To see the other types of publications on this topic, follow the link: Optical quantum memory.

Dissertations / Theses on the topic 'Optical quantum memory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 25 dissertations / theses for your research on the topic 'Optical quantum memory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Reim, Klaus Franz. "Broadband optical quantum memory." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d0d73ed2-32c2-4de9-8b3d-fcf8b88b22b4.

Full text
Abstract:
This thesis is about the experimental implementation of a high-speed and robust quantum memory for light. A novel far off-resonant Raman approach to ensemble-based quantum memories in a room-temperature environment is developed and demonstrated. Storage and retrieval of sub-nanosecond, weak coherent light pulses at the single-photon-level with total efficiencies exceeding 30% and storage times of up to 4 μs are achieved. The coherence of the memory is shown by directly interfering a copy of the incident signal with the retrieved signal from the memory. The unconditional noise floor of the memory is found to be low enough to operate the memory in the quantum regime at room temperature. Multiple readout of a single stored excitation is demonstrated, suggesting that 100% readout is possible in different temporal modes. Furthermore, first results regarding the storage and retrieval of polarisation encoded qubits are obtained. This and the memory’s ability to operate in the quantum regime at room temperature with a low unconditional noise floor illustrate its potential usefulness for real world applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Woodhouse, Michael. "Quantum dot ensembles as an optical quantum memory." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/11843/.

Full text
Abstract:
In this Ph.D. Thesis we investigate the viability of using quantum dot ensembles as a quantum memory architecture through the use numerical simulations to study population transfer within quantum dots. This is followed by an investigation into the effects of high order wavemixing on the population transfer within two level systems, which was born from effects noted while simulating quantum dots. We study the initialisation of an ensemble of inhomogeneously broadened quantum dots, introducing a novel initialisation method utilising pump field with a slow frequency sweep. We focus on the properties of such an initialisation procedure and conclude that the maximum initialisation fidelities are determined entirely by the Zeeman splittings and decay rates of the quantum dots. We study several possibilities for performing π rotations on the population of an ensemble of quantum dots, and show the RCAP protocol is the most applicable. We study this protocol in the context of quantum dots and give the optimal parameters to use to generate high fidelity π pulses. We then bring together our work on quantum dots population transfer with the work of others covering the write and read procedures on quantum dots to provide a feasibility analysis of the complete quantum memory protocol. The work on wavemixing presented in this thesis uses a novel approach to analyse wavemixing effects which is used to predict the population transferred in two level simulations of wavemixing processes. We provide simulation confirmation of our approach to analyse wavemixing effects and then go on to calculate the disruptive effects of wavemixing caused by high intensity lasers on some simple systems. Finally we show that large orders of wavemixing can, at least in principle, be used for coherent population transfer.
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Rommel Rodrigues de. "Quantum memory based on electromagnetically induced transparency in optical cavities." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/5074.

Full text
Abstract:
Made available in DSpace on 2016-06-02T20:16:54Z (GMT). No. of bitstreams: 1 6697.pdf: 3858000 bytes, checksum: 03b4357c963bbde78aecb73ef0df8fa6 (MD5) Previous issue date: 2015-04-16
Universidade Federal de Sao Carlos
Recently a quantum memory for a coherent pulse was accomplished using an atom trapped inside a high finesse cavity, where an eficiency of 9:3% was achieved for a storage time of 2_s and an average fidelity of 93% for a storage time of 180fis. We theoretically studied this system using the master equation approach, exhausting all the possible ways one could improve the eficiency, defined here as the ratio between the mean number of photons retrieved after the memory process and the mean number of photons that enters the empty cavity, fi = hayaiout=hayaiin, which proved to have an upper bound of 25%. Since protocols relying on phase-matching conditions for single photon input states were already developed, using a model by H. Carmichael, a comparison between storage of coherent and single photon states was made, which did not gave rise any observable difference. Finally a more detailed study about the differences between an input-output and a master equation approach was done. It was concluded that the experimental setup suitable for observing cavity electromagnetically induced transparency (EIT) is not the ideal one for a quantum memory experiment. No modifications to the master equation theory were necessary, and a simple relation between the cavity and output fields was derived.
APA, Harvard, Vancouver, ISO, and other styles
4

Dajczgewand, Julian. "Optical memory in an erbium doped crystal : efficiency, bandwidth and noise studies for quantum memory applications." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS198/document.

Full text
Abstract:
Le traitement quantique de l’information comme moyen de surmonter les limites de l’électronique classique a connu un développement rapide dans les deux dernières décennies. Plusieurs composants pour générer, traiter et envoyer l’information quantique sont nécessaires. Dans ce contexte, les mémoires quantiques optiques apparaissent comme des composantes principales capables de communiquer l’information quantique sur de longues distances en surmontant les pertes des fibres optiques dans un schéma de répéteur quantique. Durant la dernière décennie, plusieurs protocoles de stockage pour stocker l’information quantique ont été proposés et testés. Dans cette thèse, je présente le protocole Revival of Silenced Echo (ROSE) et sa réalisation dans un cristal Er3+:Y2SiO5. Ce matériau est un bon candidat pour une mémoire quantique grâce à sa transition dans la bande C des télécommunications où les pertes dans les fibres optiques sont minimales. Dans ce travail, j’évalue les performances du ROSE avec des impulsions faibles classiques. Je mesure l’efficacité, la bande passante et le temps de stockage qui sont des figures de mérite typiques d’une mémoire quantique optique. Pour une bande passante fixe, je démontre expérimentalement une bonne efficacité. En outre, je mesure la dépendance de la bande passante du protocole. Pour cette dernière les interactions dipôle-dipôle entre les ions d’erbium apparaît comme un facteur limitant. Enfin, je réalise le protocole ROSE avec quelques photons par impulsion afin d’évaluer son potentiel comme mémoire quantique. Je démontre une bonne efficacité avec un rapport signal sur bruit modéré. Je termine ce travail par une série de mesures dans des matériaux nouveaux (co-dopé ou dopé avec de l’erbium), pour augmenter la bande-passante de traitement d’échantillons dopés Er compatible avec les longueurs d’onde des télécommunications
Quantum information processing has been developing rapidly in the last two decades as a way to overcome the limitations of classical electronics. Several components to generate, process and send quantum information are needed. In this context, optical quantum memories appear as principal components to communicate quantum information at long distances by overcoming the losses of the optical fibers in the so-called quantum repeater scheme. During the last decade several storage protocols to store quantum information have been proposed and tested. In this thesis, I present the Revival of Silenced Echo (ROSE) protocol implemented in an Er3+:Y2SiO5 crystal. This material is a good candidate for a quantum memory because of its transition in the C-band of the telecom wavelengths where the losses in optical fibers are minimized. In this work, I evaluate the ROSE performances with weak classical pulses. I measure efficiency, bandwidth and storage time which are the typical figures of merit for an optical quantum memory. Starting with a fixed bandwidth, I demonstrate experimentally a good efficiency. Additionally, I measure the bandwidth dependence of the protocol. For this latter, the dipole-dipole interactions between erbium ions appears as limiting factors. Finally, I implement the ROSE protocol with a few photons per pulse to show its potential as a quantum memory. I report good efficiencies with a moderate signal to noise ratio.I finish this work with a series of measurements in new materials (doped or codoped with erbium), to extend the processing bandwidth of Er doped samples compatible the telecom wavelength range
APA, Harvard, Vancouver, ISO, and other styles
5

Sprague, Michael R. "Raman memory for entanglement in diamonds and light storage in optical fibres." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:7f3d03f3-d47d-4871-8d59-268b301e1b8d.

Full text
Abstract:
Light, when reduced to the level of individual quanta, can possess, besides its familiar properties of wavelength, direction, and polarization, a set of correlations irreducible to classical correlations, among other peculiar behaviour. These correlated states are intrinsically interesting, and are also useful for quantum-enhanced information processing. In this thesis, I use a high-bandwidth, far-off-resonant Raman memory to implement two quantum information primitives -- entanglement generation and light storage -- at room temperature and ambient conditions. Specifically, I show, for the first time, the entanglement of two solid-state objects at room temperature and, also, the storage of light in a hollow-core optical fibre. In the first part, I show that the optical phonon modes of two diamonds can be entangled -- the prototypical non-classical correlation -- at room temperature. The entanglement was generated by spontaneous Raman scattering with projective measurements using single-photon detectors. The degree of entanglement was rigorously quantified by measuring the concurrence -- an entanglement monotone -- of the joint state of the scattered optical fields. In the second part, I store light in the coherent superposition of cesium atoms confined within a kagome-structured hollow-core photonic crystal fibre at room temperature using a far-off-resonant stimulated Raman interaction. The storage efficiency of the memory was 27$pm$1% and the noise level was sufficiently low such that single-photon-level pulses could be stored. Taken together, these results highlight the potential of Raman memories for quantum information tasks in noisy systems with short coherence times.
APA, Harvard, Vancouver, ISO, and other styles
6

Burks, Sidney. "Towards A Quantum Memory For Non-Classical Light With Cold Atomic Ensembles." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00699270.

Full text
Abstract:
Une mémoire quantique réversible permettant de stocker et relire de l'information quantique est une composante majeure dans la mise en œuvre de nombreux protocoles d'information quantique. Comme la lumière est un porteur de l'information quantique fiable sur des longues distances, et comme les atomes offrent la possibilité d'obtenir de longues durées de stockage, le recherche actuelle sur la création d'une mémoire quantique se concentre sur la transfert des fluctuations quantiques de la lumière sur des cohérences atomiques. Le travail réalisé durant cette thèse porte sur le développement d'une mémoire quantique pour la lumière comprimée, utilisant un ensemble d'atomes froids de Césium stock'es dans un piege magnéto-optique. Nos deux principaux objectifs étaient le développement d'une source de lumière non-classique, et le développement d'un milieu atomique pour le stockage de celle-ci. Tout d'abord, nous commençons par présenter la construction d'un oscillateur paramétrique optique qui utilise un cristal non-linéaire de PPKTP. Cet OPO fonctionne comme source d'états de vide comprime résonant avec la raie D2 du Césium. Nous caractérisons ces états grâce à une reconstruction par tomographie quantique, en utilisant une approche de vraisemblance maximale. Ensuite, nous examinons une nouvelle expérience qui nous permet d'utiliser comme milieu de stockage des atomes froids de Césium dans un piège magneto-optique récemment développé. Car cette expérience exige l'utilisation de nouveaux outils et techniques, nous discutons le développement de ceux-ci, et comment ils ont contribue à notre progression vers le stockage des états quantiques dans nos atomes des Césium, et finalement vers l'intrication de deux ensembles atomiques.
APA, Harvard, Vancouver, ISO, and other styles
7

Nicolas, Adrien. "Optical quantum memories with cold atomic ensembles : a free space implementation for multimode storage, or a nanofiber-based one for high collection efficiency." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066494/document.

Full text
Abstract:
Nous étudions expérimentalement deux mémoires quantiques pour la lumière utilisant la transparence électromagnétiquement induite (EIT) dans des nuages froids de césium.Nous expliquons la pertinence des mémoires quantiques pour le développement de réseaux quantiques à longue distance, et décrivons la théorie de l’EIT en soulignant les paramètres essentiels pour l’implémentation de mémoires quantiques.Notre premier cas d’étude est un piège magnéto-optique en espace libre. Notre principal résultat est la démonstration du caractère multimode de ce système pour le stockage quantique de la lumière. Pour cela, nous utilisons des faisceaux de Laguerre-Gauss (LG), porteurs de moment angulaire orbital (OAM). Dans une première étape, nous avons montré que l’état de moment orbital d’impulsions lumineuses en régime de photons uniques est préservé lors du stockage dans la mémoire. Ensuite, nous avons implémenté un bit quantique comme une superposition de modes LG ayant des hélicités opposées. Nous avons développé un système original pour mesurer ces bits quantiques qui nous a permis de caractériser l’action de la mémoire. Nous avons ainsi pu montrer que le stockage quantique de ces bits quantiques.Le second système, également un nuage d’atomes froids, a la particularité que les atomes sont piégés optiquement autour d’un nano-guide d’onde. Ce design innovant permet une plus grande interaction entre lumière et matière, et facilite l’interfaçage des photons dans et hors de la mémoire. Nous décrivons la construction de ce dispositif et les premiers pas vers son utilisation en tant que mémoire quantique
We present an experimental study of two optical quantum memory systems based on electromagnetically induced transparency (EIT) in cold cesium atoms.We explain the relevance of quantum memories for the development of large-scale quantum networks, we give a comprehensive theory of the EIT phenomenon and underline the role of relevant parameters regarding the implementation of quantum memories.The first system under study is prepared in a free-space magneto-optical trap. The main result of this thesis is the demonstration of the spatial multimode capability of this system at the quantum level. For this, we used Laguerre-Gaussian (LG) light beams, i.e. beams possessing a non-zero value of orbital angular momentum (OAM). In a first step, we showed that the orbital angular momentum of stored light pulses is preserved by the memory, deep in the single photon regime. In a second step, we encoded information in the orbital angular momentum state of a weak light pulse and defined a qubit using two LG beams of opposite helicities. We developed an original setup for the measurement of this OAM qubit and used it to characterize the action of the memory during the storage of such a light pulse. Our results show that the memory performs the quantum storage of such a qubit.The second system under study, also a cloud of cold atoms, has the specificity that the atoms are trapped optically in the vicinity of a nano-waveguide. This innovative design ensures a higher light-matter interaction and facilitates the interfacing of photons into and out of the memory. We describe the building of this setup and the first steps towards quantum memory implementations
APA, Harvard, Vancouver, ISO, and other styles
8

Ly, Aliou. "Développement d’un oscillateur paramétrique optique continu intense et à faible bruit pour des applications aux communications quantiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS528/document.

Full text
Abstract:
La portée des communications quantiques est limitée à quelques dizaines de km en raison de l’atténuation dans les fibres. Les répéteurs quantiques (relais quantiques synchronisés par des mémoires quantiques photoniques) furent introduits afin d’accroître ces distances. Or, pour le moment, les mémoires les plus performantes fonctionnent à des longueurs d’onde n’appartenant pas à la bande C télécom. Afin de profiter de ces mémoires, l’utilisation d’interfaces quantiques (milieu non linéaire quadratique) fut proposée comme alternative. En ajoutant ainsi par somme de fréquences un photon de pompe de longueur d’onde appropriée au photon télécom portant l’information, on transfère l’information à une longueur d’onde compatible avec les mémoires, et ceci sans dégradation de l’information portée initialement par le photon télécom. Notre but est ainsi de construire un oscillateur paramétrique optique continu simplement résonant (SRO) qui fournira un faisceau à 1648 nm qui sera sommé en fréquence aux photons télécom à 1536 nm pour transférer l’information vers un photon stockable dans une mémoire à base d’atomes alcalins. Pour transférer efficacement l’information, le SRO doit satisfaire quelques critères : une haute finesse spectrale (largeur de raie ~kHz), une forte puissance (~1W) et une longueur d’onde plus grande que celle du photon télécom à convertir. Pour ce faire, nous utilisons le faisceau non-résonant d’un SRO continu. Le premier travail réalisé dans cette thèse a été de faire la démonstration de la possibilité d’avoir un faisceau à la fois intense et pur spectralement en sortie d’un SRO continu. En réutilisant un SRO déjà développé durant nos travaux antérieurs, nous avons pu stabiliser au niveau du kHz la fréquence du faisceau non résonant à 947 nm (onde signal) de ce SRO, tout en émettant une puissance de plus d’un watt. Ensuite, nous avons conçu le SRO dont le faisceau non résonant à 1648 nm (onde complémentaire) a été stabilisé à court terme en-dessous du kHz avec une puissance de l’ordre du watt. Nous avons ensuite étudié la stabilité à long terme de la longueur d’onde du complémentaire à 1648 nm. Nous avons mesuré des dérives de fréquences de l’ordre de 10 MHz/mn. Ces dérives, venant essentiellement de la cavité de référence sur laquelle le SRO est asservi, peuvent être réduites en contrôlant activement la cavité d’une part, et en utilisant des techniques de stabilisation en fréquence robustes, d’autre part
Long distance quantum communications are limited to few tens of km due to the attenuation of light in telecom fibres. Quantum repeaters (quantum relays synchronized by photonic quantum memories) were introduced in order to increase distances. Or, currently, the most efficient memories do not operate at wavelengths in the telecom C band. In order to take advantage of these memories, the use of quantum interfaces (second order nonlinear medium) was proposed as an alternative. Thus, by adding by sum frequency generation a pump photon at an appropriate wavelength to the telecom photon carrying the information, one transfers the information to a wavelength compatible with these memories, and this with a preservation of the information initially carried by the telecom photon. Our aim is thus to build a continuous-wave singly resonant optical parametric oscillator (cw SRO) which will provide a wave at 1648 nm that will be frequency summed to telecom photons at 1536 nm to transfer the information to a photon storable into alkali atoms based memory. To efficiently transfer the information, the cw SRO has to fulfill some requirements: a high spectral purity (linewidth ~kHz), a high output power (~1 W) and a wavelength longer than that of the telecom photon to be converted. To this aim, we use the non-resonant wave of a cw SRO. The first work done during this thesis was to experimentally prove the possibility to have both high output power and high spectral purity from a cw SRO. By reusing a cw SRO already built during our previous works, we were able to stabilize at the kHz level the frequency of the non-resonant wave at 947 nm (signal wave) of this SRO, with an output power of more than one watt. Then, we built the cw SRO of which non-resonant wave at 1648 nm (idler wave) has been frequency stabilized below the kHz level along with an output power of the order of one watt. We next studied the long term stability of the idler wavelength at 1648 nm. We have measured frequency drifts of the order of 10 MHz/mn. These drifts originating mainly from the reference cavity to which the SRO is locked, can be reduced by, firstly, an active control of the cavity and by, secondly, the use of robust frequency stabilization techniques
APA, Harvard, Vancouver, ISO, and other styles
9

Michelberger, Patrick Steffen. "Room temperature caesium quantum memory for quantum information applications." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:19c9421d-0276-4c6d-a641-7640d2981da3.

Full text
Abstract:
Quantum memories are key components in photonics-based quantum information processing networks. Their ability to store and retrieve information on demand makes repeat-until-success strategies scalable. Warm alkali-metal vapours are interesting candidates for the implementation of such memories, thanks to their very long storage times as well as their experimental simplicity and versatility. Operation with the Raman memory protocol enables high time-bandwidth products, which denote the number of possible storage trials within the memory lifetime. Since large time-bandwidth products enable multiple synchronisation trials of probabilistically operating quantum gates via memory-based temporal multiplexing, the Raman memory is a promising tool for such tasks. Particularly, the broad spectral bandwidth allows for direct and technologically simple interfacing with other photonic primitives, such as heralded single photon sources. Here, this kind of light-matter interface is implemented using a warm caesium vapour Raman memory. Firstly, we study the storage of polarisation-encoded quantum information, a common standard in quantum information processing. High quality polarisation preservation for bright coherent state input signals can be achieved, when operating the Raman memory in a dual-rail configuration inside a polarisation interferometer. Secondly, heralded single photons are stored in the memory. To this end, the memory is operated on-demand by feed-forward of source heralding events, which constitutes a key technological capability for applications in temporal multiplexing. Prior to storage, single photons are produced in a waveguide-based spontaneous parametric down conversion source, whose bespoke design spectrally tailors the heralded photons to the memory acceptance bandwidth. The faithful retrieval of stored single photons is found to be currently limited by noise in the memory, with a signal-to-noise ratio of approximately 0.3 in the memory output. Nevertheless, a clear influence of the quantum nature of an input photon is observed in the retrieved light by measuring the read-out signal's photon statistics via the g(2)-autocorrelation function. Here, we find a drop in g(2) by more than three standard deviations, from g(2) ~ 1.69 to g(2) ~ 1.59 upon changing the input signal from coherent states to heralded single photons. Finally, the memory noise processes and their scalings with the experimental parameters are examined in detail. Four-wave-mixing noise is determined as the sole important noise source for the Raman memory. These experimental results and their theoretical description point towards practical solutions for noise-free operation.
APA, Harvard, Vancouver, ISO, and other styles
10

Neveu, Pascal. "Propagation de lumière dans l'hélium métastable : stockage, amplification, fluctuations et bruit quantique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN044/document.

Full text
Abstract:
Un état quantique de lumière est caractérisé par la statistique de son nombre de photons. Lorsque qu'un champ électromagnétique se propage dans un milieu, ses statistiques peuvent être modifiées, notamment en présence de phénomènes cohérents. Cette thèse s'intéresse expérimentalement et théoriquement à la propagation d'états quantiques de lumière dans une vapeur d'hélium métastable à température ambiante. Dans un premier temps, on étudie la propagation de lumière en présence d'oscillations cohérentes de populations ultrafines et montre qu'elles permettent de stocker efficacement une quadrature spécifique d'un champ lumineux. Néanmoins, ce protocole ne permet pas de stocker les deux quadratures d'un mode du champ électromagnétique, et les conditions de propagation dans le milieu dégradent leurs propriétés statistiques, empêchant son utilisation pour des applications quantiques. Ce travail montre ensuite qu'il est possible de générer des états comprimés à deux modes dans ce même système, par mélange à 4 ondes. Les états fortement comprimés (9 dB) peuvent être générés en exploitant les fortes non-linéarités induites par piégeage cohérent de population via une transition optique, ainsi que par la proximité d'une autre transition optique voisine. Enfin, une dernière partie s'intéresse au transfert de bruit par effet Faraday entre les fluctuations de spin atomique du milieu et les fluctuations de polarisation d'un champ lumineux. L'étude de ces fluctuations par spectroscopie de bruit de spin a mis en évidence des comportements originaux qui pourraient par la suite être utilisés dans d'autres milieux
A quantum state of light is characterized by its statistics of number of photons. These statistics can change in the presence of coherent phenomena. This PhD focuses both experimentally and theoretically on the propagation of quantum states within a room temperature vapor of metastable helium. First, we show that ultranarrow coherent population oscillations allow to efficiently store a specific quadrature of a light wave. Nevertheless, this protocol cannot be use to store the two quadratures of a light field. Indeed, the propagation conditions deteriorates its statistical properties, forbidding its use for quantum application. Secondly, we show that it is possible to generate twomode squeezed states of light in that system. High amplification can be achieved (9 dB), exploiting the strong nonlinearities enabled by coherent population trapping of a transition, and because of the energy level structure. Finally, we study atomic spin noise transfer to light polarization noise via Faraday effect. These fluctuations, probed by spin noise spectroscopy, show original behaviors that may be useful in another systems
APA, Harvard, Vancouver, ISO, and other styles
11

Bozzio, Mathieu. "Security and implementation of advanced quantum cryptography : quantum money and quantum weak coin flipping." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT045.

Full text
Abstract:
Les lois de la mécanique quantique présentent un fort potentiel d’amélioration pour la sécurité des réseaux de communication, du cryptage à clé publique au vote électronique, en passant par la banque en ligne. Cette thèse porte sur la sécurité pratique et l’implémentation de deux tâches cryptographiques quantiques : la monnaie quantique et le tirage à pile-ou-face faible. La monnaie quantique exploite le théorème de non-clonage quantique pour générer des jetons, billets ou cartes de crédit strictement infalsifiables. Nous réalisons la première démonstration expérimentale de cette fonctionnalité sur une plateforme photonique aux longueurs d’onde télécom. Nous développons ensuite une analyse de sécurité pratique pour les cartes de crédit quantique. La banque peut ainsi vérifier l’authenticité de la carte à distance, même en présence d’un terminal de paiement malhonnête. Enfin, nous proposons une expérience permettant le stockage sécurisé d’une carte de crédit quantique en utilisant la transparence électromagnétiquement induite au sein d’un nuage d’atomes refroidis. Le tirage à pile-ou-face faible est une primitive cryptographique fondamentale: elle permet en effet la construction de tâches plus complexes telles que la mise en gage de bit et le calcul multipartite sécurisé. Lors d’un tirage à pile ou face, deux entités distantes et méfiantes jettent une pièce. Grâce à l’intrication quantique, il est possible de limiter la probabilité que l’entité malhonnête biaise la pièce. Dans ce projet, nous proposons la première implémentation du pile-ou-face faible. Celle-ci requiert un photon unique et une plateforme d’optique linéaire. Nous présentons l’analyse de sécurité en présence d’erreurs et de pertes, et démontrons que le protocole est réalisable à l’échelle d’une ville. Enfin, nous proposons de réduire davantage la probabilité du biais du protocole
Harnessing the laws of quantum theory can drastically boost the security of modern communication networks, from public key encryption to electronic voting and online banking. In this thesis, we bridge the gap between theory and experiment regarding two quantum-cryptographic tasks: quantum money and quantum weak coin flipping. Quantum money exploits the no-cloning property of quantum physics to generate unforgeable tokens, banknotes, and credit cards. We provide the first proof-of-principle implementation of this task, using photonic systems at telecom wavelengths. We then develop a practical security proof for quantum credit card schemes, in which the bank can remotely verify a card even in the presence of a malicious payment terminal. We finally propose a setup for secure quantum storage of the credit card, using electromagnetically-induced transparency in a cloud of cold cesium atoms. Quantum weak coin flipping is a fundamental cryptographic primitive, which helps construct more complex tasks such as bit commitment and multiparty computation. It allows two distant parties to flip a coin when they both desire opposite outcomes. Using quantum entanglement then prevents any party from biasing the outcome of the flip beyond a certain probability. We propose the first implementation for quantum weak coin flipping, which requires a single photon and linear optics only. We provide the complete security analysis in the presence of noise and losses, and show that the protocol is implementable on the scale of a small city with current technology. We finally propose a linear-optical extension of the protocol to lower the coin bias
APA, Harvard, Vancouver, ISO, and other styles
12

Champion, Theresa Fiona Maya. "Towards storage and retrieval of non-classical light in a broadband quantum memory : an investigation of free-space and cavity Raman memories." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:6681110d-ccdb-4960-93be-cf1fbac4e0ec.

Full text
Abstract:
Photonic quantum information processing has emerged as a powerful platform for realising quantum-enhanced technologies. In order to be scalable, many of these technologies depend on the availability of a suitable quantum memory for the coherent storage and on-demand retrieval of photonic quantum states. In this thesis, I investigate broadband light storage in a room-temperature Raman memory, implemented both in free space and, for the first time, inside a low-finesse optical cavity designed for low-noise operation. The ability of the Raman memory to preserve phase coherence was tested by storing coherent polarisation states in two spatially separate atomic ensembles. Polarisation storage with a fidelity of up to 97 ± 1% was demonstrated by performing full process tomography on the system. The Raman memory was then interfaced for the first time with a spontaneous parametric downconversion (SPDC) source of heralded, GHz-bandwidth single photons. The memory performance was characterised by measuring the second-order autocorrelation of the retrieved fields. While the SPDC input photon statistics showed a clear influence on the statistics of the retrieved field, four-wave mixing (FWM) noise, stimulated by spontaneous Raman scattering, prevented the preservation of non-classical photon statistics during read-out. Suppressing this source of noise represents the last remaining challenge for realising a broadband single-photon Raman memory suitable for quantum information applications. To this end, I demonstrate a novel cavity implementation of the Raman memory which reduces the FWM contribution relative to the signal field by re-distributing the density of states into which the noise photons can be scattered. Cavity-enhanced memory operation was investigated using weak coherent input states, showing a significant improvement of the signal-to-noise ratio compared to the free-space memory implementation. This proof-of-principle demonstration suggests that cavity Raman memories may offer a practical route towards low-noise, high-bandwidth quantum storage at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
13

Vernaz-Gris, Pierre. "Preparation of large cold atomic ensembles and applications in efficient light-matter interfacing." Phd thesis, Sorbonne université, 2018. http://hdl.handle.net/1885/157347.

Full text
Abstract:
This cotutelle PhD thesis revolves around quantum optics experiments which involve large atomic ensembles. The study of light-matter interaction and its enhancement are crucial steps in the development and progress of quantum information generation, storage and processing protocols. The work presented here focuses on the evolution of large atomic ensemble preparation techniques, on the development and experimental investigation of stopped and stationary light protocols. Laser-cooled atomic ensembles in both experimental realisations have been brought to optical depths of a few hundreds, at temperatures of tens of microkelvin. Moreover, addressing these ensembles in symmetric configurations has enabled the study of protocols based on the temporal reversal of the mapping of light to collective atomic excitations. These enhancements have led to the storage of qubits based on electromagnetically-induced transparency, and the optical storage in a backward-retrieval Raman scheme, both demonstrating efficiency records, above 50%. This work has also led to the experimental investigation of stationary light and new protocols based on it.
APA, Harvard, Vancouver, ISO, and other styles
14

Vernaz-Gris, Pierre. "Preparation of large cold atomic ensembles and applications in efficient light-matter interfacing." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS060/document.

Full text
Abstract:
Cette thèse de doctorat en co-tutelle a été centrée sur des expériences d’optique quantique faisant intervenir de grands ensembles atomiques. L’étude de l’interaction entre la lumière et la matière et l’augmentation de leur couplage dans ces systèmes sont des étapes fondamentales pour le développement et l’amélioration de protocoles de génération, de stockage et de manipulation d’information quantique. Le travail de thèse exposé ici traite en particulier de l’évolution des techniques de préparation d’ensembles atomiques denses, des protocoles de lumière arrêtée et de lumière stationnaire développés et étudiés expérimentalement. Les ensembles d’atomes froids préparés par refroidissement laser dans les deux réalisations expérimentales ont été portés jusqu’à des épaisseurs optiques de plusieurs centaines, à des températures d’une dizaine de microkelvin. De plus, l’adressage de ces ensembles dans des configurations symétriques ont permis l’étude de protocoles basés sur le renversement temporel de la conversion de lumière en excitations atomiques collectives. Ces améliorations ont mené au stockage de bits quantiques par transparence induite électromagnétiquement, et de lumière cohérente par symétrie temporelle dans une mémoire Raman, tous deux à des record d’efficacité, à de plus de 50%. Ce travail a également conduit à l’étude expérimentale de la lumière stationnaire et de nouveaux protocoles en découlant
This cotutelle PhD thesis revolves around quantum optics experiments which involve large atomic ensembles. The study of light-matter interaction and its enhancement are crucial steps in the development and progress of quantum information generation, storage and processing protocols. The work presented here focuses on the evolution of large atomic ensemble preparation techniques, on the development and experimental investigation of stopped and stationary light protocols. Laser-cooled atomic ensembles in both experimental realisations have been brought to optical depths of a few hundreds, at temperatures of tens of microkelvin. Moreover, addressing these ensembles in symmetric configurations has enabled the study of protocols based on the temporal reversal of the mapping of light to collective atomic excitations. These enhancements have led to the storage of qubits based on electromagnetically-induced transparency, and the optical storage in a backward-retrieval Raman scheme, both demonstrating efficiency records, above 50%. This work has also led to the experimental investigation of stationary light and new protocols based on it
APA, Harvard, Vancouver, ISO, and other styles
15

Maynard, Marie-Aude. "Stockage d'impulsions lumineuses dans l'hélium métastable à température ambiante." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS445/document.

Full text
Abstract:
La nécessité de synchroniser les différentes étapes des protocoles d’information et de communication quantiques implique l’utilisation de mémoires quantiques. Différents systèmes physiques sont aujourd’hui explorés, parmi lesquels les ions en matrice cristalline, les atomes froids et les vapeurs atomiques. Le protocole de stockage le plus couramment utilisé se fonde sur le phénomène de Transparence Electromagnétiquement Induite (EIT) : une impulsion lumineuse est gravée dans la cohérence Raman entre les deux états fondamentaux d’un système atomique à trois niveaux en Lambda. Bien qu’elle ouvre des perspectives prometteuses, en termes d’efficacité, de fidélité et de temps de stockage, cette technique est néanmoins sensible aux effets déphasants, tels que des gradients de champs magnétiques.Dans ce mémoire, j’étudie tout d’abord le stockage d’impulsions lumineuses classiques par EIT dans une vapeur d’hélium métastable à température ambiante. Les résultats expérimentaux obtenus sont en accord avec les simulations numériques des équations de Maxwell-Bloch complètes du système et montrent notamment l’existence d’une phase supplémentaire acquise par l’impulsion restituée en configuration désaccordée. Cette phase s’explique par la propagation du faisceau sonde dans un milieu dispersif. Dans une deuxième partie, je mets expérimentalement en évidence, dans le même système, une nouvelle forme de stockage basée sur le phénomène d’Oscillations Cohérentes de Population (CPO), par nature plus robuste aux effets déphasants que l’EIT. Les simulations numériques permettent d’analyser plus précisément les mécanismes à l’œuvre dans une mémoire CPO et, notamment, l’influence de la phase relative entre les faisceaux signal et de couplage sur les efficacités de stockage
The need to synchronise quantum information and communication protocols implies the use of quantum memories. Different physical systems are investigated nowadays, among which ions in crystals, cold atoms and atomic vapours. The most common protocol is based on the Electromagnetically Induced Transparency (EIT) phenomenon: a light pulse is engraved in the Raman coherence of both ground states of an atomic Lambda–type three-level system. Though it opens promising perspectives, with respect to efficiency, fidelity and storage time, this technique is, however, sensitive to dephasing effects such as magnetic field gradients.In this thesis, I first study the storage of classical light pulses via EIT in a room- temperature metastable helium vapor. The obtained experimental results agree with the numerical simulation of the complete Maxwell-Bloch equations of the system. In particular, the existence of an extra phase acquired by the retrieved pulse is demonstrated in the detuned configuration, which can be explained by the propagation of the signal beam in the medium. In the second part, I experimentally isolate, in the same system, a new storage protocol based on the Coherent Population Oscillation (CPO) phenomenon, which is by nature more robust than EIT to dephasing effects. The numerical simulations allow us to precisely analyse the mechanisms involved in a CPO memory and, in particular, the influence of the relative phase between the signal and coupling beams on the storage efficiencies
APA, Harvard, Vancouver, ISO, and other styles
16

Hosseini, Mahdi. "Quantum optical storage and processing using raman gradient echo memory." Phd thesis, 2012. http://hdl.handle.net/1885/149882.

Full text
Abstract:
The non-interacting and high-speed nature of light makes it an ideal carrier of information that is essential for transmission of quantum information. Indeed, many proposals and demonstrations of quantum cryptography rely on the use of fibre-optic networks. Construction of a memory that can store light and preserve its quantum properties will be useful in a range of quantum information systems such as secure quantum communication and quantum computation. This is why a quantum memory for light is a remarkable objective. The key to quantum memory is to store the probability amplitude of the possible outcomes of measurement but without measurement. An important criterion for a quantum memory is that the efficiency of the recall must exceed 50%. This is the crucial no-cloning limit for security of information, since it guarantees that nobody can access the information by copying it. This benchmark is important because any kind of deterministic amplification of quantum information is fundamentally impossible. On-demand retrieval of information and ability to controllably manipulate the quantum information are also important for quantum applications. When light is absorbed by atoms, it is actually possible to reverse the absorption process. In our memory system: light is absorbed by an ensemble of atoms and, using careful conditioning and control, we can cause the stored light to be regenerated and released at a later time. This is done by applying a gradient of magnetic field along the atomic ensemble that is the basis for our optical memory. To recall the light we flip the sign of the gradient field. This kind of reversible absorption is called photon echo, hence the name of our scheme: The Gradient Echo Memory (GEM). This simple protocol is used in our experiment and can be applied to a range of different atomic systems. We have extended the GEM protocol and experimentally implemented a memory using three-level atoms. We used an off-the-shelf Rb vapour cell operating above room temperature as the memory medium. In this realisation, we broke the efficiency record with 87% recall of the input light pulse. Moreover, through complete state tomography of coherent states we have demonstrated the ability of our memory to noiselessly store quantum states of light. We have also demonstrated that the memory can store a string of pulses and then recall the pulses ondemand in arbitrary order allowing re-sequencing of the stored information. Furthermore, we have shown that pulses could be time-compressed, time-stretched or split into multiple smaller pulses and selectively recalled in several pieces. This technique enables the construction of an optical random-access memory for quantum information. Moreover, the scheme to manipulate the spectral properties of optical data, stored inside the memory, has been introduced. We have also investigated the possibility of obtaining large nonlinear phase shifts between single photons inside the memory. Such strong interactions can be used for the implementation of universal quantum gates.
APA, Harvard, Vancouver, ISO, and other styles
17

Sparkes, Benjamin Michael. "Storage and manipulation of optical information using gradient echo memory in warm vapours and cold ensembles." Phd thesis, 2013. http://hdl.handle.net/1885/10578.

Full text
Abstract:
Quantum memories for light lie at the heart of long-distance provably-secure communication [1], while containing the potential to help break current encryption methods [2], and allow better measurement of quantities than ever before [3]. Demand for a functioning quantum memory is therefore at a premium. Unfortunately, the same properties of light that make it such an effective carrier of quantum information make it difficult to store. Furthermore, by the laws of quantum mechanics, storage must be achieved without measurement to preserve the quantum state. A quantum memory needs to have an efficiency approaching unity without adding noise to the state, and storage times from milliseconds to seconds. Ideally it would also have a high bandwidth and be able to store many pieces of information simultaneously. Many different techniques are currently being developed and much experimental progress has been made over the past few years, with: efficiencies approaching 90% [4]; storage times of over seconds [5]; bandwidths of gigahertz [6, 7]; and over 1000 pieces of information stored at one time [8]. These results were, however, achieved using different memory schemes in different storage media. The challenge now is to reproduce these results with one memory. This thesis focuses on extending the gradient echo memory (GEM) scheme, which shows great promise due to the high efficiencies achieved (87%) [4]. GEM has also been used to demonstrate temporal compression and stretching of pulses, as well as a capacity to arbitrarily resequence stored information [9] and the interference of initially time-separated pulses [10]. Firstly, we demonstrate the noiseless nature of GEM storage in a warm vapour cell to prove that the output from the memory is the best-possible copy of the input allowed by quantum mechanics. We show GEM’s ability to coherently and precisely spectrallymanipulate stored information by having fine control over the memory’s frequency gradient, with potential applications for dynamic conditioning of information inside quantum networks [11]. We demonstrate cross-phase modulation of a stored light pulse with an additional optical field, a process with applications in quantum computing [12]. We also carry out storage of different spatial modes and arbitrary images, demonstrating the potential for orders of magnitude improvement in storage capacity. We then switch from warm vapour cells to cold atomic ensembles to improve the storage time of GEM, seeing a maximum coherence time of 350 μs (seven times that of the warm vapour system) and achieving efficiencies of up to 80%, on a par with the highest efficiency achieved with a cold atomic ensemble [13]. In the process we developed an ultra-dense cold atomic cloud with potential applications in a range of quantum optics experiments. Cold atoms, and the small volumes they occupy, also allowed us to develop an alternative to using magnetic field gradients for our alkali-atom memories in the form of a light-field gradient. This holds promise for extremely fast gradient switching and fine control over the gradient. We also present a digital locking code with application in a range of quantum optics experiments.
APA, Harvard, Vancouver, ISO, and other styles
18

Ya-TingHsu and 許亞庭. "Investigation and Fabrication of Quantum Dot Optical Memory Thin Film Transistors." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/08213345638839286281.

Full text
Abstract:
碩士
國立成功大學
微電子工程研究所
103
The main purpose of this thesis was focused on the deposition of quantum dots (QDs) thin film in organic optical memory thin film transistors by micro-contact printing technique and spin coating method. The QDs plays an important role in capturing the charge carriers in the transistor device. We compared the current increment and threshold voltage shift under illumination condition of the devices which were deposited QDs by these two methods. And investigated which of these device structures is more suitable for optical memory thin film transistors application. In the study of contact printing method, we used polydimethylsiloxane (PDMS) as the stamps. After spin coating the QDs on the PDMS stamp, the QDs were transfer onto the dielectric layer by means of using counterweight and dip coater, respectively. Because of the better distribution and uniformity of QDs monolayers which were printed by dip coater, we chose contact printing technique to transfer QDs by using dip coater to fabricate the devices. The basic structure was composed by n+-Si (gate electrode) / SiO2 (dielectric later) / pentacene (channel layer) / Au (source and drain electrodes). After transferring QDs between dielectric layer and channel layer, the device with QDs showed more obvious current increment and threshold voltage shift under illumination than conventional structure in the measurements of output and transfer characteristics. For the hysteresis test, the memory window could be increased from 9 V of conventional structure to 101 V of the device with QDs. This large memory window indicated that the structure using contact printing technique to transfer QDs on dielectric layer had the potential to be used for memory devices application. However, both structures showed poor characteristics, i.e. under illumination of white light or different wavelengths of light, the currents didn’t increase as expected but declined to even lower than the initial state. As the result, we investigated floating gate structure to improve this disadvantage. In the study of spin coating technique, the structure was n+-Si (gate electrode) / SiO2 (dielectric layer) / QDs-PMMA blends (floating gate) / PMMA (tunneling layer) / pentacene (channel layer) / Au (source and drain electrodes). Among the device structure, the films of floating gate and tunneling layer were formed by spin coating method. In electrical measurement, the current increment and threshold voltage shift under illumination were increased by the increasing concentrations of QDs of the devices. Memory windows and dynamic responses also showed identical tendencies, especially for the dynamic response under white light illumination, the current increased by 134.7 times for the device using QDs-PMMA blends (with 20 mg/ml QDs)as floating gate. And current under illumination of different wavelengths of lights also had obvious increments. In addition, the device with QDs-PMMA blends (with 20 mg/ml QDs) demonstrated the properties of “optical-writing” and “electrical-erasing”, as a result, it can be viewed as an optical memory thin film transistor. Due to the PMMA layer was used as blocking layer, after turning off the light, electrons were trapped by QDs and difficult to be transferred to the active layer and recombined with holes. Therefore, the current could maintain for a period of time and didn’t decline to the initial state. According to the results of atomic force microscopy (AFM) measurement, after spinning PMMA as modified layer, the Rrms could be reduced under 1.5 nm which was benefit to the growth of pentacene layer and device performance.
APA, Harvard, Vancouver, ISO, and other styles
19

Everett, Jesse Llewellyn. "Atom-light interfaces for quantum information processing." Phd thesis, 2018. http://hdl.handle.net/1885/147273.

Full text
Abstract:
The emergence of quantum physics from the page to the lab and the world at large is an exciting development of recent years. The prospects of absolutely secure communication and efficient simulation of physical systems have spurred great human effort into understanding these possibilities and turning them into realities. Photons are the most easily manipulated quantum particles and are a promising candidate for implementing these technologies. Limitations of photons include the difficulty of keeping objects that move at the speed of light, and producing strong interactions between particles that do not normally interact. The work presented in this thesis is motivated by the possibility of overcoming these limitations. The ability to faithfully store and reproduce a quantum state is essential for many quantum information technologies. Quantum memories for light have been developed over the last two decades to provide this ability. The group at the Australian National University developed the gradient echo memory (GEM): A quantum state of light can be controllably stored and released from an atomic ensemble by the use of additional optical fields and magnetic field gradients. This scheme was previously shown to preserve the quantum characteristics of the light. We used the GEM scheme with a cold rubidium ensemble to create the first optical memory that simultaneously beat the no-cloning limit, a benchmark for many of the technologies relying on quantum memories, and the loss rate for a delay line composed of optical fibre. We also created an analogue to a pulsed optical resonator using GEM with a warm rubidium vapour. This was done by replacing the circulating optical field of a resonator with light stored in the memory, and replacing the coupling of light into and out of that circulating mode with storage and recall from the memory. The bandwidth and repetition rate of this resonator were rapidly tunable as they were controlled by external optical and magnetic fields. We worked on implementing GEM with strings of thousands of atoms strongly coupled to the evanescent field of an optical nanofibre. This raised new possibilities for creating a true random access memory that would allow a more flexible use of the multi-mode capacity of GEM. We developed the theory for a novel type of stationary light in the gradient echo memory. Our stationary light scheme relies on the destructive interference of counter-propagating optical fields throughout the memory. The optical intensity scales with optical depth, as with other forms of stationary light. However, as the destructive interference could be set up over a much greater distance, more of the optical depth is available for generating stationary light. Finally, we studied how a control-phase gate for single-photon optical states could be implemented using a nonlinear interaction with stationary light. The stationary light generated by one state modulates the phase of another state stored in the memory. The second state modifies the stationary light, also producing a back-action on the first state and generating the required cross-phase shift.
APA, Harvard, Vancouver, ISO, and other styles
20

Ferguson, Katherine Rose. "Generation and storage of optical entanglement in a solid state spin-wave quantum memory." Phd thesis, 2016. http://hdl.handle.net/1885/109193.

Full text
Abstract:
This thesis investigates an entangled light source with an in-built quantum memory based on the protocol of rephased amplified spontaneous emission (RASE). RASE has promising applications as a building-block of a quantum repeater: a device essential for extending the range of current quantum communication links. To be useful RASE must be able to produce high fidelity non-classical light with high efficiency, and be able to store multimode entanglement for long times. This thesis characterises the RASE source and determines to what degree these requirements can be met. The experimental RASE demonstration was conducted in a rare-earth ion doped crystal. Rare-earth ions provide a particularly promising platform for developing quantum technologies as they possess long coherence times on both the optical and hyperfine transitions. In the RASE protocol an inverted ensemble of two-level atoms amplifies the vacuum fluctuations resulting in amplified spontaneous emission (ASE). This results in entanglement between the output optical field and the collective modes of the amplifying ensemble. The collective atomic state dephases due to the inhomogeneous broadening of the ensemble but this can be rephased using photon echo techniques. When the ensemble rephases, a second optical field, the rephased amplified spontaneous emission (RASE), is emitted and is entangled with the ASE. In this thesis, a modified four-level rephasing scheme is used that allows the single photon signals to be spectrally resolved from any coherent background emission associated with the bright driving fields. In addition, four-level RASE incorporates storage on the long-lived hyperfine ground states. Two experiments are described in this thesis. First, a free-space four-level RASE demonstration using continuous-variable detection. In this experiment the different sources of noise were characterised and low noise operation was shown to be possible. Entanglement of the ASE and RASE was confirmed by violating the inseparability criterion with 98.6% confidence. In addition, entanglement was demonstrated after storage of the collective atomic state on the spin states and RASE was shown to be temporally multimode, with almost perfect distinguishability between two temporal modes demonstrated. The degree of entanglement between the ASE and RASE was limited by the rephasing efficiency, which saturated at 3%. It was determined that distortion of the rephasing pulses as they propagate through the optically thick ensemble was the probable cause of the low efficiency. The second experiment was a preliminary cavity-enhanced RASE demonstration. Theoretically perfect rephasing efficiency can be obtained by placing the crystal in an impedance-matched optical cavity. The initial cavity design showed encouraging evidence of an enhancement in the rephasing efficiency, with a 4-fold improvement over the free-space experiment. Improvements to the cavity design were proposed to allow a further increase in the rephasing efficiency of RASE. In summary, this thesis provides an extensive characterisation of an entangled light source with an in-built quantum memory based on rephasing spontaneous emission from an ensemble of ions. Importantly, the RASE scheme allows generation and storage of entanglement in a single protocol, which holds great promise for the development of integrated quantum networks.
APA, Harvard, Vancouver, ISO, and other styles
21

Leszczyński, Adam. "Przestrzenna modulacja fazy jako nastawny mechanizm transferu informacji między światłem, a pamięcią kwantową." Doctoral thesis, 2022. https://depotuw.ceon.pl/handle/item/4113.

Full text
Abstract:
Niniejsza rozprawa doktorska skupia się na zagadnieniu dopasowania fazowego w pamięci kwantowej działającej na zimnej chmurze atomów ^{87}Rb, gdzie jako interfejs między światłem, a atomami wykorzystano nierezonansowe rozpraszanie Ramana. Przedstawione zostały wyniki eksperymentów oraz rozważania na temat sterowania procesem odczytu z pamięci poprzez wykorzystanie efektu Zeemana, ac-Starka, kontrolę geometrii wiązek laserowych, czy też wykorzystanie pierścieniowej wnęki optycznej. W rozdziale 2 wprowadzona jest teoria oddziaływania światła z atomami w trójpoziomowym układzie \Lambda. Analizowana jest wpływ czynników takich jak natężenia wiązek, ich odstrojenia, geometria, czy też gęstość optyczna, na szybkość i wydajność odczytu, a także straty związane z dekoherencją, czy absorpcją światła. Rozdział 3 prezentuje generację fikcyjnego pola magnetycznego za pomocą efektu ac-Starka z rozdzielczością przestrzenną. Za jego pomocą modulowana była przestrzenna faza precesji spinów oscylujących w zewnętrznym polu magnetycznym. Uzyskane w eksperymencie wyniki pokazują, że kontrola przestrzennej fazy umożliwia niejako włączanie lub wyłączanie odczytu z pamięci kwantowej. Rozdział 4 przedstawia eksperymentalną modulację przestrzennej fazy fal spinowych w pamięci kwantowej przy wykorzystaniu efektu ac-Starka. Zaprezentowana została możliwość kompensacji bezpośrednio na falach spinowych dowolnych aberracji układu obrazującego. Za pomocą pomiarów interferencyjnych na kamerze bliskiego pola oraz bezpośrednich pomiarów na kamerze dalekiego pola została również dokładnie scharakteryzowana praca przestrzennego modulatora fazy fal spinowych. Rozdział 5 pokazuje połączenie pamięci typu GEM z przestrzenną modulacją fazy. Zaprezentowano eksperymentalną realizację spektrometru o bardzo wysokiej rozdzielczości (20 kHz ~ 83 peV ~ 6\times10^{-7}cm^{-1}), dostosowanego do wąskopasmowej emisji atomowej. Przeanalizowana jest również zależność pomiędzy rozdzielczością, szerokością pasma oraz wydajnością spektrometru. Rozdział 6 proponuje możliwą realizację konwertera modów umożliwiającego konwersję fal spinowych przechowywanych w różnych modach przestrzennych naszej pamięci kwantowej na ciąg impulsów wprzęganych do światłowodu jednomodowego. Zaprezentowane są wyniki symulacji numerycznych odczytu z pamięci wewnątrz pierścieniowej wnęki optycznej oraz manipulacja kierunkiem emisji fotonu za pomocą wiązki odczytującej o kontrolowanym kącie padania na chmurę atomową.
This doctoral thesis focuses on the issue of phase matching in a quantum memory operating on a cold cloud of ^{87}Rb atoms, where non-resonant Raman scattering is used as an interface between light and atoms. Experimental results and considerations for controlling the memory readout process by using the Zeeman effect, ac-Stark effect, controlling the laser beam geometry, or using an optical ring cavity are presented. Chapter 2 introduces the theory of the interaction between light and atoms in a three-level \Lambda system. The influence of factors such as beam intensities, beam offsets, beam geometry, or optical density on the readout rate and efficiency, as well as losses due to decoherence, or light absorption are analysed. Chapter 3 presents the generation of a fictitious magnetic field using the ac-Stark effect with spatial resolution. Using it, the spatial precession phase of spins oscillating in an external magnetic field was modulated. The results obtained in the experiment show that the control of the spatial phase allow us to turn on or off the quantum memory readout. Chapter 4 presents the experimental modulation of the spatial phase of spin waves in quantum memory using the ac-Stark effect. The possibility of compensating directly on the spin waves for any aberrations of the imaging system is presented. Using interference measurements on a near-field camera and direct measurements on a far-field camera, the operation of the spatial spin wave phase modulator is also characterised in detail. Chapter 5 shows the combination of a GEM with spatial phase modulation. An experimental implementation of a very high resolution spectrometer (20 kHz ~ 83 peV ~ 6\times10^{-7}cm^{-1}) adapted to narrowband atomic emission is presented. The relationship between resolution, bandwidth and spectrometer efficiency is also analysed. Chapter 6 proposes a possible implementation of a mod converter enabling the conversion of spin waves stored in different spatial modes of our quantum memory onto a sequence of pulses coupled into a single-mode optical fibre. Results of numerical simulations of the memory readout inside an annular optical cavity are presented, as well as the manipulation of the photon emission direction using a readout beam with a controlled angle of incidence on the atomic cloud.
APA, Harvard, Vancouver, ISO, and other styles
22

Hedges, Morgan. "High performance solid state quantum memory." Phd thesis, 2011. http://hdl.handle.net/1885/150814.

Full text
Abstract:
This thesis demonstrates an efficient quantum memory that for the first time preserves more quantum information than it loses. Beyond this, it describes how even higher efficiency may be realised without sacrificing the other performance characteristics that are required for a practical device. A quantum memory is a device to store and recall the quantum state of light. Such a memory will be required for most applications of the emerging field of quantum information. The closest practical application is quantum repeaters for long distance encryption. A more distant target is quantum computing. Yet demonstrations of quantum memory to date fall far short of the performance required for repeaters, and further short of that for quantum computing. For these applications, high performance will be required in terms of 3 parameters: long storage time, high efficiency, and a large mode-capacity. Prior to this work, the storage time was the only paramter to have been demonstrated near the required level[1], and that only in a classical regime. The primary result of this thesis is to demonst rate a memory with an efficiency close the required level (70% is measured), and confirm its quantum nature with noise measurements. This represents the first quantum memory with efficiency greater than 50% and the first to operate unconditionally above the "no-cloning limit". The demonstration used the same storage medium as for the previous long-term storage experiment (Pr{u00B3}{u207A}:Y{u2082}Si0{u2085} (PrYSO)), and could in principle reach the same long storage times. The technique used is an optical "gradient echo", an optical equivalent to the long studied gradient echo technique used in Nuclear Magnetic Resonance (NMR). Aside from it's practicality for demonstrations, a gradient-echo also offers a powerful handle for manipulating stored light. However it is more complex than related memory techniques because it employs a spatially-varying medium. This becomes crucial when the optical depth (and memory efficiency) is increased; propagation effects mean the light is stored very differently than in other techniques. A simple linear-response model is used to gain insight into this high optical depth regime. As a result, some new properties are identified which may increase the efficiency in practical circumstances and improve flexibility. Of particular note, it's found that the space-dependence can be used to hide one narrow transition with another. This allows the somewhat unintuitive notion that a light pulse can fully traverse a medium without exciting a transition that it is resonant with. The spectral-hiding property has promise to overcome the problem with simultaneously acheiving all three parameters required for quantum memories. The problem is related to the preparation of available rare-earth ion doped materials. To acheive high efficiency and storage times, these require spectral holeburning whose bandwidth is limited by the splittings of spin levels. Methods exist to create high bandwidth delays lines with holeburning[2], but they cannot be efficient or long-lived. By utilising the spectral-hiding property of the gradient echo, methods to overcome this limitation are described for the first time.
APA, Harvard, Vancouver, ISO, and other styles
23

Rancic, Milos. "High Resolution Spectroscopy of Erbium Doped Solids." Phd thesis, 2017. http://hdl.handle.net/1885/144974.

Full text
Abstract:
This thesis investigates the potential of Er:YSO and Er:Si for quantum communication and computation applications. Erbium uniquely possess optical transitions in the 1.5 um region, making it suitable for both fibre telecommunication and silicon photonics. The properties of the ${I}_{15/2}\leftrightarrow{I}_{13/2}$ optical transition in Er:YSO have already been extensively studied. Over two decades ago, improvements in $Er^{3+}$ dephasing time at 1.5 um were achieved by applying a 5T field along the D1 axis. More recently, a record 4.4 ms coherence time on the same optical transition was achieved using a 7T field. These investigations, among others, illustrate that large Er electron spins become thermally polarised with sufficient magnetic field. However, no long lived and coherent spin transitions associated with the Er ions had previously been identified, and such transitions are necessary for on-demand quantum state storage. To address this requirement, the optical and hyperfine transition properties of 167-Er:YSO were investigated in large magnetic fields. In a field of 7T, spectral hole lifetimes of 1 minute and hyperfine population lifetimes of 12 minutes were observed. These measurements illustrate the effect of spin-lattice relaxation in this system, and how it can be mitigated. Efficient spin-polarisation of the entire 167-Er hyperfine ensemble is also demonstrated. This is the first such demonstration in rare earth systems, and a key requirement for broadband optical storage. Moreover, a 1.3 second coherence time was recorded for an 167-Er:YSO hyperfine transition at 7T and 1.4 K. This is an improvement of several orders-of-magnitude over previous coherence measurements on spin-transitions in Er doped solids. This is also sufficient for maximal entanglement rates in quantum repeater networks that span distances of 1000 km or greater. With an optical transition at 1.5 um, Er is also an ideal candidate to connect silicon based quantum computers to the future quantum Internet. In particular, single Er:Si ions could be used to develop an optical-spin bus between P:Si qubits and fibre based quantum networks. Presented here is the first spectroscopic investigation of single Er:Si ions. This required a novel opto-electronic approach to single ion detection, where the Er ions are implanted into a nanometre scale fin-shaped Field Effect Transistor. With this approach it was possible to develop high resolution optical spectra, where both the electronic and hyperfine levels of individual Er ions were resolved. Long optical and spin coherence times are also important requirements for an optical-spin bus. To address the first requirement, an investigation of the optical lineshape was undertaken. Here it was determined that sources of Stark noise external to the transistor channel contribute a significant amount to optical homogeneous linewidth. However, the dominant noise contribution was determined to be short-range (from within the 30 nm wide channel) and the total homogeneous linewidth was measured to be 50 MHz. The site structure of an individual Er:Si ion was then analysed, using magnetic field rotation patterns and optical transitions between multiple crystal field levels. This site was determined to have approximately axial ($C_{3}$) symmetry. The purpose of this study was to determine a magnetic field regime in which the Er electrons spin can be polarised, which is necessary for realising of long hyperfine lifetimes and coherence times.
APA, Harvard, Vancouver, ISO, and other styles
24

Dąbrowski, Michał. "Paradoks EPR w ciepło- i zimnoatomowych pamięciach kwantowych." Doctoral thesis, 2018. https://depotuw.ceon.pl/handle/item/3197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chrapkiewicz, Radosław. "Generation and characterization of spatially structured few-photon states of light." Doctoral thesis, 2016. https://depotuw.ceon.pl/handle/item/1415.

Full text
Abstract:
The present doctoral dissertation discusses the results of research on the characterization of spatial structure and statistical properties of few-photon states of light generated i.a. with the use of a new source based on multimode atomic memory. The dissertation comprises nine chapters grouped into the following parts: a literature and theoretical introduction, and three main parts providing the experimental results. Part I discusses the characteristics of a scientific complementary metal-oxide semiconductor camera equipped with an image intensifier (I-sCMOS) constructed by our group. We provide theoretical models of saturation of photon-number-resolving detectors which relate qualitatively to our camera. We perform experimental tomography of the I-sCMOS camera and use its results for high-fidelity reconstruction of the original statistics of the impinging light. In Part II we present an atomic memory setup in warm rubidium vapors where the write-in and readout occur due to collective Raman scattering. The memory is able to store information about the spatial structure of light. We describe the experimental setup thoroughly, with particular attention to the filtering system. We characterize multimode Raman scattering and investigate the storage performance of the memory which is limited by diffusional decoherence. We demonstrate spatial correlations between delayed Stokes and anti-Stokes photons. Using the I-sCMOS camera together with an advanced filtering system we observe spatial correlations down to single atomic excitations per memory mode. In Part III we discuss the use of the I-sCMOS camera to observe the Hong-Ou-Mandel two-photon interference with spatial resolution. We study the influence of finite spatial distinguishability of photons on the interference results, which leads us to measurements of the local spatial structure of a single photon. We observe and examine closely the following relatively unexplored phenomena. In Part I we investigate seemingly nonclassical effects in measurements of photon counts statistics on the camera. In Part II we are the first ones to show multimode Raman scattering in atomic memories. Finally, in Part III we describe the first observation of the Hong-Ou-Mandel effect with spatial resolution which is studied further in terms of finite spatial distinguishability of the interfering photons. In this thesis, we present the following novel experimental methodology. We use a new-type of I-sCMOS camera. We implement and perform the reconstruction of photon statistics based on tomographic characterization of the detector. We also build an efficient filtering system for photons generated in atomic memory. Moreover, we create an accurate method of measuring diffusion coefficients in atomic memory. We present our own methods of spatial characterization of the properties of light. Eventually, we introduce an entirely novel method: holographic measurement of the phase structure of a single photon using i.a. a specially developed phase reconstruction algorithm. The presented results fall within the scope of contemporary research in quantum optics and have a number of possible applications, as discussed in the final remarks section.
Niniejsza praca doktorska prezentuje wyniki badań poświęconych charakteryzacji struktury przestrzennej i właściwości statystyk kilkufotonowych stanów światła generowanych m.in. z użyciem nowego źródła opartego na wielomodowej pamięci atomowej. Praca składająca się z 9 rozdziałów podzielona jest na wstęp literaturowy i teoretyczny oraz trzy części zawierające merytoryczne wyniki badań. Kolejno w części I prezentujemy i charakteryzujemy skonstruowany układ kamery sCMOS ze wzmacniaczem obrazu (I-sCMOS). Przedstawiamy teoretyczne modele nasycania detektorów rozróżniających liczbę fotonów, które jakościowo odnoszą się do kamery. Przeprowadzamy eksperymentalną tomografię kamery I-sCMOS a jej wyniki wykorzystujemy do wiernej rekonstrukcji pierwotnych statystyk światła padającego na kamerę. W części II prezentujemy układ pamięci atomowej w ciepłych parach rubidu, do której zapis i odczyt odbywa się w wyniku kolektywnego rozpraszania Ramana. Pamięć jest w stanie przechować informacje na temat przestrzennej struktury światła. Dokładnie opisujemy układ doświadczalny, w szczególności pod kątem układu filtrowania. Charakteryzujemy wielomodowe rozpraszanie Ramana oraz badamy zdolność przechowywania pamięci ograniczoną dekoherencją dyfuzyjną. Demonstrujemy korelacje przestrzenne pomiędzy opóźnionymi w czasie fotonami Stokesa i anty-Stokesa. Używając kamery I-sCMOS i zaawansowanego systemu filtrowania obserwujemy korelacje przestrzenne aż do reżimu pojedynczych wzbudzeń atomowych na mod pamięci. W części III wykorzystujemy kamerę I-sCMOS do badania zjawiska interferencji dwufotonowej Hong-Ou-Mandela obserwowanego z rozdzielczością przestrzenną. Studiujemy wpływ skończonej widzialności przestrzennej na wynik interferencji, która służy nam do pomiaru lokalnej struktury przestrzennej pojedynczego fotonu. Zaobserwowaliśmy i zbadaliśmy następujące słabo zbadane zjawiska. W części I badamy pozorne efekty nieklasyczne w statystykach zliczeń fotonów zmierzonych za pomocą kamery. W części II po raz pierwszy pokazujemy wielomodowe rozpraszanie Ramana w pamięciach atomowych. Natomiast w części III prezentujemy pierwszą obserwację efektu Hong-Ou-Mandela z rozdzielczością przestrzenną, którą następnie badamy pod kątem wpływu skończonej rozróżnialności przestrzennej interferujących fotonów. Na potrzeby tej pracy zostały stworzone i opracowane następujące, nowe metodologie badawcze. Stosujemy nowego typu kamerę I-sCMOS, opracowujemy rekonstrukcje statystyk fotonów na podstawie tomograficznej charakteryzacji detektora. Konstruujemy skuteczny układ filtrowania fotonów w pamięci atomowej. Tworzymy nową dokładną metodę pomiaru współczynników dyfuzji w pamięci atomowej. Prezentujemy także własne metody charakteryzacji przestrzennej statystycznych właściwości światła. W końcu, pokazujemy zupełnie nowatorską metodę holograficznego pomiaru struktury fazy pojedynczego fotonu, wykorzystującą m.in. specjalnie stworzony algorytm rekonstrukcji fazy. Zaprezentowane wyniki wpisują się w kontekst współczesnych badań w optyce kwantowej, a także posiadają szereg potencjalnych zastosowań, przedyskutowanych w podsumowaniu pracy.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography