To see the other types of publications on this topic, follow the link: Optical fiber sensor.

Journal articles on the topic 'Optical fiber sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical fiber sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cheng, Tai Hong, Seong Hyun Lim, Chang Doo Kee, and Il Kwon Oh. "Development of Fiber-PZT Array Sensor System." Advanced Materials Research 79-82 (August 2009): 263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.263.

Full text
Abstract:
In this study, array type fiber-PZT senor systems were newly developed with capabilities of detecting both damage location and monitoring of gas or liquid leakage by applying time-frequency analyses. The system consists of two piezoelectric transducers for the signal receiver and generator applications and three optical fibers for wave propagation. The results showed developed fiber-PZT array sensor can accurately measure the position of crack and its intensity. Also the fluid leakage of methyl alcohol as test specimen, on the plate structure has also been investigated employing the fiber-PZT sensors. The ultrasonic wave optical fiber sensor can be used effectively to monitor changes in structural and chemical properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Braunfelds, Janis, Elvis Haritonovs, Ugis Senkans, Inna Kurbatska, Ints Murans, Jurgis Porins, and Sandis Spolitis. "Designing of Fiber Bragg Gratings for Long-Distance Optical Fiber Sensing Networks." Modelling and Simulation in Engineering 2022 (October 5, 2022): 1–14. http://dx.doi.org/10.1155/2022/8331485.

Full text
Abstract:
Most optical sensors on the market are optical fiber Bragg grating (FBG) sensors with low reflectivity (typically 7-40%) and low side-lobe suppression (SLS) ratio (typically SLS <15 dB), which prevents these sensors from being effectively used for long-distance remote monitoring and sensor network solutions. This research is based on designing the optimal grating structure of FBG sensors and estimating their optimal apodization parameters necessary for sensor networks and long-distance monitoring solutions. Gaussian, sine, and raised sine apodizations are studied to achieve the main requirements, which are maximally high reflectivity (at least 90%) and side-lobe suppression (at least 20 dB), as well as maximally narrow bandwidth (FWHM<0.2 nm) and FBGs with uniform (without apodization). Results gathered in this research propose high-efficiency FBG grating apodizations, which can be further physically realized for optical sensor networks and long-distance (at least 40 km) monitoring solutions.
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Yan. "The Building of Optical Fiber Network System Using Hetero-Core Fiber Optic Sensors." Advanced Materials Research 571 (September 2012): 342–46. http://dx.doi.org/10.4028/www.scientific.net/amr.571.342.

Full text
Abstract:
We proposed a novel optical sensory nerve network using pulse switch sensors. The pulse switch sensor generates light loss similar to pulse signals only when ON/OFF states change. Therefore, it has less influence on communications quality compared with conventional switch sensor modules as sensor multiplicity increases. Our simulated results demonstrated that the proposed system can improve sensor multiplicity while maintaining the communications and measuring performance with the same quality as a conventional system by appropriately adjusting the initial loss of the pulse switch sensors. In particular, where ON/OFF time intervals follow exponential distributions with mean values of 5 and 300 s, respectively, the insertion loss of hetero-core segments inserted into pulse switch sensors is 0.3 dB, and the pulse switch sensors have curvature from 0.05 to 0.18. Under these conditions, our enhanced system can increase sensor multiplicity to 23 while maintaining link availability of almost 100%, a distinction error ratio of less than 1%, and a duplicated error ratio of about 0.5%.
APA, Harvard, Vancouver, ISO, and other styles
4

Kleiza, V., and J. Verkelis. "Some Advanced Fiber-Optical Amplitude Modulated Reflection Displacement and Refractive Index Sensors." Nonlinear Analysis: Modelling and Control 12, no. 2 (April 25, 2007): 213–25. http://dx.doi.org/10.15388/na.2007.12.2.14712.

Full text
Abstract:
Some advanced fiber-optic amplitude modulated reflection displacement sensors and refractive index sensors have been developed. An improved three-fiber displacement sensor has been investigated as a refractive index sensor by computer simulations in a large interval of displacement. Some new regularities have been revealed. A reflection fiber-optic displacement sensor of novel configuration, consisting of double optical-pair fibers with a definite angle between the measuring tips of fibers in the pairs has been proposed, designed, and experimentally investigated to indicate and measure the displacement and refractive index of gas and liquid water solutions. The proposed displacement sensor and refractive index sensor configuration improves the measuring sensitivity in comparison with the known measuring methods. The refractive index sensor sensitivity Snsub = 4 × 10−7 RIU/mV was achieved. The displacement sensor sensitivity is Ssub = 1702 mV/µm in air (n = 1.00027).
APA, Harvard, Vancouver, ISO, and other styles
5

Takahara, H., F. Togashi, and T. Aragaki. "Ultrasonic sensor using polarization-maintaining optical fiber." Canadian Journal of Physics 66, no. 10 (October 1, 1988): 844–46. http://dx.doi.org/10.1139/p88-138.

Full text
Abstract:
The interaction between an ultrasonic wave and the laser beam transmitted through a polarization-maintaining optical fiber is analyzed both theoretically and experimentally. An ultrasonic sensor using a polarization-maintaining optical fiber is optically simple; it is easily matched to the source and detection optics; and it has better stability than an optical configuration using two optical fibers.
APA, Harvard, Vancouver, ISO, and other styles
6

Chyad, Radhi M., Mohd Zubir Mat Jafri, and Kamarulazizi Ibrahim. "Nano-Optical Fiber Evanescent Field Sensors." Advanced Materials Research 626 (December 2012): 1027–32. http://dx.doi.org/10.4028/www.scientific.net/amr.626.1027.

Full text
Abstract:
The nanofiber optic evanescent field sensor based on a changed cladding part as a sensor presented numerically. The influences of numerical opening, core radius of the fiber, the wavelength is effected on the light source and the submicron fiber on the sensors are promise to studied in this work. The results pointed out the sensitivity of the sensor increases when the numerical opening of the fiber is increases and the core radius is decreases. The NA of the fiber affects the sensitivity of the sensor. In the uniform core fiber, the increase in the NA increases the sensitivity of the sensor. Therefore, one should choose a fiber with high NA for the design of an evanescent-wave-absorption sensor if the core of the sensing segment uniform in diameter, so that the increase in the penetration depth or number of ray reflections or both, increases the evanescent absorption field and hence the sensitivity of the sensors. Keywords:fiber optic sensor, chemical sensors, biosensors, nanofiber optic.
APA, Harvard, Vancouver, ISO, and other styles
7

Bartelt, Hartmut. "Fiber Bragg Grating Sensors and Sensor Arrays." Advances in Science and Technology 55 (September 2008): 138–44. http://dx.doi.org/10.4028/www.scientific.net/ast.55.138.

