Academic literature on the topic 'Optical quantum memory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical quantum memory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optical quantum memory"

1

Lvovsky, Alexander I., Barry C. Sanders, and Wolfgang Tittel. "Optical quantum memory." Nature Photonics 3, no. 12 (December 2009): 706–14. http://dx.doi.org/10.1038/nphoton.2009.231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DALL'ARNO, MICHELE, ALESSANDRO BISIO, and GIACOMO MAURO D'ARIANO. "IDEAL QUANTUM READING OF OPTICAL MEMORIES." International Journal of Quantum Information 10, no. 08 (December 2012): 1241010. http://dx.doi.org/10.1142/s0219749912410109.

Full text
Abstract:
Quantum reading is the art of exploiting the quantum properties of light to retrieve classical information stored in an optical memory with low energy and high accuracy. Focusing on the ideal scenario where noise and loss are negligible, we review previous works on the optimal strategies for minimal-error retrieving of information (ambiguous quantum reading) and perfect but probabilistic retrieving of information (unambiguous quantum reading). The optimal strategies largely overcome the optimal coherent protocols (reminiscent of common CD readers), further allowing for perfect discrimination. Experimental proposals for optical implementations of optimal quantum reading are provided.
APA, Harvard, Vancouver, ISO, and other styles
3

Akat’ev, D. O., and A. A. Kalachev. "Optical parametric oscillator with quantum memory for quantum repeaters." Laser Physics 33, no. 1 (December 8, 2022): 015202. http://dx.doi.org/10.1088/1555-6611/aca6dc.

Full text
Abstract:
Abstract We consider preparing entangled states between single photons and quantum memory by combining two-photon source based on spontaneous parametric down-conversion and multiatomic quantum memory in a common resonator. The scheme allows one to minimize the losses while the photon to be stored is propagating from the source to the quantum memory and avoids the need to synchronize their operating wavelength. In this respect, the scheme is analogous to the cavity-enhanced embedded memory within Duan-Lukin-Cirac-Zoller approach, but it remains possible to generate a second photon at the wavelength of the fiber optic communication channel and use various multiplexing methods inherent in multiatomic quantum memory.
APA, Harvard, Vancouver, ISO, and other styles
4

Xing, Xue-Yan, Xia-Xia Li, Yu-Hui Chen, and Xiang-Dong Zhang. "Optical Echo memory based on photonic crystal cavities." Acta Physica Sinica 71, no. 11 (2022): 1. http://dx.doi.org/10.7498/aps.70.20220083.

Full text
Abstract:
Analogous to Internet, connecting quantum computers together to build a full quantum network will boost the processing capability for quantum information. On-chip quantum memories can carry out essential functionalities in building a quantum network, including synchronizing of a large number of quantum computers and implementing long-distance quantum communication. However, mainly owning to the constraints imposed by the micro-photonic structures themselves, on-chip quantum memories are hinder by a trade-off between their performance and integration. We here propose using spatial-phase-mismatching effect in photonic crystal cavities to build an on-chip quantum memory. This scenario does not only utilize the large orbital angular momentum of photonic crystal cavities to realize photon-echo type memory, but also utilize the light-matter enhancement of a photonic cavity to achieve a high-efficiency quantum storage.
APA, Harvard, Vancouver, ISO, and other styles
5

Amiri, I. S., and J. Ali. "Femtosecond Optical Quantum Memory Generation Using Optical Bright Soliton." Journal of Computational and Theoretical Nanoscience 11, no. 6 (June 1, 2014): 1480–85. http://dx.doi.org/10.1166/jctn.2014.3521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adler, Thomas, Manuel Erhard, Mario Krenn, Johannes Brandstetter, Johannes Kofler, and Sepp Hochreiter. "Quantum Optical Experiments Modeled by Long Short-Term Memory." Photonics 8, no. 12 (November 26, 2021): 535. http://dx.doi.org/10.3390/photonics8120535.

Full text
Abstract:
We demonstrate how machine learning is able to model experiments in quantum physics. Quantum entanglement is a cornerstone for upcoming quantum technologies, such as quantum computation and quantum cryptography. Of particular interest are complex quantum states with more than two particles and a large number of entangled quantum levels. Given such a multiparticle high-dimensional quantum state, it is usually impossible to reconstruct an experimental setup that produces it. To search for interesting experiments, one thus has to randomly create millions of setups on a computer and calculate the respective output states. In this work, we show that machine learning models can provide significant improvement over random search. We demonstrate that a long short-term memory (LSTM) neural network can successfully learn to model quantum experiments by correctly predicting output state characteristics for given setups without the necessity of computing the states themselves. This approach not only allows for faster search, but is also an essential step towards the automated design of multiparticle high-dimensional quantum experiments using generative machine learning models.
APA, Harvard, Vancouver, ISO, and other styles
7

Bantysh, B. I., K. G. Katamadze, Yu I. Bogdanov, K. I. Gerasimov, M. M. Minnegaliev, R. V. Urmancheev, and S. A. Moiseev. "Tomography of Optical Single-Qubit Quantum Memory." JETP Letters 116, no. 1 (July 2022): 29–35. http://dx.doi.org/10.1134/s0021364022600951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kalachev, A. A., and V. V. Samartsev. "Quantum memory and quantum computations in the optical subradiance regime." Quantum Electronics 35, no. 8 (August 31, 2005): 679–82. http://dx.doi.org/10.1070/qe2005v035n08abeh010261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Zheng-Da, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang, Yue-Yang Fei, et al. "Experimental quantum repeater without quantum memory." Nature Photonics 13, no. 9 (June 24, 2019): 644–48. http://dx.doi.org/10.1038/s41566-019-0468-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Jin-Jin, and Ka-Di Zhu. "Quantum memory for light with a quantum dot system coupled to a nanomechanical resonator." Quantum Information and Computation 11, no. 5&6 (May 2011): 456–65. http://dx.doi.org/10.26421/qic11.5-6-7.

Full text
Abstract:
The specific features including high factor and long vibration lifetime of nanomechanical resonator (NR) in nano-optomechanical systems have stimulated research to realize some optical devices. In this work, we demonstrate theoretically that it is possible to achieve quantum memory for light on demand via a quantum dot system coupled to a nanomechanical resonator. This quantum memory for light is based on mechanically induced exciton polaritons, which makes the dark-state polariton reaccelerated and converted back into a photon pulse. Our presented device could open the door to all-optical routers for light memory devices and quantum information processing.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Optical quantum memory"

1

Reim, Klaus Franz. "Broadband optical quantum memory." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d0d73ed2-32c2-4de9-8b3d-fcf8b88b22b4.

Full text
Abstract:
This thesis is about the experimental implementation of a high-speed and robust quantum memory for light. A novel far off-resonant Raman approach to ensemble-based quantum memories in a room-temperature environment is developed and demonstrated. Storage and retrieval of sub-nanosecond, weak coherent light pulses at the single-photon-level with total efficiencies exceeding 30% and storage times of up to 4 μs are achieved. The coherence of the memory is shown by directly interfering a copy of the incident signal with the retrieved signal from the memory. The unconditional noise floor of the memory is found to be low enough to operate the memory in the quantum regime at room temperature. Multiple readout of a single stored excitation is demonstrated, suggesting that 100% readout is possible in different temporal modes. Furthermore, first results regarding the storage and retrieval of polarisation encoded qubits are obtained. This and the memory’s ability to operate in the quantum regime at room temperature with a low unconditional noise floor illustrate its potential usefulness for real world applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Woodhouse, Michael. "Quantum dot ensembles as an optical quantum memory." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/11843/.

Full text
Abstract:
In this Ph.D. Thesis we investigate the viability of using quantum dot ensembles as a quantum memory architecture through the use numerical simulations to study population transfer within quantum dots. This is followed by an investigation into the effects of high order wavemixing on the population transfer within two level systems, which was born from effects noted while simulating quantum dots. We study the initialisation of an ensemble of inhomogeneously broadened quantum dots, introducing a novel initialisation method utilising pump field with a slow frequency sweep. We focus on the properties of such an initialisation procedure and conclude that the maximum initialisation fidelities are determined entirely by the Zeeman splittings and decay rates of the quantum dots. We study several possibilities for performing π rotations on the population of an ensemble of quantum dots, and show the RCAP protocol is the most applicable. We study this protocol in the context of quantum dots and give the optimal parameters to use to generate high fidelity π pulses. We then bring together our work on quantum dots population transfer with the work of others covering the write and read procedures on quantum dots to provide a feasibility analysis of the complete quantum memory protocol. The work on wavemixing presented in this thesis uses a novel approach to analyse wavemixing effects which is used to predict the population transferred in two level simulations of wavemixing processes. We provide simulation confirmation of our approach to analyse wavemixing effects and then go on to calculate the disruptive effects of wavemixing caused by high intensity lasers on some simple systems. Finally we show that large orders of wavemixing can, at least in principle, be used for coherent population transfer.
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Rommel Rodrigues de. "Quantum memory based on electromagnetically induced transparency in optical cavities." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/5074.

Full text
Abstract:
Made available in DSpace on 2016-06-02T20:16:54Z (GMT). No. of bitstreams: 1 6697.pdf: 3858000 bytes, checksum: 03b4357c963bbde78aecb73ef0df8fa6 (MD5) Previous issue date: 2015-04-16
Universidade Federal de Sao Carlos
Recently a quantum memory for a coherent pulse was accomplished using an atom trapped inside a high finesse cavity, where an eficiency of 9:3% was achieved for a storage time of 2_s and an average fidelity of 93% for a storage time of 180fis. We theoretically studied this system using the master equation approach, exhausting all the possible ways one could improve the eficiency, defined here as the ratio between the mean number of photons retrieved after the memory process and the mean number of photons that enters the empty cavity, fi = hayaiout=hayaiin, which proved to have an upper bound of 25%. Since protocols relying on phase-matching conditions for single photon input states were already developed, using a model by H. Carmichael, a comparison between storage of coherent and single photon states was made, which did not gave rise any observable difference. Finally a more detailed study about the differences between an input-output and a master equation approach was done. It was concluded that the experimental setup suitable for observing cavity electromagnetically induced transparency (EIT) is not the ideal one for a quantum memory experiment. No modifications to the master equation theory were necessary, and a simple relation between the cavity and output fields was derived.
APA, Harvard, Vancouver, ISO, and other styles
4

Dajczgewand, Julian. "Optical memory in an erbium doped crystal : efficiency, bandwidth and noise studies for quantum memory applications." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS198/document.

Full text
Abstract:
Le traitement quantique de l’information comme moyen de surmonter les limites de l’électronique classique a connu un développement rapide dans les deux dernières décennies. Plusieurs composants pour générer, traiter et envoyer l’information quantique sont nécessaires. Dans ce contexte, les mémoires quantiques optiques apparaissent comme des composantes principales capables de communiquer l’information quantique sur de longues distances en surmontant les pertes des fibres optiques dans un schéma de répéteur quantique. Durant la dernière décennie, plusieurs protocoles de stockage pour stocker l’information quantique ont été proposés et testés. Dans cette thèse, je présente le protocole Revival of Silenced Echo (ROSE) et sa réalisation dans un cristal Er3+:Y2SiO5. Ce matériau est un bon candidat pour une mémoire quantique grâce à sa transition dans la bande C des télécommunications où les pertes dans les fibres optiques sont minimales. Dans ce travail, j’évalue les performances du ROSE avec des impulsions faibles classiques. Je mesure l’efficacité, la bande passante et le temps de stockage qui sont des figures de mérite typiques d’une mémoire quantique optique. Pour une bande passante fixe, je démontre expérimentalement une bonne efficacité. En outre, je mesure la dépendance de la bande passante du protocole. Pour cette dernière les interactions dipôle-dipôle entre les ions d’erbium apparaît comme un facteur limitant. Enfin, je réalise le protocole ROSE avec quelques photons par impulsion afin d’évaluer son potentiel comme mémoire quantique. Je démontre une bonne efficacité avec un rapport signal sur bruit modéré. Je termine ce travail par une série de mesures dans des matériaux nouveaux (co-dopé ou dopé avec de l’erbium), pour augmenter la bande-passante de traitement d’échantillons dopés Er compatible avec les longueurs d’onde des télécommunications
Quantum information processing has been developing rapidly in the last two decades as a way to overcome the limitations of classical electronics. Several components to generate, process and send quantum information are needed. In this context, optical quantum memories appear as principal components to communicate quantum information at long distances by overcoming the losses of the optical fibers in the so-called quantum repeater scheme. During the last decade several storage protocols to store quantum information have been proposed and tested. In this thesis, I present the Revival of Silenced Echo (ROSE) protocol implemented in an Er3+:Y2SiO5 crystal. This material is a good candidate for a quantum memory because of its transition in the C-band of the telecom wavelengths where the losses in optical fibers are minimized. In this work, I evaluate the ROSE performances with weak classical pulses. I measure efficiency, bandwidth and storage time which are the typical figures of merit for an optical quantum memory. Starting with a fixed bandwidth, I demonstrate experimentally a good efficiency. Additionally, I measure the bandwidth dependence of the protocol. For this latter, the dipole-dipole interactions between erbium ions appears as limiting factors. Finally, I implement the ROSE protocol with a few photons per pulse to show its potential as a quantum memory. I report good efficiencies with a moderate signal to noise ratio.I finish this work with a series of measurements in new materials (doped or codoped with erbium), to extend the processing bandwidth of Er doped samples compatible the telecom wavelength range
APA, Harvard, Vancouver, ISO, and other styles
5

Sprague, Michael R. "Raman memory for entanglement in diamonds and light storage in optical fibres." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:7f3d03f3-d47d-4871-8d59-268b301e1b8d.

Full text
Abstract:
Light, when reduced to the level of individual quanta, can possess, besides its familiar properties of wavelength, direction, and polarization, a set of correlations irreducible to classical correlations, among other peculiar behaviour. These correlated states are intrinsically interesting, and are also useful for quantum-enhanced information processing. In this thesis, I use a high-bandwidth, far-off-resonant Raman memory to implement two quantum information primitives -- entanglement generation and light storage -- at room temperature and ambient conditions. Specifically, I show, for the first time, the entanglement of two solid-state objects at room temperature and, also, the storage of light in a hollow-core optical fibre. In the first part, I show that the optical phonon modes of two diamonds can be entangled -- the prototypical non-classical correlation -- at room temperature. The entanglement was generated by spontaneous Raman scattering with projective measurements using single-photon detectors. The degree of entanglement was rigorously quantified by measuring the concurrence -- an entanglement monotone -- of the joint state of the scattered optical fields. In the second part, I store light in the coherent superposition of cesium atoms confined within a kagome-structured hollow-core photonic crystal fibre at room temperature using a far-off-resonant stimulated Raman interaction. The storage efficiency of the memory was 27$pm$1% and the noise level was sufficiently low such that single-photon-level pulses could be stored. Taken together, these results highlight the potential of Raman memories for quantum information tasks in noisy systems with short coherence times.
APA, Harvard, Vancouver, ISO, and other styles
6

Burks, Sidney. "Towards A Quantum Memory For Non-Classical Light With Cold Atomic Ensembles." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00699270.

Full text
Abstract:
Une mémoire quantique réversible permettant de stocker et relire de l'information quantique est une composante majeure dans la mise en œuvre de nombreux protocoles d'information quantique. Comme la lumière est un porteur de l'information quantique fiable sur des longues distances, et comme les atomes offrent la possibilité d'obtenir de longues durées de stockage, le recherche actuelle sur la création d'une mémoire quantique se concentre sur la transfert des fluctuations quantiques de la lumière sur des cohérences atomiques. Le travail réalisé durant cette thèse porte sur le développement d'une mémoire quantique pour la lumière comprimée, utilisant un ensemble d'atomes froids de Césium stock'es dans un piege magnéto-optique. Nos deux principaux objectifs étaient le développement d'une source de lumière non-classique, et le développement d'un milieu atomique pour le stockage de celle-ci. Tout d'abord, nous commençons par présenter la construction d'un oscillateur paramétrique optique qui utilise un cristal non-linéaire de PPKTP. Cet OPO fonctionne comme source d'états de vide comprime résonant avec la raie D2 du Césium. Nous caractérisons ces états grâce à une reconstruction par tomographie quantique, en utilisant une approche de vraisemblance maximale. Ensuite, nous examinons une nouvelle expérience qui nous permet d'utiliser comme milieu de stockage des atomes froids de Césium dans un piège magneto-optique récemment développé. Car cette expérience exige l'utilisation de nouveaux outils et techniques, nous discutons le développement de ceux-ci, et comment ils ont contribue à notre progression vers le stockage des états quantiques dans nos atomes des Césium, et finalement vers l'intrication de deux ensembles atomiques.
APA, Harvard, Vancouver, ISO, and other styles
7

Nicolas, Adrien. "Optical quantum memories with cold atomic ensembles : a free space implementation for multimode storage, or a nanofiber-based one for high collection efficiency." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066494/document.

Full text
Abstract:
Nous étudions expérimentalement deux mémoires quantiques pour la lumière utilisant la transparence électromagnétiquement induite (EIT) dans des nuages froids de césium.Nous expliquons la pertinence des mémoires quantiques pour le développement de réseaux quantiques à longue distance, et décrivons la théorie de l’EIT en soulignant les paramètres essentiels pour l’implémentation de mémoires quantiques.Notre premier cas d’étude est un piège magnéto-optique en espace libre. Notre principal résultat est la démonstration du caractère multimode de ce système pour le stockage quantique de la lumière. Pour cela, nous utilisons des faisceaux de Laguerre-Gauss (LG), porteurs de moment angulaire orbital (OAM). Dans une première étape, nous avons montré que l’état de moment orbital d’impulsions lumineuses en régime de photons uniques est préservé lors du stockage dans la mémoire. Ensuite, nous avons implémenté un bit quantique comme une superposition de modes LG ayant des hélicités opposées. Nous avons développé un système original pour mesurer ces bits quantiques qui nous a permis de caractériser l’action de la mémoire. Nous avons ainsi pu montrer que le stockage quantique de ces bits quantiques.Le second système, également un nuage d’atomes froids, a la particularité que les atomes sont piégés optiquement autour d’un nano-guide d’onde. Ce design innovant permet une plus grande interaction entre lumière et matière, et facilite l’interfaçage des photons dans et hors de la mémoire. Nous décrivons la construction de ce dispositif et les premiers pas vers son utilisation en tant que mémoire quantique
We present an experimental study of two optical quantum memory systems based on electromagnetically induced transparency (EIT) in cold cesium atoms.We explain the relevance of quantum memories for the development of large-scale quantum networks, we give a comprehensive theory of the EIT phenomenon and underline the role of relevant parameters regarding the implementation of quantum memories.The first system under study is prepared in a free-space magneto-optical trap. The main result of this thesis is the demonstration of the spatial multimode capability of this system at the quantum level. For this, we used Laguerre-Gaussian (LG) light beams, i.e. beams possessing a non-zero value of orbital angular momentum (OAM). In a first step, we showed that the orbital angular momentum of stored light pulses is preserved by the memory, deep in the single photon regime. In a second step, we encoded information in the orbital angular momentum state of a weak light pulse and defined a qubit using two LG beams of opposite helicities. We developed an original setup for the measurement of this OAM qubit and used it to characterize the action of the memory during the storage of such a light pulse. Our results show that the memory performs the quantum storage of such a qubit.The second system under study, also a cloud of cold atoms, has the specificity that the atoms are trapped optically in the vicinity of a nano-waveguide. This innovative design ensures a higher light-matter interaction and facilitates the interfacing of photons into and out of the memory. We describe the building of this setup and the first steps towards quantum memory implementations
APA, Harvard, Vancouver, ISO, and other styles
8

Ly, Aliou. "Développement d’un oscillateur paramétrique optique continu intense et à faible bruit pour des applications aux communications quantiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS528/document.

Full text
Abstract:
La portée des communications quantiques est limitée à quelques dizaines de km en raison de l’atténuation dans les fibres. Les répéteurs quantiques (relais quantiques synchronisés par des mémoires quantiques photoniques) furent introduits afin d’accroître ces distances. Or, pour le moment, les mémoires les plus performantes fonctionnent à des longueurs d’onde n’appartenant pas à la bande C télécom. Afin de profiter de ces mémoires, l’utilisation d’interfaces quantiques (milieu non linéaire quadratique) fut proposée comme alternative. En ajoutant ainsi par somme de fréquences un photon de pompe de longueur d’onde appropriée au photon télécom portant l’information, on transfère l’information à une longueur d’onde compatible avec les mémoires, et ceci sans dégradation de l’information portée initialement par le photon télécom. Notre but est ainsi de construire un oscillateur paramétrique optique continu simplement résonant (SRO) qui fournira un faisceau à 1648 nm qui sera sommé en fréquence aux photons télécom à 1536 nm pour transférer l’information vers un photon stockable dans une mémoire à base d’atomes alcalins. Pour transférer efficacement l’information, le SRO doit satisfaire quelques critères : une haute finesse spectrale (largeur de raie ~kHz), une forte puissance (~1W) et une longueur d’onde plus grande que celle du photon télécom à convertir. Pour ce faire, nous utilisons le faisceau non-résonant d’un SRO continu. Le premier travail réalisé dans cette thèse a été de faire la démonstration de la possibilité d’avoir un faisceau à la fois intense et pur spectralement en sortie d’un SRO continu. En réutilisant un SRO déjà développé durant nos travaux antérieurs, nous avons pu stabiliser au niveau du kHz la fréquence du faisceau non résonant à 947 nm (onde signal) de ce SRO, tout en émettant une puissance de plus d’un watt. Ensuite, nous avons conçu le SRO dont le faisceau non résonant à 1648 nm (onde complémentaire) a été stabilisé à court terme en-dessous du kHz avec une puissance de l’ordre du watt. Nous avons ensuite étudié la stabilité à long terme de la longueur d’onde du complémentaire à 1648 nm. Nous avons mesuré des dérives de fréquences de l’ordre de 10 MHz/mn. Ces dérives, venant essentiellement de la cavité de référence sur laquelle le SRO est asservi, peuvent être réduites en contrôlant activement la cavité d’une part, et en utilisant des techniques de stabilisation en fréquence robustes, d’autre part
Long distance quantum communications are limited to few tens of km due to the attenuation of light in telecom fibres. Quantum repeaters (quantum relays synchronized by photonic quantum memories) were introduced in order to increase distances. Or, currently, the most efficient memories do not operate at wavelengths in the telecom C band. In order to take advantage of these memories, the use of quantum interfaces (second order nonlinear medium) was proposed as an alternative. Thus, by adding by sum frequency generation a pump photon at an appropriate wavelength to the telecom photon carrying the information, one transfers the information to a wavelength compatible with these memories, and this with a preservation of the information initially carried by the telecom photon. Our aim is thus to build a continuous-wave singly resonant optical parametric oscillator (cw SRO) which will provide a wave at 1648 nm that will be frequency summed to telecom photons at 1536 nm to transfer the information to a photon storable into alkali atoms based memory. To efficiently transfer the information, the cw SRO has to fulfill some requirements: a high spectral purity (linewidth ~kHz), a high output power (~1 W) and a wavelength longer than that of the telecom photon to be converted. To this aim, we use the non-resonant wave of a cw SRO. The first work done during this thesis was to experimentally prove the possibility to have both high output power and high spectral purity from a cw SRO. By reusing a cw SRO already built during our previous works, we were able to stabilize at the kHz level the frequency of the non-resonant wave at 947 nm (signal wave) of this SRO, with an output power of more than one watt. Then, we built the cw SRO of which non-resonant wave at 1648 nm (idler wave) has been frequency stabilized below the kHz level along with an output power of the order of one watt. We next studied the long term stability of the idler wavelength at 1648 nm. We have measured frequency drifts of the order of 10 MHz/mn. These drifts originating mainly from the reference cavity to which the SRO is locked, can be reduced by, firstly, an active control of the cavity and by, secondly, the use of robust frequency stabilization techniques
APA, Harvard, Vancouver, ISO, and other styles
9

Michelberger, Patrick Steffen. "Room temperature caesium quantum memory for quantum information applications." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:19c9421d-0276-4c6d-a641-7640d2981da3.

Full text
Abstract:
Quantum memories are key components in photonics-based quantum information processing networks. Their ability to store and retrieve information on demand makes repeat-until-success strategies scalable. Warm alkali-metal vapours are interesting candidates for the implementation of such memories, thanks to their very long storage times as well as their experimental simplicity and versatility. Operation with the Raman memory protocol enables high time-bandwidth products, which denote the number of possible storage trials within the memory lifetime. Since large time-bandwidth products enable multiple synchronisation trials of probabilistically operating quantum gates via memory-based temporal multiplexing, the Raman memory is a promising tool for such tasks. Particularly, the broad spectral bandwidth allows for direct and technologically simple interfacing with other photonic primitives, such as heralded single photon sources. Here, this kind of light-matter interface is implemented using a warm caesium vapour Raman memory. Firstly, we study the storage of polarisation-encoded quantum information, a common standard in quantum information processing. High quality polarisation preservation for bright coherent state input signals can be achieved, when operating the Raman memory in a dual-rail configuration inside a polarisation interferometer. Secondly, heralded single photons are stored in the memory. To this end, the memory is operated on-demand by feed-forward of source heralding events, which constitutes a key technological capability for applications in temporal multiplexing. Prior to storage, single photons are produced in a waveguide-based spontaneous parametric down conversion source, whose bespoke design spectrally tailors the heralded photons to the memory acceptance bandwidth. The faithful retrieval of stored single photons is found to be currently limited by noise in the memory, with a signal-to-noise ratio of approximately 0.3 in the memory output. Nevertheless, a clear influence of the quantum nature of an input photon is observed in the retrieved light by measuring the read-out signal's photon statistics via the g(2)-autocorrelation function. Here, we find a drop in g(2) by more than three standard deviations, from g(2) ~ 1.69 to g(2) ~ 1.59 upon changing the input signal from coherent states to heralded single photons. Finally, the memory noise processes and their scalings with the experimental parameters are examined in detail. Four-wave-mixing noise is determined as the sole important noise source for the Raman memory. These experimental results and their theoretical description point towards practical solutions for noise-free operation.
APA, Harvard, Vancouver, ISO, and other styles
10

Neveu, Pascal. "Propagation de lumière dans l'hélium métastable : stockage, amplification, fluctuations et bruit quantique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN044/document.

Full text
Abstract:
Un état quantique de lumière est caractérisé par la statistique de son nombre de photons. Lorsque qu'un champ électromagnétique se propage dans un milieu, ses statistiques peuvent être modifiées, notamment en présence de phénomènes cohérents. Cette thèse s'intéresse expérimentalement et théoriquement à la propagation d'états quantiques de lumière dans une vapeur d'hélium métastable à température ambiante. Dans un premier temps, on étudie la propagation de lumière en présence d'oscillations cohérentes de populations ultrafines et montre qu'elles permettent de stocker efficacement une quadrature spécifique d'un champ lumineux. Néanmoins, ce protocole ne permet pas de stocker les deux quadratures d'un mode du champ électromagnétique, et les conditions de propagation dans le milieu dégradent leurs propriétés statistiques, empêchant son utilisation pour des applications quantiques. Ce travail montre ensuite qu'il est possible de générer des états comprimés à deux modes dans ce même système, par mélange à 4 ondes. Les états fortement comprimés (9 dB) peuvent être générés en exploitant les fortes non-linéarités induites par piégeage cohérent de population via une transition optique, ainsi que par la proximité d'une autre transition optique voisine. Enfin, une dernière partie s'intéresse au transfert de bruit par effet Faraday entre les fluctuations de spin atomique du milieu et les fluctuations de polarisation d'un champ lumineux. L'étude de ces fluctuations par spectroscopie de bruit de spin a mis en évidence des comportements originaux qui pourraient par la suite être utilisés dans d'autres milieux
A quantum state of light is characterized by its statistics of number of photons. These statistics can change in the presence of coherent phenomena. This PhD focuses both experimentally and theoretically on the propagation of quantum states within a room temperature vapor of metastable helium. First, we show that ultranarrow coherent population oscillations allow to efficiently store a specific quadrature of a light wave. Nevertheless, this protocol cannot be use to store the two quadratures of a light field. Indeed, the propagation conditions deteriorates its statistical properties, forbidding its use for quantum application. Secondly, we show that it is possible to generate twomode squeezed states of light in that system. High amplification can be achieved (9 dB), exploiting the strong nonlinearities enabled by coherent population trapping of a transition, and because of the energy level structure. Finally, we study atomic spin noise transfer to light polarization noise via Faraday effect. These fluctuations, probed by spin noise spectroscopy, show original behaviors that may be useful in another systems
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Optical quantum memory"

1

Hasan, Zameer U. Advanced optical concepts in quantum computing, memory, and communication: 23-24 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hemmer, Philip R., Zameer U. Hasan, and Alan Ellsworth Craig. Advanced optical concepts in quantum computing, memory, and communication II: 28-29 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hasan, Zameer U. Advances in photonics of quantum computing, memory, and communication IV: 25-27 January 2011, San Francisco, California, United States. Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hasan, Zameer U. Advances in photonics of quantum computing, memory, and communication V: 23-26 January 2012, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hasan, Zameer U. Advances in photonics of quantum computing, memory, and communication III: 27-28 January 2010, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, WA: SPIE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mihai, Oltean, and SpringerLink (Online service), eds. Optical Supercomputing: 4th International Workshop, OSC 2012, in Memory of H. John Caulfield, Bertinoro, Italy, July 19-21, 2012. Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hasan, Zameer, Philip Hemmer, Alan Migdall, and Hwang Lee. Advances in Photonics of Quantum Computing, Memory, and Communication X. SPIE, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dolev, Shlomi, and Mihai Oltean. Optical Supercomputing: 4th International Workshop, OSC 2012, in Memory of H. John Caulfield, Bertinoro, Italy, July 19-21, 2012. Revised Selected Papers. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brain Theory From A Circuits And Systems Perspective How Electrical Science Explains Neurocircuits Neurosystems And Qubits. Springer-Verlag New York Inc., 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boudreau, Joseph F., and Eric S. Swanson. How to write a class. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0006.

Full text
Abstract:
While there is no such thing as a “typical” C++ class, several common syntactical constructs lend themselves to extremely widespread use and must be mastered by C++ programmers. To motivate the discussion of software design at the level of the C++ class, examples from computer science and optics are introduced. Important syntactical elements such as constructors, destructors, copy constructors, assignment operators, cast operators, and const qualifiers, together with function overloading, operator overloading, and dynamic memory allocation are discussed. These concepts, illustrated with examples from physics, are presented and explained. Further examples from optical and quantum mechanical problems are left to the exercises. This chapter and its exercises gives the reader sufficient information to begin developing his or her own classes and to experiment with class design through trial and error.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Optical quantum memory"

1

Narayanan, Sri Hari Krishna, Thomas Propson, Marcelo Bongarti, Jan Hückelheim, and Paul Hovland. "Reducing Memory Requirements of Quantum Optimal Control." In Computational Science – ICCS 2022, 129–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08760-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chanelière, Thierry, Gabriel Hétet, and Nicolas Sangouard. "Quantum Optical Memory Protocols in Atomic Ensembles." In Advances In Atomic, Molecular, and Optical Physics, 77–150. Elsevier, 2018. http://dx.doi.org/10.1016/bs.aamop.2018.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sipahigil, Alp, and Mikhail D. Lukin. "Quantum optics with diamond color centers coupled to nanophotonic devices." In Current Trends in Atomic Physics, 1–28. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198837190.003.0001.

Full text
Abstract:
Chapter 1 reviews recent advances towards the realization of quantum networks based on atom-like solid-state quantum emitters coupled to nanophotonic devices. Specifically, focus is on experiments involving the negatively charged silicon-vacancy color center in diamond. These emitters combine homogeneous, coherent optical transitions and a long-lived electronic spin quantum memory. Optical and spin properties of this system at cryogenic temperatures and experiments where silicon-vacancy centers are coupled to nanophotonic cavities are discussed. Finally, the chapter discusses experiments demonstrating quantum nonlinearities at the single-photon level and two-emitter entanglement in a single nanophotonic device.
APA, Harvard, Vancouver, ISO, and other styles
4

Ezra, Yossef Ben, and Boris I. Lembrikov. "Ultra-Fast All-Optical Memory based on Quantum Dot Semiconductor Optical Amplifiers (QD-SOA)." In Optical Fiber and Wireless Communications. InTech, 2017. http://dx.doi.org/10.5772/intechopen.68527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rybár, Tomáš, Mário Ziman, and Vladimír Bužek. "Quantum Memory Channels in Quantum Optics." In Mathematical Optics, 533–53. CRC Press, 2018. http://dx.doi.org/10.1201/9781315216966-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rybár, Tomá_, Mário Ziman, and Vladimír Bu_ek. "Quantum Memory Channels in Quantum Optics." In Mathematical Optics, 533–52. CRC Press, 2012. http://dx.doi.org/10.1201/b14298-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optical quantum memory"

1

Saglamyurek, E., N. Sinclair, M. George, R. Ricken, W. Sohler, C. La Mela, and W. Tittel. "Integrated quantum memory for quantum communication." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ofc.2010.owc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dowling, Jonathan P., Hwang Lee, Farrokh Vatan, Pieter Kok, and Robert M. Gingrich. "Linear optical quantum memory." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.thss3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Lijun, Xiao Tang, and Oliver Slattery. "Optical quantum memory applications in quantum communication." In Quantum Communications and Quantum Imaging XVII, edited by Keith S. Deacon. SPIE, 2019. http://dx.doi.org/10.1117/12.2528786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nemoto, Kae, Ashley M. Stephens, Simon J. Devitt, Keith A. Harrison, and William J. Munro. "The role of quantum memory in quantum information processing." In SPIE Optical Engineering + Applications, edited by Ronald E. Meyers, Yanhua Shih, and Keith S. Deacon. SPIE, 2013. http://dx.doi.org/10.1117/12.2023814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Lijun, Oliver Slattery, Paulina Kuo, and Xiao Tang. "EIT quantum memory with Cs atomic vapor for quantum communication." In SPIE Optical Engineering + Applications, edited by Ronald E. Meyers, Yanhua Shih, and Keith S. Deacon. SPIE, 2015. http://dx.doi.org/10.1117/12.2186639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hosseini, M., B. M. Sparkes, G. Campbell, B. C. Buchler, and P. K. Lam. "A Room Temperature Quantum Optical Memory." In International Conference on Quantum Information. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/icqi.2011.qtug1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiang, Guo-Yong, Zhibo Hou, Chuan-Feng Li, Guang-Can Guo, Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo. "Memory assisted entanglement distribution in optical fibers." In Quantum Information and Measurement. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/qim.2014.qtu3a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tiranov, Alexey, Moritz Businger, Sacha Welinski, Alban Ferrier, Philippe Goldner, Nicolas Gisin, and Mikael Afzelius. "Towards broadband optical spin-wave quantum memory." In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.s1d.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hosseini, M., S. Rebic, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam. "Quantum Nonlinear Optics Using Optical Memory." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw1a.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reiserer, A., H. P. Specht, C. Nolleke, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe. "A single-atom optical quantum memory." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943436.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Optical quantum memory"

1

Shahriar, Selim, Seth Lloyd, and Shaoul Ezekiel. Quantum Computing and Optical Memory Using Spectral-Holeburning Techniques. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shahriar, Selim, Seth Lloyd, and Shaoul Ezekiel. Quantum Computing and Optical Memory Using Spectral-Holeburning Techniques. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Prem. Instrumentation to Characterize Cache-Memory Buffers and Regenerators for Optically-Digital Communication and Processing at the Quantum Limit. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada387445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography