967. "Multilevel subcarrier multiplexing in optical fiber communications." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/278280.
Full textMales, Mladen. "Suppression of transient gain excursions in an erbium-doped fibre amplifier." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0157.
Full textJackson, James Trent. "Reduction of EDFA optical power transients using power shaping." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/jackson/JacksonJ0808.pdf.
Full textFlatten, Amy K. "Interaction of ultrasound with a polarization preserving optic fiber." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30723.
Full textBooks on the topic "Optical fiber communications"
Kolimbiris, Harold. Fiber optics communications. Upper Saddle River, N.J: Pearson/Prentice Hall, 2004.
Find full textBook chapters on the topic "Optical fiber communications"
Weik, Martin H. "optical fiber communications." In Computer Science and Communications Dictionary, 1167. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12994.
Full textHamam, Habib, and Sghaier Guizani. "Optical Fiber Communications." In Handbook of Computer Networks, 692–707. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256053.ch44.
Full textWeik, Martin H. "optical fiber." In Computer Science and Communications Dictionary, 1165. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12980.
Full textKeiser, Gerd. "Optical Power Coupling." In Fiber Optic Communications, 209–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_5.
Full textKeiser, Gerd. "Optical Receiver Operation." In Fiber Optic Communications, 267–302. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_7.
Full textKeiser, Gerd. "Digital Optical Fiber Links." In Fiber Optic Communications, 303–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_8.
Full textKeiser, Gerd. "Basics of Optical Amplifiers." In Fiber Optic Communications, 437–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_11.
Full textKeiser, Gerd. "Analog Optical Fiber Channels." In Fiber Optic Communications, 363–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4665-9_9.
Full textWeik, Martin H. "single optical fiber." In Computer Science and Communications Dictionary, 1599. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17543.
Full textWeik, Martin H. "special optical fiber." In Computer Science and Communications Dictionary, 1627–28. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17841.
Full textConference papers on the topic "Optical fiber communications"
Deng, Qiuzhuo, Lu Zhang, Hongqi Zhang, Zuomin Yang, Xiaodan Pang, Vjačeslavs Bobrovs, Sergei Popov, et al. "Quantum Noise Secured Terahertz Communications." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w2a.33.
Full textWilson, Glenn, Mauricio Uribe, Sigurd Moe, Andreas Ellmauthaler, Kwang Suh, Mikko Jaaskelainen, Jeff Bush, and James Dupree. "All-Optical Subsea Sensing and Communications." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32645-ms.
Full textHaarlammert, Nicoletta, Johannes Nold, Stefan Kuhn, Christian Hupel, Sigrun Hein, Arno Klenke, Cesar Jauregui, Jens Limpert, Thomas Schreiber, and Andreas Tünnermann. "Fabrication of Multicore Fibers for High Power Lasers, Sensing and Communications." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w4c.1.
Full textHodgkinson, T. G., D. W. Smith, Richard Wyatt, and D. J. Malyon. "Coherent optical communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/ofc.1985.mh1.
Full textKAZOVSKY, LEONID. "Coherent lightwave communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1990. http://dx.doi.org/10.1364/ofc.1990.tuf1.
Full textLeuthold, Juerg, Romain Bonjour, Yannick Salamin, Claudia Hoessbacher, Wolfgang Heni, Christian Haffner, Arne Josten, et al. "Plasmonics for Communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.m3g.2.
Full textChang, Jen-Chieh, Yun-Chieh Wang, De-Yu Chen, Chung-Yi Li, Hai-Han Lu, Xu-Hong Huang, and Wen-Shing Tsai. "Optical-Based Underwater Communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.tu2i.3.
Full textMeissner, P. "Coherent optical fiber communications." In Munich '91 (Lasers '91), edited by Juergen Franz. SPIE, 1991. http://dx.doi.org/10.1117/12.46094.
Full textGoodman, David J. "Wireless personal communications networks." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1992. http://dx.doi.org/10.1364/ofc.1992.tua1.
Full textSeeds, Alwyn J. "TeraHertz Photonics for Communications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ofc.2014.th4h.1.
Full textReports on the topic "Optical fiber communications"
Obarski, Gregory E. Wavelength measurement system for optical fiber communications. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1336.
Full textGosnell, T., Ping Xie, and N. Cockroft. Optical-fiber laser amplifier for ultrahigh-speed communications. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/231323.
Full textHan, I., S. Bond, R. Welty, Y. Du, S. Yoo, C. Reinhardt, E. Behymer, V. Sperry, and N. Kobayashi. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15013953.
Full textKazovsky, Leonid G. Advanced Optical Fiber Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada261802.
Full textHarris, J. S. Semiconductor In-line Fiber Devices for Optical Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381265.
Full textFranco, R. J., and J. R. Morgan. Fiber optic communication in borehole applications. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/469191.
Full textGarrity, John, and Arndt Husar. Digital Connectivity and Low Earth Orbit Satellite: Constellations Opportunities for Asia and the Pacific. Asian Development Bank, April 2021. http://dx.doi.org/10.22617/wps210156-2.
Full textRocke, David M., Garry Rodrigue, David L. Woodruff, and Brian H. Kolner. Modeling Communication Losses and Interference in Fiber Optic Systems. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada422167.
Full textMoskowitz, Ira S., and Daniel D. Kang. Comments on Optical Fiber Communication Channel Capacity Results of Song, Mahajan, Mahadevan, and Morris. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada518673.
Full textYu, Chung. Research in Fiber Based Raman and Brillouin Active Devices for Optical Communication, Computing and Sensing. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada309279.
Full text