Full text
Abstract:
Fiber Bragg gratings have found widespread application in sensor systems, e. g. for temperature, strain or refractive index measurements. The concept of fiber Bragg gratings allows also in a simple way the realisation of arrays of such sensors. The development of such optical fiber sensor systems often requires special fibers and grating structures which may go beyond more conventional Bragg grating structures in typical communication fibers. Concerning fibers there is, for example., a need of achieving fiber gratings in small diameter fibers and fiber tapers as well as in microstructured fibers. Special fiber grating structures are of interest e.g. in the visible wavelength range, which requires smaller spatial structures compared to more conventional gratings in the near infrared wavelength region. Examples for such modern developments in fiber Bragg grating technology for sensor applications will be presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

TSUTSUI, Teruaki, and Satoshi YAMAMOTO. "Optical fiber sensor." Journal of the Japan Society for Precision Engineering 53, no. 12 (1987): 1847–51. http://dx.doi.org/10.2493/jjspe.53.1847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moś, Joanna Ewa, Karol Antoni Stasiewicz, and Leszek Roman Jaroszewicz. "Liquid crystal cell with a tapered optical fiber as an active element to optical applications." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 13. http://dx.doi.org/10.4302/plp.v11i1.879.

Full text
Abstract:
The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
10

Vašínek, Vladimír, Pavel Šmíra, Vladimira Rasnerova, Andrea Nasswettrová, Jakub Jaros, Andrej Liner, and Martin Papes. "Usage of Distributed Fiber Optical Temperature Sensors during Building Redevelopment." Advanced Materials Research 923 (April 2014): 229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.923.229.

Full text
Abstract:
This contribution describes the novel unique technology with the usage of fiber optical sensors with temperature resolution up to 0.01°C and spatial resolution 1m. This technology is supplemented with fiber optical strain sensor with pressure resolution 1Pa. Fiber optical sensors are based on nonlinear effects within the optical fibers, they behave as distributed sensors making possible to measure temperature and strain with one fiber in many points contemporarily during building redevelopments. For temperature measurements Raman scattering within multimode optical fiber is used. Results from real redevelopments are presented.
APA, Harvard, Vancouver, ISO, and other styles
11

Baumbick, R. J. "Fiber Optics for Propulsion Control Systems." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 851–55. http://dx.doi.org/10.1115/1.3239822.

Full text
Abstract:
The term “fiber optics” means the use of dielectric waveguides to transfer information. In aircraft systems with digital controls, fiber optics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiber optics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc., will be subjected to high temperatures and vibrations. This paper discusses the use of fiber optics in aircraft propulsion systems, together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiber optics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiber optics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate. Work being done under contract to NASA Lewis on optical and optically activated actuators sensors for propulsion control systems is presented.
APA, Harvard, Vancouver, ISO, and other styles
12

Raj, Rajnish, Pooja Lohia, and D. K. Dwivedi. "Optical Fibre Sensors for Photonic Applications." Sensor Letters 17, no. 10 (October 1, 2019): 792–99. http://dx.doi.org/10.1166/sl.2019.4152.

Full text
Abstract:
Recent development in optical fiber and numerous advantages of light over electronic system have boosted the utility and demand for optical fibre sensor in modern era. Optical fibre sensor is used to measure the various parameters like temperature, pressure, vibration, rotation etc. Optical fibre sensor offers a wide spectrum of advantage over traditional sensing system in terms of longer lifetime and small in size. Optical fibre has been considered as not only the substitutes of conventional sensors but also the unique solutions in the field of scientific engineering and industrial research. This paper reports the status of optical fibre sensor and its application in detail.
APA, Harvard, Vancouver, ISO, and other styles
13

Lakomski, Mateusz, Grzegorz Tosik, and Przemyslaw Niedzielski. "Optical Fiber Sensor for PVC Sheet Piles Monitoring." Electronics 10, no. 13 (July 4, 2021): 1604. http://dx.doi.org/10.3390/electronics10131604.

Full text
Abstract:
This paper examined the impact of optical fiber sensor design, and its integration to PVC (polyvinyl chloride) sheet piles, on deflection and strain monitoring. Optical fiber sensors based on Brillouin light backscattering (BLS) were prepared, as they can provide accurate strain and deflection measurement results. However, depending on the application of sheet piles systems, high deformation of PVC elements can be observed. Therefore, a fiber sensor design is not trivial. Three types of optical fiber coatings and their integration with PVC sheet piles were investigated. The effect on the value of compressive and tensile strain were analyzed. It has been experimentally proven that PVC sheet piles monitoring, based on BLS method, can be realized using optical fibers with 250 µm, 900 µm, and 3 mm coating diameter. Achieved results are in line with theory. Correction coefficient necessary for 900 µm and 3 mm coatings has been proposed and used to ensure proper strain measurement. It was found that 250 µm coating fiber based sensors can be utilized for PVC strain measurement under low deflection (>1.2 m beam length). On the other hand, sensors based on 3 mm coating fiber, due to a high level of linearity, can be applied to deflection distance measurement under high deformation.
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Ya-Lin, Xiao-Guang Cui, and Xiao-Yong Fang. "Numerical Analysis and Optimal Design of All-Optical Fiber Differential Acceleration Sensor." Sensor Letters 18, no. 1 (January 1, 2020): 12–17. http://dx.doi.org/10.1166/sl.2020.4175.

Full text
Abstract:
In order to improve the sensitivity of measurement and realize its miniaturization, an all-optical fiber differential acceleration sensor is studied. This sensor adopts a novel four-port ring fiber coupler, which can realizes the difference of optical signals and the isolation of light source and optical signal. Therefore, the sensitivity of this sensor is doubled compared with that of traditional fiber sensors. The stress–strain relationship simulation results of the sensor probe model show that with the increase of the measured acceleration value, the relative sensitivity, relative resolution, and relative error of the sensor all decrease. In the structural parameters of the probe-sensitive unit, the film thickness has the greatest influence on the performance of the sensor. The radius of the diaphragm 65 μm, a thickness of 2 μm, taking the thickness of the center of mass 20 μm, the mass 20 μm taken radius conditions, sensitivity of this fiber acceleration sensor is not less than 0.0025 m–1 · s2, less than 2% error, the linear measuring range of 0 to 2800 m · s–2. This design combines microelectronics and optical fiber technology, which can more easily realize the miniaturization and multi-function of acceleration sensor.
APA, Harvard, Vancouver, ISO, and other styles
15

Kochanowicz, Marcin, and Jakub Markiewicz. "Application of optical reflectometer for monitoring corrosion process." Photonics Letters of Poland 14, no. 2 (July 1, 2022): 40. http://dx.doi.org/10.4302/plp.v14i2.1144.

Full text
Abstract:
In this work, a corrosion sensor based on an optical time domain reflectometer was presented. The first sensor with a bare tip was used to measure the corrosion process of silica glass fiber. Another sensor with a deposited silver layer was used for monitoring the corrosion process in nitric acid. In both cases, reflectance at the end of the fiber was decreasing with immersion time. Thus we can describe the corrosion stage by the level of fresnel reflectance. The maximum sensitivities of the analyzed sensors were as follows: 0.7dB/min (3% HF solution) 0.15dB/h (5%HNO3 solution) Results showed that the corrosion process in all cases wasn’t fully linear, and all reactions began almost instantly after immersing sensors in tested corrosive environments. Full Text: PDF ReferencesC. Elosua, F.J. Arregui et al., "Micro and Nanostructured Materials for the Development of Optical Fibre Sensors", Sensors, 17, 2312 (2017). CrossRef B.H. Lee, Y.H. Kim et al., "Interferometric Fiber Optic Sensors", Sensors, 12, 2467 (2012). CrossRef X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors" (2013-2015), Analytical Chemistry, 88, 203 (2016). CrossRef M.A. Butler, "Fiber Optic Sensor for Hydrogen Concentrations near the Explosive Limit", J. Electrochem. Soc., 138, 46 (1991). CrossRef M.A. Butler, "Optical Fiber hydrogen sensor", Appl. Phys. Lett. 45, 1007 (1984). CrossRef S.F. Silva, L. Coelho et al., "A Reviev of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE Sens. J., 12, 93 (2012). CrossRef C. Floridia, F.C. Salgado et al., "Methane leak detection and spectral analysis by using only optical time domain reflectrometry in semidistributed remote optical sensors", IEEE Sens., 2016. CrossRef J.F. Martins-Filho, E. Fontana et al., Fiber-optic-based Corrosion Sensor using OTDR, IEEE SENSORS 2007 Conference (2007). CrossRef E.A. Lima, A.C. Bruno, "Improving the detection of Flaws in Steel Pipes Using SQUID Planar Gradiometers", IEEE Trans. Appl. Supercond. 11, 1299 (2001). CrossRef J. Yin, J. Pineda de Gyvez et al., "Real-Time Full Signature Corrosion Detection of Underground Casing Pipes", IEEE Instrumentation and Measurement Technology Conference (1996). CrossRef H. Park, D. Kim et al., "HF etched glass substrated for improved thin-film solar cells", Heliyon, 4, 10, (2018). CrossRef M. Mozammel, "Kinetics of Silver Dissolution in Nitric Acid from Ag-Au0:04-Cu0:10 and Ag-Cu0:23 Scraps", J. Mater. Sci. Technol., 22, 696 (2006). DirectLink
APA, Harvard, Vancouver, ISO, and other styles
16

Irawan, Rudi, Tjin Swee Chuan, Tay Chia Meng, and Tan Khay Ming. "Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System." Open Biomedical Engineering Journal 2, no. 1 (June 27, 2008): 28–35. http://dx.doi.org/10.2174/1874120700802010028.

Full text
Abstract:
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Yujie, Ming Zhang, and Yu Zhu. "Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor." Mechanics & Industry 22 (2021): 48. http://dx.doi.org/10.1051/meca/2021047.

Full text
Abstract:
This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.
APA, Harvard, Vancouver, ISO, and other styles
18

Drake, Daniel, Rani Sullivan, and J. Wilson. "Distributed Strain Sensing from Different Optical Fiber Configurations." Inventions 3, no. 4 (September 25, 2018): 67. http://dx.doi.org/10.3390/inventions3040067.

Full text
Abstract:
Strain distributions were obtained from optical fibers arranged in three different configurations on transversely-loaded cantilevered beams. Traditional strain measurement sensors, such as strain gauges, are limited to measuring strain at discrete points on a structural member. However, distributed optical fibers can measure high spatial (<1 mm spacing) strain or temperature distributions. In this study, optical fibers in spiral, grid, and rosette configurations were bonded to aluminum cantilevered beams subjected to tip loads. Strain distributions from optical fiber sensors were measured using a swept wavelength coherent interferometric technique. The optical fiber strain measurements show good agreement with strain gauge measurements. The attributes of each sensor configuration are discussed.
APA, Harvard, Vancouver, ISO, and other styles
19

Seo, Dae Cheol, Il Bum Kwon, and Jung Ju Lee. "Fatigue Crack Growth Monitoring by Optical Fiber Sensors in Smart Composite Patch Repairs." Key Engineering Materials 321-323 (October 2006): 286–89. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.286.

Full text
Abstract:
The fiber optic smart structures allow engineers to add nerve systems to their designs, giving structures capabilities that would be very difficult to achieve by other means, including continuous assessment of damage processes. In this study, we evaluated the potentiality of the application of the optical fiber sensors to the monitoring of the fatigue crack growth behavior of composite patch repaired structures. The composite patch with embedded optical fiber sensors can be considered as a smart patch which has both repairing and monitoring functions. We used recently developed Transmission-type Extrinsic Fabry-Perot Interferometric (TEFPI) optical fiber sensors for the monitoring of fatigue crack growth behavior of cracked thick aluminum plate repaired with bonded composite patch. The sensing principle and the senor construction of the optical fiber sensor are presented. The experimental results show that it is possible to monitor the fatigue crack growth behavior of structures repaired with composite patch using the optical fiber sensor
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Yongzhang, Yiwen Zheng, Haibing Xiao, Dezhi Liang, Yufeng Zhang, Yongqin Yu, Chenlin Du, and Shuangchen Ruan. "Optical Fiber Probe Microcantilever Sensor Based on Fabry–Perot Interferometer." Sensors 22, no. 15 (August 1, 2022): 5748. http://dx.doi.org/10.3390/s22155748.

Full text
Abstract:
Optical fiber Fabry–Perot sensors have long been the focus of researchers in sensing applications because of their unique advantages, including highly effective, simple light path, low cost, compact size, and easy fabrication. Microcantilever-based devices have been extensively explored in chemical and biological fields while the interrogation methods are still a challenge. The optical fiber probe microcantilever sensor is constructed with a microcantilever beam on an optical fiber, which opens the door for highly sensitive, as well as convenient readout. In this review, we summarize a wide variety of optical fiber probe microcantilever sensors based on Fabry–Perot interferometer. The operation principle of the optical fiber probe microcantilever sensor is introduced. The fabrication methods, materials, and sensing applications of an optical fiber probe microcantilever sensor with different structures are discussed in detail. The performances of different kinds of fiber probe microcantilever sensors are compared. We also prospect the possible development direction of optical fiber microcantilever sensors.
APA, Harvard, Vancouver, ISO, and other styles
21

Dorosz, J. "Novel constructions of optical fibers doped with rare – earth ions." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (December 1, 2014): 619–26. http://dx.doi.org/10.2478/bpasts-2014-0067.

Full text
Abstract:
Abstract. In the paper the research on rare-earth doped and co-doped optical fibre conducted in the Laboratory of Optical Fiber Technology at the Bialystok University of Technology is presented. Novel active fibre constructions like multicore, helical-core and side detecting ribbon/core optical fibers were developed with a targeted focus into application. First construction i.e. multicore RE doped optical fibers enable supermode generation due to phase - locking of laser radiation achieved in a consequence of exchanging radiation between the cores during the laser action. In the paper a far - field pattern of 19 - core optical fiber-doped with Yb3+ ions, registered in the MOFPA system, showed centrally located peak of relatively high radiation intensity together with smaller side-lobes. Another new construction presented here is helical-core optical fibers with the helix pitch from several mm and the off-set ranging from 10 μm to 200 μm. The properties of helical-core optical fiber co-doped with Nd3+/Yb3+ were also discussed. In the field of sensor applications novel construction of a sidedetecting luminescent optical fiber for an UV sensor application has been presented. The developed optical fiber with an active core/ribbon, made of phosphate glass doped with 0.5 mol% Tb3+ ions, was used as a UV sensing element.
APA, Harvard, Vancouver, ISO, and other styles
22

Wen, Hsin-Yi, Hsiang-Cheng Hsu, Yao-Tung Tsai, Wen-Kai Feng, Chih-Lang Lin, and Chia-Chin Chiang. "U-Shaped Optical Fiber Probes Coated with Electrically Doped GQDs for Humidity Measurements." Polymers 13, no. 16 (August 12, 2021): 2696. http://dx.doi.org/10.3390/polym13162696.

Full text
Abstract:
The influence of the bending radius on the sensitivity of the graphene quantum dots (GQDs)-coated probe is experimentally investigated for a U-shaped probe. The fiber is bent into a U shape using the optic fiber flame heating method, and the optic fiber is enclosed in a glass tube to increase the stability of the probe. The surface of the U-shaped optical fiber was coated with electrospun fibers formed via electrospinning. Polymer materials doped with GQDs are applied to U-shaped optical fiber as humidity sensors. Graphene quantum dot nanofibers on the U-shaped optical fiber sensor to form a network structure of graphene quantum dots U-shape fiber sensor (GQDUS). The polymer network structure absorbs water molecules, which in turn affects the bending radius of the optical fiber, and changes the optical fiber spectrum. Graphene quantum dots provide optical enhancement benefits, which in turn increase the sensitivity of fiber optic sensors. The spectra monitoring system consists of an optical spectrum analyzer (OSA) and an amplified spontaneous emission (ASE). This system can be used to detect humidity changes between 20% RH and 80% RH in the chamber. Our results indicate promising applications for quantum dots probe sensors from electrospun nanofibers increasing sensitive environmental monitoring. As such, it could be of substantial value in optical sensors detection.
APA, Harvard, Vancouver, ISO, and other styles
23

Bordyug, Alexander Sergeevich. "Application of plate with optical sensors in ship information systems." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2021, no. 4 (November 30, 2021): 91–97. http://dx.doi.org/10.24143/2073-1574-2021-4-91-97.

Full text
Abstract:
The article considers application of fiber optic devices in many devices due to their small size and high accuracy. The new fiber optic devices are equipped with a Slab Coupled Fiber (SCF) system. The SCF method uses resonant coupling between an optical fiber and a plate waveguide to create an intra-fiber device. Devices manufactured with this technology consist of polarizers, filters and sensors. Fiber optic systems have been used in torque measurement systems in the oil and gas industry and in aerospace industry. Using this system on ships is more expensive in comparison with the technologies based on strain gauges. There is offered using inexpensive optical measuring system with plate optical sensors. SCF devices use D-shaped fiber as a platform. Plate optical sensor (SCOS) devices are based on the use of an electro-optical sensor. Today, a D-fiber coupled magnetic field sensor has been developed. The device combines a magneto-optical plate waveguide with a D-fiber to measure magnetic fields. The plate coupled magneto-optical sensor (MO-SCOS) measures magnetic fields up to 2 A/m. Due to its short length the sensor can display fields with a spatial resolution of 1 mm.
APA, Harvard, Vancouver, ISO, and other styles
24

Fischer, Jakob, Timo Schuster, Christian Wächter, Michael Luber, Juri Vinogradov, Olaf Ziemann, and Rainer Engelbrecht. "Isolated sensor networks for high-voltage environments using a single polymer optical fiber and LEDs for remote powering as well as data transmission." Journal of Sensors and Sensor Systems 7, no. 1 (March 27, 2018): 193–206. http://dx.doi.org/10.5194/jsss-7-193-2018.

Full text
Abstract:
Abstract. Many applications in high voltage or explosive environments require sensors which are electrically isolated from other components of a system. These sensors need remote powering as well as wireless or isolated data transmission links. A possible solution can be based on optically powered optical sensor links. These typically employ four different photonic components: for the data communication a fast LED as a transmitter and a photo diode as a receiver, furthermore for sensor powering a high-power light source and a photonic power converter. Additionally, two optical fibers are required for optical remote powering and the optical data link. In this paper we demonstrate an optically powered optical sensor link using only low-cost high-brightness LEDs and a single polymer optical fiber (POF) for all of these tasks. Coupling efficiencies, power transmission and modulation bandwidths are analyzed for LEDs with different colors. Potentials for many mW of electrical remote powering and Mbit s−1 sensor data links are demonstrated over 10 m of POF. This approach can be used for almost any electronic sensor with moderate power requirements.
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, Woojin, Won-Je Lee, Sang-Bae Lee, and Rodrigo Salgado. "Measurement of pile load transfer using the Fiber Bragg Grating sensor system." Canadian Geotechnical Journal 41, no. 6 (December 1, 2004): 1222–32. http://dx.doi.org/10.1139/t04-059.

Full text
Abstract:
A series of laboratory and field tests were performed to evaluate the applicability of an optical fiber sensor system in the instrumentation of piles. A multiplexed sensor system, constructed by arranging several Fiber Bragg Grating (FBG) sensors along a single line of optical fiber, is capable of measuring local axial strains as a function of wavelength shifts. The distributions of axial load in three model piles and a field test pile evaluated from the strains measured by FBG sensors are found to be comparable, in terms of both magnitude and trend, with those obtained from conventional strain gauges. This suggests that the FBG sensor system is an effective tool for the analysis of the axial load transfer in piles. The successful instrumentation of a soil–cement injected precast (SIP) pile using FBG sensors suggests that the use of these sensors in drilled shafts and other types of cast in situ concrete piles is feasible. With the rapid advance of optical fiber sensor technology, the economics of the use of optical fiber sensors in this type of instrumentation is expected to improve significantly in coming years.Key words: pile foundation, load transfer, fiber optic sensor, Fiber Bragg Grating sensor.
APA, Harvard, Vancouver, ISO, and other styles
26

Weir, K. "Optical Fiber Sensor Technology." Journal of Modern Optics 42, no. 4 (April 1995): 938. http://dx.doi.org/10.1080/713824421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

HORIKAWA, Muneaki. "Optical Fiber Strain Sensor." Journal of the Society of Mechanical Engineers 107, no. 1030 (2004): 712–13. http://dx.doi.org/10.1299/jsmemag.107.1030_712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pisarchik, A. N., R. Jaimes-Reátegui, R. Sevilla-Escoboza, J. H. García-Lopez, and V. B. Kazantsev. "Optical fiber synaptic sensor." Optics and Lasers in Engineering 49, no. 6 (June 2011): 736–42. http://dx.doi.org/10.1016/j.optlaseng.2011.01.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

KIM, KYONG-WOO, WOO-SEONG CHE, and HYU-SANG KWON. "DESIGN AND FABRICATION OF A NOVEL NONCONTACT VIBRATION SENSOR USING INCLINED-CUT OPTICAL FIBER." Modern Physics Letters B 22, no. 11 (May 10, 2008): 1177–82. http://dx.doi.org/10.1142/s0217984908016030.

Full text
Abstract:
This optical fiber sensors are being widely used alternative to conventional sensors in various applications because of small size, relatively light weight, high sensitivity and wide bandwidth. Also it has immunity to electromagnetic interferences, because of their dielectric, glass, or plastic nature, they are usually small and light, and they allow remote electric signal opto-electronic conversion and processing. In various uses of optical fiber, intensity modulation type sensor due to misalignment has practical usefulness because it can be realized in ease with low cost and simple structure. To overcome low sensitivity problem in intensity modulation type optical fiber sensor, inclined-cut optical fiber is considered here. Based on optical geometry, the inclined-cut optical fiber sensor is designed and fabricated. The experiments are carried out to evaluate sensor performance. The optical fiber sensor developed in this paper has sufficient precisions and therefore it is available to measure the vibration without contact.
APA, Harvard, Vancouver, ISO, and other styles
30

Jiao, Tong, Chuhong Pu, Wenjing Xing, Tao Lv, Yuan Li, Huaping Wang, and Jianping He. "Characterization of Engineering-Suitable Optical Fiber Sensors Packaged with Glass Fiber-Reinforced Polymers." Symmetry 14, no. 5 (May 10, 2022): 973. http://dx.doi.org/10.3390/sym14050973.

Full text
Abstract:
Glass fiber-reinforced polymer- (GFRP-) packaged optical fiber (OF) sensors are considered a promising engineering-suitable sensor for structural health monitoring. To date, some critical characteristics of the GFRP-packaged OF (GFRP-OF) sensors have not yet been thoroughly studied. This study aimed to systematically characterize the properties of the GFRP-OF sensors. Firstly, we proposed a dimension optimization method for GFRP-OF sensors by strain transfer theory, which is based on a symmetrical three-layered cylindrical model. Then, we experimentally investigated the properties of the GFRP-packaged fiber Bragg grating sensor and GFRP-packaged distributed optical fiber sensor, including their mechanical properties, strain/temperature sensing performance, fatigue resistance, and corrosion resistance. The experimental results showed that the shear bearing capacity of GFRP-OF sensors was more than 120 times larger than that of the other three coated OF sensors, indicating that GFRP dramatically enhanced the robustness of the OF sensor. The GFRP–OF sensors also feature excellent strain and temperature sensing performance with high linearity and repeatability. The results also demonstrated that the GFRP–OF sensors have good fatigue properties with absolute fluctuations of strain sensitivity coefficients throughout the fatigue cycles within 0.02 pm/με; repeatability error did not exceed 0.5%, and nonlinear errors were less than 2%. A case study presented in the last section also illustrates the effectiveness of the GFRP-OF sensor in a field application.
APA, Harvard, Vancouver, ISO, and other styles
31

Park, Chan Hee, Arim Lee, Rinah Kim, and Joo Hyun Moon. "Evaluation of the Detection Efficiency of LYSO Scintillator in the Fiber-Optic Radiation Sensor." Science and Technology of Nuclear Installations 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/248403.

Full text
Abstract:
The aim of this study was to develop and evaluate fiber-optic sensors for the remote detection of gamma rays in areas that are difficult to access, such as a spent fuel pool. The fiber-optic sensor consists of a light-generating probe, such as scintillators for radiation detection, plastic optical fibers, and light-measuring devices, such as PMT. The (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator was chosen as the light-generating probe. The (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator has higher scintillation efficiency than the others and transmits light well through an optical fiber because its refraction index is similar to the refractive index of the optical fiber. The fiber-optic radiation sensor using the (Lu,Y)2SiO5:Ce(LYSO:Ce) scintillator was evaluated in terms of the detection efficiency and reproducibility for examining its applicability as a radiation sensor.
APA, Harvard, Vancouver, ISO, and other styles
32

Dakić, Bojan M., Jovan S. Bajić, Dragan Z. Stupar, Miloš P. Slankamenac, and Miloš B. Živanov. "A Novel Fiber-Optic Mass Flow Sensor." Key Engineering Materials 543 (March 2013): 231–34. http://dx.doi.org/10.4028/www.scientific.net/kem.543.231.

Full text
Abstract:
In this paper a novel fiber-optic mass flow sensor based on coriolis force is presented. As sensing elements two fiber-optic curvature sensors mounted on elastic rubber tube are used. Rubber tube with sensing elements is excited by stepper motor. Produced system has the option of varying angle and speed of excitation. The bending of the fibers at the sensitive zone on curvature sensor changes the intensity of light traveling through the optical fiber. Curvature sensors are attached to the rubber tube so that they can measure phase difference produced by coriolis force. Mass flow rate is obtained by digital signal processing technique for phase difference detection.
APA, Harvard, Vancouver, ISO, and other styles
33

Hidayat, N., M. S. Aziz, G. Krishnan, A. R. Johari, H. Nur, A. Taufiq, N. Mufti, R. R. Mukti, and H. Bakhtiar. "Tapered optical fibers using CO2 laser and their sensing performances." Journal of Physics: Conference Series 2432, no. 1 (February 1, 2023): 012013. http://dx.doi.org/10.1088/1742-6596/2432/1/012013.

Full text
Abstract:
Abstract In this paper, we proposed a simple tapering process of optical fibers using controlled CO2 laser. This is a response to the call for the rapid development of affordable, efficient, and reliable optical sensors. A laser with power of 36 W was focused on a small section of three optical fibers having core/cladding diameters in micrometer of 10/125 (sensor A), 62.5/125 (sensor B), and 200/225 (sensor C). The sensors were tested on solutions having refractive indices of 1.3325 to 1.4266. Our investigation revealed that sensor C offered highest sensitivity. Therefore, further characterizations on its sensing characteristics were conducted. Over 6 times repetitive measurement, sensor C showed excellent repeatability with average sensitivity and detection limit of 4.5941(78) a.u./RIU and 3.97 × 10−4 RIU, respectively. The tapered large core fiber also had good reversibility. Furthermore, the stability test by applying sensor C to solutions with low, medium, and high refractive indices also showed that the sensor was relatively stable. Within 60 minutes measurement, we noticed increasing trends of normalized intensities. However, the intensity increment percentages were relatively small, i.e., 0.27%, 1.17%, and 1.75% respectively for refractive indices of 1.3325, 1.3921, and 1.4266. Thus, excellent tapered optical fiber sensor could be produced using CO2 laser.
APA, Harvard, Vancouver, ISO, and other styles
34

Guo, Shi Sheng, Ying Ying Wang, Chang Wang, and Xiao Hui Liu. "Application of Optical Fiber Sensor System in Offshore Oil Field." Applied Mechanics and Materials 416-417 (September 2013): 971–74. http://dx.doi.org/10.4028/www.scientific.net/amm.416-417.971.

Full text
Abstract:
Optical fiber sensors have been used widely in offshore oilfield. An optical fiber sensor system including an optical fiber sensor testing temperature and pressure under well, a connector connecting the optical fiber sensor with the optical cable, two connectors connecting cables, 3600 meters armoured optical cable and an interrogator was applied in an offshore oil well on Zhoushan island. The temperature and pressure under well have been measured for about two month and the testing results are presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
35

Her, Shiuh Chuan, Bo Ren Yao, Shien Chin Lan, and Chun Yen Liu. "Stress Analysis of a Resin Pocket Embedded in Laminated Composites for an Optical Fiber Sensor." Key Engineering Materials 419-420 (October 2009): 293–96. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.293.

Full text
Abstract:
Optical fiber sensors have a number of advantages over conventional electronic sensors such as light weight, small diameter and immunity to electromagnetic interference. Despite all the advantages of optical sensors, one must recognize that optical fibers are foreign entities to the host structure, therefore will induce stress concentration in the vicinity of the embedded sensor. As an optical sensor is embedded between plies, a lenticular resin pocket exists in the composite plies. The resin pocket acts as a crack-like region, and can form the site of the initiation of the delamination under mechanical loads. In this investigation, the geometry of the lenticular resin pocket around the optical sensor is derived basing on the principal of minimum potential energy. It shows that the geometry of the resin pocket is dependent on the stiffness of the plies, the stacking sequence, the diameter of the optical fiber and the curing pressure. The stress distributions in the resin pocket and in the laminated composites are obtained by using the finite element method. The numerical results demonstrate that the stress increases rapidly in the vicinity of the optical fiber sensor, causing a high stress concentration factor. The high stress field may produce delamination and fracture in the composite.
APA, Harvard, Vancouver, ISO, and other styles
36

Dragic, Peter, and John Ballato. "A Brief Review of Specialty Optical Fibers for Brillouin-Scattering-Based Distributed Sensors." Applied Sciences 8, no. 10 (October 20, 2018): 1996. http://dx.doi.org/10.3390/app8101996.

Full text
Abstract:
Specialty optical fibers employed in Brillouin-based distributed sensors are briefly reviewed. The optical and acoustic waveguide properties of silicate glass optical fiber first are examined with the goal of constructing a designer Brillouin gain spectrum. Next, materials and their effects on the relevant Brillouin scattering properties are discussed. Finally, optical fiber configurations are reviewed, with attention paid to fibers for discriminative or other enhanced sensing configurations. The goal of this brief review is to reinforce the importance of fiber design to distributed sensor systems, generally, and to inspire new thinking in the use of fibers for this sensing application.
APA, Harvard, Vancouver, ISO, and other styles
37

Ali B, Sura, and Soudad S. Al – Bassam. "Tapered coated coreless optical fiber pollution sensor." Journal of Physics: Conference Series 2114, no. 1 (December 1, 2021): 012054. http://dx.doi.org/10.1088/1742-6596/2114/1/012054.

Full text
Abstract:
Abstract This project is centered on the design and implementation of a pollution-sensitive optical fiber using a No core optical fiber. The sensors are used for estimating refractive indices and concentrations of various contaminated water (dirty pond water (contains mud and animal excrement), chemically contaminated water, oiled water, drainage water is an environmental pollutant, Sodium chloride water and sucrose water) and distilled water (The refractive index was measured in the laboratory with an Abbe refractometer device) as well as for evaluating the performance parameters such as sensitivity (11.11μm/RIU for tapered sensor 10min and 11.13μm/RIU for tapered sensor 20min) and resolution (0.000069 RIU for tapered No core 10min and 0.000079 RIU for 20min tapered) of sensor (multimode fiber-no core fiber-multimode fiber), with 40 nm thick gold (Au) metal film of the exposed sensing region).
APA, Harvard, Vancouver, ISO, and other styles
38

Yoon, Sangyoung, Meadeum Yu, Eunho Kim, and Jaesang Yu. "Strain Transfer Function of Distributed Optical Fiber Sensors and Back-Calculation of the Base Strain Field." Sensors 21, no. 10 (May 12, 2021): 3365. http://dx.doi.org/10.3390/s21103365.

Full text
Abstract:
Distributed optical fiber sensors are a promising technology for monitoring the structural health of large-scale structures. The fiber sensors are usually coated with nonfragile materials to protect the sensor and are bonded onto the structure using adhesive materials. However, local deformation of the relatively soft coating and adhesive layers hinders strain transfer from the base structure to the optical fiber sensor, which reduces and distorts its strain distribution. In this study, we analytically derive a strain transfer function in terms of strain periods, which enables us to understand how the strain reduces and is distorted in the optical fiber depending on the variation of the strain field. We also propose a method for back-calculating the base structure’s strain field using the reduced and distorted strain distribution in the optical fiber sensor. We numerically demonstrate the back-calculation of the base strain using a composite beam model with an open hole and an attached distributed optical fiber sensor. The new strain transfer function and the proposed back-calculation method can enhance the strain field estimation accuracy in using a distributed optical fiber sensor. This enables us to use a highly durable distributed optical fiber sensor with thick protective layers in precision measurement.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Cheng Rui, Lin Ye, Jun Feng Ge, and Yi Cheng. "A Side-Coupled Optical-Fiber Liquid Level Sensor." Applied Mechanics and Materials 128-129 (October 2011): 487–90. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.487.

Full text
Abstract:
A side-coupled optical-fiber liquid level sensor is proposed to realize intrinsically safe measurement to liquid level in flammable environments. The sensor consists of two parallel side-polished fibers is based on the different coupling coefficient between the fibers in different media according to the Fresnel equation. One of the fibers is for emitting and the other is for receiving, and a reflector is attached to the end of the fibers to enhance the power of light. The power of the light from the top of receiving fiber is measured by the signal processing circuit which is mainly organized by an instrumentation amplifier and a correlator. This sensor is fabricated in the laboratory and the results of the experiments show good performance. It is demonstrated that the sensor is safe and sensitive, but there is still a lot of work to do before its commercial usage.
APA, Harvard, Vancouver, ISO, and other styles
40

Senkans, Ugis, Janis Braunfelds, Ilya Lyashuk, Jurgis Porins, Sandis Spolitis, and Vjaceslavs Bobrovs. "Research on FBG-Based Sensor Networks and Their Coexistence with Fiber Optical Transmission Systems." Journal of Sensors 2019 (November 6, 2019): 1–13. http://dx.doi.org/10.1155/2019/6459387.

Full text
Abstract:
Market forecasts and trends for the usage of fiber optical sensors confirm that demand for them will continue to increase in the near future. This article focuses on the research of fiber Bragg grating (FBG) sensor network, their applications in IoT and structural health monitoring (SHM), and especially their coexistence with existing fiber optical communication system infrastructure. Firstly, the spectrum of available commercial optical FBG temperature sensor was experimentally measured and amplitude-frequency response data was acquired to further develop the simulation model in the environment of RSoft OptSim software. The simulation model included optical sensor network, which is combined with 8-channel intensity-modulated wavelength division multiplexed (WDM) fiber optical data transmission system, where one shared 20 km long ITU-TG.652 single-mode optical fiber was used for transmission of both sensor and data signals. Secondly, research on a minimal allowable channel spacing between sensors’ channels was investigated by using MathWorks MATLAB software, and a new effective and more precise determination algorithm of the exact center of the sensor signal’s peak was proposed. Finally, we experimentally show successfully operating coexistence concept of the spectrum-sliced fiber optical transmission system with embedded scalable FBG sensor network over one shared optical fiber, where the whole system is feed by only one broadband light source.
APA, Harvard, Vancouver, ISO, and other styles
41

Cao, Rongtao, Jingyu Wu, Yang Yang, Mohan Wang, Yuqi Li, and Kevin P. Chen. "A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber." Photonics 10, no. 3 (March 8, 2023): 284. http://dx.doi.org/10.3390/photonics10030284.

Full text
Abstract:
This paper presents a multiplexable fiber optic chemical sensor with the capability of monitoring hydrogen gas concentration at high temperatures up to 750 °C. The Pd-nanoparticle infused TiO2 films coated on intrinsic Fabry–Perot interferometer (IFPI) array were used as sensory films. Strains induced upon exposure to hydrogen with varied concentrations can be monitored by IFPI sensors. The fiber sensor shows a repetitive and reversible response when exposed to a low level (1–6%) of hydrogen gas. Uniform sensory behavior across all the sensing cavities is demonstrated and reported in this paper.
APA, Harvard, Vancouver, ISO, and other styles
42

Murayama, Hideaki, Kazuro Kageyama, Isamu Ohsawa, Makoto Kanai, Kiyhoshi Uzawa, and Tsuyoshi Matsuo. "Development of Smart Composite Panel with Optical Fiber Sensors." Key Engineering Materials 297-300 (November 2005): 659–64. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.659.

Full text
Abstract:
We have developed a novel fiber-optic vibration sensors and applied commercially available strain and temperature sensors to health monitoring of composite structures. In this study, we constructed an optical fiber network integrating four types of optical fiber sensor into a carbon reinforced plastic (CFRP) panel. These four sensors were the vibration sensor developed by our laboratory, two distributed sensors based on Brillouin and Raman backscattering and Fiber Bragg Grating (FBG) sensors. By dealing the data obtained from the measurement systems corresponding to these four sensors, strain/stress and temperature distributions throughout the panel can be monitored. Vibration and elastic waves transmitting on the panel are also detected at several sensing points. Furthermore, we will be able to determine damage locations and modes by processing the wave signals. To make the panel with the optical fiber sensor network more sensitive and smarter, we are developing some techniques that can improve the performance of the sensors and can assess the structural integrity by analyzing measurement results. In this paper, the development of the first generation of our smart composite panel with the optical fiber sensors is described and the techniques making the panel more sensitive and smarter are also described.
APA, Harvard, Vancouver, ISO, and other styles
43

Cai, Shunshuo, Wanhan Hu, Yiman Liu, Juan Ning, Sixuan Feng, Chao Jin, Lingling Huang, and Xin Li. "Optical fiber hydrogen sensor using metasurfaces composed of palladium." Chinese Optics Letters 20, no. 5 (2022): 053601. http://dx.doi.org/10.3788/col202220.053601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shupeng Liu, Shupeng Liu, Yuxue Bai Yuxue Bai, Zhenyi Chen Zhenyi Chen, Na Chen Na Chen, Jing Huang Jing Huang, Lianxin Li Lianxin Li, and Bo Lu Bo Lu. "SERS measurement of cancerous cells with optical fiber sensor." Chinese Optics Letters 12, s2 (2014): S23002–323004. http://dx.doi.org/10.3788/col201412.s23002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hardiantho, Willy, Bidayatul Arminah, and Arifin Arifin. "Detection of Mercury Ions in Water using a Plastic Optical Fiber Sensor." Indonesian Physical Review 4, no. 2 (June 6, 2021): 95. http://dx.doi.org/10.29303/ipr.v4i2.82.

Full text
Abstract:
Research has been carried out on the detection of mercury ions in water using plastic optical fibers. Detection of mercury ions is done by immersing the optical fiber sensor in the HgCl2 solution, where both ends of the sensor are connected to an LED and a phototransistor. LED as a light source will emit light along with the optical fiber which will be received by the phototransistor. The optical light received by the phototransistor is converted into an electric voltage and given a gain in the differential amplifier. The output voltage in the form of an analog signal is converted into a digital signal on the Arduino UNO so that it can be read on a computer. The optical fiber as a sensor is made in two configurations, namely U configuration and spiral spring configuration. The jacket and the fiber optic cladding are peeled off and then covered with chitosan. Each configuration will be given a variation of the curve to analyze the characteristics of the sensor. The curvature can cause a large power loss resulting in attenuation of the light intensity of the LED received by the phototransistor. Apart from the effect of indentation on optical fibers, the output voltage measurement results are also influenced by the level of HgCl2 concentration. The best measurement results for mercury ion sensors in water using plastic optical fibers are obtained in a spiral spring configuration with a chitosan cladding with a variation of 6 coils which has a sensitivity of 104.065 mV/ppm.
APA, Harvard, Vancouver, ISO, and other styles
46

Her, Shiuh Chuan, and Chang Yu Tsai. "Strain Analysis of Surface Bonded Optical Fiber Sensors." Applied Mechanics and Materials 121-126 (October 2011): 4166–70. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.4166.

Full text
Abstract:
Optical fiber sensors with light weight, small size and immunity to electromagnetic interference have been found to be a promising device for use in the development of smart structures. It is well known that the strain transfer from the host structure to the optical fiber sensor is dependent on the bonding characteristics such as adhesive layer and bonded length. In this investigation, the optical fiber sensor is surface bonded on the host structure. A theoretical model consisting of the optical fiber, adhesive layer and host material, is proposed to determine the strain in the optical fiber sensor induced by the host structure. The theoretical predictions were validated with the numerical analysis using the finite element method.
APA, Harvard, Vancouver, ISO, and other styles
47

Luo, Ying-Jie, Shao-Yi Wu, Qin-Sheng Zhu, Xiao-Yu Li, Yong-Xin Li, and De-Shuang Zhao. "Theoretical research of the medical U-type optical fiber sensor covered by the gold nanoparticles." Zeitschrift für Naturforschung A 76, no. 5 (March 3, 2021): 385–93. http://dx.doi.org/10.1515/zna-2020-0218.

Full text
Abstract:
Abstract Previous studies of the gold-nanoparticles-covered U-type medical optical fiber sensor with millimeter size were mainly confined to the experimental aspect, while the corresponding theoretical studies were only for bare fibers based on geometrical optics or those for micron level photonic crystal fibers based on wave optics. Combining wave and geometrical optics, the gold-nanoparticles-covered U-type optical fiber sensor was simulated with millimeter size. The localized surface plasmon resonance absorption peak near 540 nm is obtained in the simulation, very close to that (≈560 nm) of the experimental value for the gold nanoparticles of 37 nm size. Compared with the refractive index (RI) sensitivity (≈7.10/RIU) for the plain, U-type optical fiber (≈43.50/RIU) exhibits more than 610% enhancement in the gold-nanoparticles-covered sample. Present studies would be helpful to the further simulation and design for various noble metal nanoparticles covered optical fiber sensors with different shapes.
APA, Harvard, Vancouver, ISO, and other styles
48

Hou, Y., and Y. Jung. "Spatially and spectrally resolved multicore optical fiber sensor with polarization sensitivity." AIP Advances 12, no. 6 (June 1, 2022): 065023. http://dx.doi.org/10.1063/5.0095297.

Full text
Abstract:
We design and fabricate a multicore fiber sensor with the end facets of cores patterned with one-dimensional sub-wavelength Au wire grid polarizers, which are aligned either radially or azimuthally on the cross section of the fiber. With a fan-out device bridging the individual cores and external single core fibers followed by a compact spectrometer, it is able to spatially detect the light intensity, spectrum, and polarization states of the incident light in a highly integrated format. These multicore fiber sensors offer a new opportunity to simultaneously measure multiple optical parameters by a single operation.
APA, Harvard, Vancouver, ISO, and other styles
49

Yu, Hui, Daifu Zheng, Yun Liu, Shimeng Chen, Xiaona Wang, and Wei Peng. "Data Glove with Self-Compensation Mechanism Based on High-Sensitive Elastic Fiber-Optic Sensor." Polymers 15, no. 1 (December 26, 2022): 100. http://dx.doi.org/10.3390/polym15010100.

Full text
Abstract:
With the development of virtual reality (VR) interaction technology, data glove has become one of the most popular devices for human-computer interaction. It’s valuable to design high-sensitive and flexible sensor for data glove. Therefore, a low-cost data glove based on self-compensating elastic optical fiber sensor with self-calibration function is proposed. The tunable and stretchable elastic fiber was fabricated by a simple, economical and controllable method. The fiber has good flexibility and high stability under stretching, bending and indentation deformation. The optical fibers are installed in the sensor in a U shape with a bending radius of 5 mm. Compared with the straight fiber, the response sensitivity of the U-shaped fiber to deformation is increased by about 7 times at most. The reference optical fiber is connected to the sensor, which effectively improves the stability and accuracy of the sensor system. In addition, the sensors are easy to install so that the data gloves can be customized for different hand shapes. In the gesture capture test, it can respond quickly and guide the manipulator to track the gesture. This responsive and stable data glove has broad development potential in motion monitoring, telemedicine and human-computer interaction.
APA, Harvard, Vancouver, ISO, and other styles
50

Cui, Lu Jun, Hui Chao Shang, Gang Zhang, and You Ping Chen. "Optical Path Analysis of the Optical Fiber Bundle Hydrogen Sensor." Applied Mechanics and Materials 130-134 (October 2011): 4102–5. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.4102.

Full text
Abstract:
The present work investigates reflectivity and optimal reflective distance of optical fiber hydrogen sensor in over 0~4000um range. The approximate equality of reflective distance in two optical paths increases signal to noise ratio for optical hydrogen sensor, the fabrication of optical path could eliminate the internal noise and external interferences, and provides higher stability for hydrogen sensor. Through a series of simulation experiments it was found that different reflective distances determine the sensitivity and amplitude response of hydrogen sensor. When the reflective distance was about 1mm in optical path, the sensitivity of optical hydrogen sensor could reach the peak value.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography