To see the other types of publications on this topic, follow the link: Optical interconnects.

Journal articles on the topic 'Optical interconnects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical interconnects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ro, Yuhwan, Eojin Lee, and Jung Ahn. "Evaluating the Impact of Optical Interconnects on a Multi-Chip Machine-Learning Architecture." Electronics 7, no. 8 (2018): 130. http://dx.doi.org/10.3390/electronics7080130.

Full text
Abstract:
Following trends that emphasize neural networks for machine learning, many studies regarding computing systems have focused on accelerating deep neural networks. These studies often propose utilizing the accelerator specialized in a neural network and the cluster architecture composed of interconnected accelerator chips. We observed that inter-accelerator communication within a cluster has a significant impact on the training time of the neural network. In this paper, we show the advantages of optical interconnects for multi-chip machine-learning architecture by demonstrating performance impro
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Ray T., and Chulchae Choi. "Optical Interconnects." Synthesis Lectures on Solid State Materials and Devices 2, no. 1 (2007): 1–104. http://dx.doi.org/10.2200/s00029ed1v01y200605ssm002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hinton, H. Scott, and John E. Midwinter. "Optical interconnects." Optical and Quantum Electronics 24, no. 4 (1992): iii. http://dx.doi.org/10.1007/bf00619507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mokhtari, Mohammad Reza, Hamed Baghban, and Hadi Soofi. "Multilayer optical interconnects design: switching components and insertion loss reduction approach." Journal of Electrical Engineering 69, no. 3 (2018): 226–32. http://dx.doi.org/10.2478/jee-2018-0030.

Full text
Abstract:
Abstract The next generation of chip multi-processors point to the integration of thousands of processing cores, demanding high- performance interconnects, and growing the interest in optically interconnected networks. In this article we report on an interlayer silicon-based switch design that switches two channels simultaneously from an input waveguide into one of the two output ports. The introduced interlayer switch allows to design interconnects with previously unattainable functionality, higher performance and robustness, and smaller footprints with low insertion loss (< 1 dB), and hig
APA, Harvard, Vancouver, ISO, and other styles
5

Edwards, C. "Optical inclusions [optical interconnects]." Engineering & Technology 6, no. 10 (2011): 81–85. http://dx.doi.org/10.1049/et.2011.1013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hesselink, L. "Dynamic optical interconnects." Optics News 15, no. 12 (1989): 44. http://dx.doi.org/10.1364/on.15.12.000044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Everard, J. K. A., M. Page-Jones, K. Powell, and T. Hall. "Selfrouting optical interconnects." Electronics Letters 28, no. 6 (1992): 556. http://dx.doi.org/10.1049/el:19920351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mekawey, Hosam, Mohamed Elsayed, Yehea Ismail, and Mohamed A. Swillam. "Optical Interconnects Finally Seeing the Light in Silicon Photonics: Past the Hype." Nanomaterials 12, no. 3 (2022): 485. http://dx.doi.org/10.3390/nano12030485.

Full text
Abstract:
Electrical interconnects are becoming a bottleneck in the way towards meeting future performance requirements of integrated circuits. Moore’s law, which observes the doubling of the number of transistors in integrated circuits every couple of years, can no longer be maintained due to reaching a physical barrier for scaling down the transistor’s size lower than 5 nm. Heading towards multi-core and many-core chips, to mitigate such a barrier and maintain Moore’s law in the future, is the solution being pursued today. However, such distributed nature requires a large interconnect network that is
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Zhiping, Xuezhe Zheng, and B. Roe Hemenway. "Guest Editorial Optical Interconnects." Journal of Lightwave Technology 33, no. 4 (2015): 725–26. http://dx.doi.org/10.1109/jlt.2015.2394291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palermo, Samuel, Qinfen Hao, Wei Jiang, and S. J. Ben Yoo. "Guest Editorial Optical Interconnects." Journal of Lightwave Technology 34, no. 12 (2016): 2883–85. http://dx.doi.org/10.1109/jlt.2016.2552858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Weiss, Shimon, Mordechai Segev, Shmuel Sternklar, and Baruch Fischer. "Photorefractive dynamic optical interconnects." Applied Optics 27, no. 16 (1988): 3422. http://dx.doi.org/10.1364/ao.27.003422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brenner, Karl-Heinz, and Frank Sauer. "Diffractive–reflective optical interconnects." Applied Optics 27, no. 20 (1988): 4251. http://dx.doi.org/10.1364/ao.27.004251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Levi, A. F. J. "Optical interconnects in systems." Proceedings of the IEEE 88, no. 6 (2000): 750–57. http://dx.doi.org/10.1109/5.867688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Miller, D. A. B. "Optical interconnects to silicon." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (2000): 1312–17. http://dx.doi.org/10.1109/2944.902184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kuchta, Daniel M., Yoichi Taira, Christian Baks, Gerard McVicker, Laurent Schares, and Hidetoshi Numata. "Optical Interconnects for Servers." Japanese Journal of Applied Physics 47, no. 8 (2008): 6642–45. http://dx.doi.org/10.1143/jjap.47.6642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Laval, Suzanne. "Optical interconnects: the challenge." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 1, no. 7 (2000): 941–49. http://dx.doi.org/10.1016/s1296-2147(00)01084-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ghosh, Anjan K. "Alignability of optical interconnects." Applied Optics 29, no. 35 (1990): 5253. http://dx.doi.org/10.1364/ao.29.005253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yatagai, T., S. Kawai, and H. Huang. "Optical computing and interconnects." Proceedings of the IEEE 84, no. 6 (1996): 828–52. http://dx.doi.org/10.1109/5.503141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fitzgerald, E. A., and L. C. Kimerling. "Silicon-Based Microphotonics and Integrated Optoelectronics." MRS Bulletin 23, no. 4 (1998): 39–47. http://dx.doi.org/10.1557/s0883769400030256.

Full text
Abstract:
The need for integrated optical interconnects in electronic systems is derivedfrom the cost and performance of electronic systems. If we examine the cost of all interconnects, it becomes apparent that there is an exponential growth in cost per interconnect with the length of the interconnect. A remarkable feature of interconnect cost is that the exponential relation holds over all length scales—from the shortest interconnects on a chip to the longest interconnects in global telecommunications networks. Longer interconnects are drastically more expensive, and these costs are ultimately related
APA, Harvard, Vancouver, ISO, and other styles
20

Anderson, Sean P., Ashutosh R. Shroff, and Philippe M. Fauchet. "Slow Light with Photonic Crystals for On-Chip Optical Interconnects." Advances in Optical Technologies 2008 (July 22, 2008): 1–12. http://dx.doi.org/10.1155/2008/293531.

Full text
Abstract:
Transistor scaling alone can no longer be relied upon to yield the exponential speed increases we have come to expect from the microprocessor industry. The principle reason for this is the interconnect bottleneck, where the electrical connections between and within microprocessors are becoming, and in some cases have already become, the limiting factor in overall microprocessor performance. Optical interconnects have the potential to address this shortcoming directly, by providing an inter- and intrachip communication infrastructure that has both greater bandwidth and lower latency than electr
APA, Harvard, Vancouver, ISO, and other styles
21

Neyer, A., B. Wittmann, and M. Johnck. "Plastic-optical-fiber-based parallel optical interconnects." IEEE Journal of Selected Topics in Quantum Electronics 5, no. 2 (1999): 193–200. http://dx.doi.org/10.1109/2944.778282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fernandes, Marco A., Paulo P. Monteiro, and Fernando P. Guiomar. "Free-Space Terabit Optical Interconnects." Journal of Lightwave Technology 40, no. 5 (2022): 1519–26. http://dx.doi.org/10.1109/jlt.2021.3133070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Sing H., and Y. C. Lee. "Optoelectronic Packaging for Optical Interconnects." Optics and Photonics News 17, no. 1 (2006): 40. http://dx.doi.org/10.1364/opn.17.1.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bergman, Keren, John Shalf, and Tom Hausken. "Optical Interconnects and Extreme Computing." Optics and Photonics News 27, no. 4 (2016): 32. http://dx.doi.org/10.1364/opn.27.4.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sweatman, Denis, Olly Powell, and Shinoj Francis. "Integrated waveguides for optical interconnects." Circuit World 32, no. 2 (2006): 3–7. http://dx.doi.org/10.1108/03056120610700720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Miller, David A. B. "Optical interconnects to electronic chips." Applied Optics 49, no. 25 (2010): F59. http://dx.doi.org/10.1364/ao.49.000f59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bergman, L. A. "Holographic Optical Interconnects For VLSI." Optical Engineering 25, no. 10 (1986): 251109. http://dx.doi.org/10.1117/12.7973965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tsai, Cheng-hua, and Jui-che Tsai. "MEMS optical switches and interconnects." Displays 37 (April 2015): 33–40. http://dx.doi.org/10.1016/j.displa.2014.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Altman, Erik R. "Optical Interconnects and Their Implications." IEEE Micro 33, no. 1 (2013): 2. http://dx.doi.org/10.1109/mm.2013.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Crow, J. D. "Optical interconnects speed interprocessor nets." IEEE Circuits and Devices Magazine 7, no. 2 (1991): 20–25. http://dx.doi.org/10.1109/101.75924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Roudas, Ioannis, B. Roe Hemenway, Richard R. Grzybowski, and Fotini Karinou. "Optimal wavelength-space crossbar switches for supercomputer optical interconnects." Optics Express 20, no. 18 (2012): 20407. http://dx.doi.org/10.1364/oe.20.020407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Feng, Ning-Ning, and Xiaochen Sun. "Parallel Optical Interconnects Submodule Using Silicon Optical Bench." Journal of Lightwave Technology 33, no. 4 (2015): 811–13. http://dx.doi.org/10.1109/jlt.2014.2361724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Huang, Y. T. "Optimised integrated CMOS optical receiver for optical interconnects." IEE Proceedings J Optoelectronics 140, no. 2 (1993): 107. http://dx.doi.org/10.1049/ip-j.1993.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lu, Y. C., J. Cheng, J. Klem, and J. C. Zolper. "Integrated optical/optoelectronic switch for parallel optical interconnects." Electronics Letters 31, no. 7 (1995): 579–81. http://dx.doi.org/10.1049/el:19950355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Jeong-Ho. "Novel optical thyristors for free-space optical interconnects." Optical Engineering 38, no. 3 (1999): 531. http://dx.doi.org/10.1117/1.602283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jöhnck, M., and A. Neyer. "2D optical array interconnects using plastic optical fibres." Electronics Letters 33, no. 10 (1997): 888. http://dx.doi.org/10.1049/el:19970586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stucchi, Michele, Stefan Cosemans, Joris Van Campenhout, Zsolt Tőkei, and Gerald Beyer. "On-chip optical interconnects versus electrical interconnects for high-performance applications." Microelectronic Engineering 112 (December 2013): 84–91. http://dx.doi.org/10.1016/j.mee.2013.03.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kai Liu, Kai Liu, Huize Fan Huize Fan, Yongqing Huang Yongqing Huang, et al. "A pair of integrated optoelectronic transceiving chips for optical interconnects." Chinese Optics Letters 16, no. 9 (2018): 091301. http://dx.doi.org/10.3788/col201816.091301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kacker, Karan, and Suresh K. Sitaraman. "Reliability Assessment and Failure Analysis of G-Helix, a Free-Standing Compliant Off-Chip Interconnect." Journal of Microelectronics and Electronic Packaging 6, no. 1 (2009): 59–65. http://dx.doi.org/10.4071/1551-4897-6.1.59.

Full text
Abstract:
Continued miniaturization in the microelectronics industry calls for chip-to-substrate off-chip interconnects that have 100 μm pitch or less for area-array format. Such fine-pitch interconnects will have a shorter standoff height and a smaller cross-section area, and thus could fail through thermo-mechanical fatigue prematurely. Also, as the industry transitions to porous low-K dielectric/Cu interconnect structures, it is important to ensure that the stresses induced by the off-chip interconnects and the package configuration do not crack or delaminate the low-K dielectric material. Compliant
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Lin, Lianshan Yan, Anlin Yi, et al. "Integrated Components and Solutions for High-Speed Short-Reach Data Transmission." Photonics 8, no. 3 (2021): 77. http://dx.doi.org/10.3390/photonics8030077.

Full text
Abstract:
According to different transmission distances, application scenarios of a data center mainly include intra- and inter-data center optical interconnects. The intra-data center optical interconnect is considered as a few kilometers optical interconnect between servers and racks inside a data center, which accounts for nearly 80% of data traffic of a data center. The other one, inter-data center optical interconnect, is mainly applied in tens of kilometers data transmission among different data centers. Since data exchange in data centers generally occurs between many servers and racks, and a lot
APA, Harvard, Vancouver, ISO, and other styles
41

Taira, Yoichi. "Optical Interconnects for High-End Systems." Journal of Japan Institute of Electronics Packaging 20, no. 5 (2017): 302–7. http://dx.doi.org/10.5104/jiep.20.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Davidson, N., A. A. Friesem, and E. Hasman. "On the limits of optical interconnects." Applied Optics 31, no. 26 (1992): 5426. http://dx.doi.org/10.1364/ao.31.005426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Song, S. H., C. D. Carey, D. R. Selviah, E. H. Lee, and J. E. Midwinter. "Planar optical implementation of crossover interconnects." Optics Letters 17, no. 18 (1992): 1253. http://dx.doi.org/10.1364/ol.17.001253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kostuk, Raymond K., Joseph W. Goodman, and Lambertus Hesselink. "Design considerations for holographic optical interconnects." Applied Optics 26, no. 18 (1987): 3947. http://dx.doi.org/10.1364/ao.26.003947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Collet, J. H., F. Caignet, F. Sellaye, and D. Litaize. "Performance constraints for onchip optical interconnects." IEEE Journal of Selected Topics in Quantum Electronics 9, no. 2 (2003): 425–32. http://dx.doi.org/10.1109/jstqe.2003.812508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Heck, Martijn J. R., Hui-Wen Chen, Alexander W. Fang, et al. "Hybrid Silicon Photonics for Optical Interconnects." IEEE Journal of Selected Topics in Quantum Electronics 17, no. 2 (2011): 333–46. http://dx.doi.org/10.1109/jstqe.2010.2051798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Schwider, Johannes. "Achromatic design of holographic optical interconnects." Optical Engineering 35, no. 3 (1996): 826. http://dx.doi.org/10.1117/1.600636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Song, S. H., and E. H. Lee. "Planar optical configurations for crossover interconnects." Optics Letters 20, no. 6 (1995): 617. http://dx.doi.org/10.1364/ol.20.000617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Prucnal, Paul R. "Optical transmitter for fiber-optic interconnects." Optical Engineering 30, no. 5 (1991): 511. http://dx.doi.org/10.1117/12.55830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cheben, Pavel, Marı́a L. Calvo, Tomás Belenguer, and Armonı́a Núñez. "Substrate mode hologram for optical interconnects." Optics Communications 148, no. 1-3 (1998): 18–22. http://dx.doi.org/10.1016/s0030-4018(97)00622-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!