Academic literature on the topic 'Optical soliton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical soliton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optical soliton"

1

BISWAS, ANJAN. "SOLITON–SOLITON INTERACTION IN OPTICAL FIBERS." Journal of Nonlinear Optical Physics & Materials 08, no. 04 (December 1999): 483–95. http://dx.doi.org/10.1142/s0218863599000369.

Full text
Abstract:
In an optical communication system it is necessary to place the solitons close to one another to increase the information carrying capacity of the fiber. The theory of soliton–soliton interaction in a fiber optic communication system, through a single channel, is studied in this paper. In presence of the perturbation terms, the two soliton interaction of the Nonlinear Schrödinger's Equation is investigated. It is analytically proved and numerically supported that the perturbation terms lead to the suppression of the interaction of solitons through an optical fiber.
APA, Harvard, Vancouver, ISO, and other styles
2

PENG, GANG-DING, and ADRIAN ANKIEWICZ. "FUNDAMENTAL AND SECOND-ORDER SOLITION TRANSMISSION IN NONLINEAR DIRECTIONAL FIBER COUPLERS." Journal of Nonlinear Optical Physics & Materials 01, no. 01 (January 1992): 135–50. http://dx.doi.org/10.1142/s021819919200008x.

Full text
Abstract:
Transmission characteristics of first-order and second-order solitons propagating through a nonlinear optical fiber coupler are investigated by analysing the coupled nonlinear Schrödinger equations (NLSEs). We show that it is most advantageous to use fundamental solitions to make an ideal optical switch which can be used in multiplexing and/or demultiplexing soliton signals from different sources, and that such a switch can have a high switching efficiency and intact soliton output. Also, we have analyzed the relation between critical power of a soliton switch and that of a cw switch, and have given the soliton “critical energy” in an explicit form in terms of the physical parameters. Further, we give evidence to show that soliton bound-states and different solitons can be generated through soliton conversion in a nonlinear coupler.
APA, Harvard, Vancouver, ISO, and other styles
3

XIAO, YAN, ZHIYONG XU, LU LI, ZHONGHAO LI, and GUOSHENG ZHOU. "SOLITON PROPAGATION IN NONUNIFORM OPTICAL FIBERS." Journal of Nonlinear Optical Physics & Materials 12, no. 03 (September 2003): 341–48. http://dx.doi.org/10.1142/s0218863503001444.

Full text
Abstract:
In this paper, we construct the Lax pair for a soliton transmission system in nonuniform optical fibers and give N-soliton solution using the Darboux transformation. The explicit one-soliton and two-soliton solutions are presented. Further, we discuss the interaction scenario between two neighboring solitons and the effect of the inhomogeneities of the fiber (z0) on the interaction between two neighboring solitons.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, Wayne N. Manrakhan, Michelle Savescu, and Anjan Biswas. "Dispersive optical solitons with Schrödinger–Hirota equation." Journal of Nonlinear Optical Physics & Materials 23, no. 01 (March 2014): 1450014. http://dx.doi.org/10.1142/s0218863514500143.

Full text
Abstract:
The dynamics of dispersive optical solitons, modeled by Schrödinger–Hirota equation, are studied in this paper. Bright, dark and singular optical soliton solutions to this model are obtained in presence of perturbation terms that are considered with full nonlinearity. Soliton perturbation theory is also applied to retrieve adiabatic parameter dynamics of bright solitons. Optical soliton cooling is also studied. Finally, exact bright, dark and singular solitons are addressed for birefringent fibers with perturbation terms included.
APA, Harvard, Vancouver, ISO, and other styles
5

Seadawy, Aly R., and Mujahid Iqbal. "Optical soliton solutions for nonlinear complex Ginzburg–Landau dynamical equation with laws of nonlinearity Kerr law media." International Journal of Modern Physics B 34, no. 19 (July 27, 2020): 2050179. http://dx.doi.org/10.1142/s0217979220501799.

Full text
Abstract:
In this research article, our aim is to construct new optical soliton solutions for nonlinear complex Ginzburg–Landau equation with the help of modified mathematical technique. In this work, we studied both laws of nonlinearity (Kerr and power laws). The obtained solutions represent dark and bright solitons, singular and combined bright-dark solitons, traveling wave, and periodic solitary wave. The determined solutions provide help in the development of optical fibers, soliton dynamics, and nonlinear optics. The constructed solitonic solutions prove that the applicable technique is more reliable, efficient, fruitful and powerful to investigate higher order complex nonlinear partial differential equations (PDEs) involved in mathematical physics, quantum plasma, geophysics, mechanics, fiber optics, field of engineering, and many other kinds of applied sciences.
APA, Harvard, Vancouver, ISO, and other styles
6

Dai, Chao-Qing, Hai-Ping Zhu, and Chun-Long Zheng. "Tunnelling Effects of Solitons in Optical Fibers with Higher-Order Effects." Zeitschrift für Naturforschung A 67, no. 6-7 (July 1, 2012): 338–46. http://dx.doi.org/10.5560/zna.2012-0033.

Full text
Abstract:
We construct four types of analytical soliton solutions for the higher-order nonlinear Schrödinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly.We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Zi-Jian, Bo Tian, Xiao-Yu Wu, Lei Liu, and Yan Sun. "Soliton interactions of a (2+1)-dimensional nonlinear Schrödinger equation in a nonlinear photonic quasicrystal or Kerr medium." Modern Physics Letters B 31, no. 22 (August 10, 2017): 1750130. http://dx.doi.org/10.1142/s0217984917501305.

Full text
Abstract:
Under investigation are the soliton interactions for a (2[Formula: see text]+[Formula: see text]1)-dimensional nonlinear Schrödinger equation, which can describe the dynamics of a nonlinear photonic quasi-crystal or vortex Airy beam in a Kerr medium. With the symbolic computation and Hirota method, analytic bright N-soliton and dark two-soliton solutions are derived. Graphic description of the soliton properties and interactions in a nonlinear photonic quasicrystal or Kerr medium is done. Through the analysis on bright and dark one solitons, effects of the optical wavenumber/linear opposite wavenumber and nonlinear coefficient on the soliton amplitude and width are studied: when the absolute value of the optical wavenumber or linear opposite wavenumber increases, bright soliton amplitude and dark soliton width become smaller; nonlinear coefficient has the same influence on the bright soliton as that of the optical wavenumber or linear opposite wavenumber, but does not affect the dark soliton amplitude or width. Overtaking/periodic interactions between the bright two solitons and overtaking interactions between the dark two solitons are illustrated. Overtaking interactions show that the bright soliton with a larger amplitude moves faster and overtakes the smaller, while the dark soliton with a smaller amplitude moves faster and overtakes the larger. When the absolute value of the optical wavenumber or linear opposite wavenumber increases, the periodic-interaction period becomes longer. All the above interactions are elastic. Through the interactions, soliton amplitudes and shapes keep invariant except for some phase shifts.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Ya, Bo Tian, Yu-Feng Wang, Yun-Po Wang, and Zhi-Ruo Huang. "Bright solitons and their interactions of the (3 + 1)-dimensional coupled nonlinear Schrödinger system for an optical fiber." Modern Physics Letters B 29, no. 35n36 (December 30, 2015): 1550245. http://dx.doi.org/10.1142/s0217984915502450.

Full text
Abstract:
Under investigation in this paper is the [Formula: see text]-dimensional coupled nonlinear Schrödinger system for an optical fiber with birefringence. With the Hirota method, bilinear forms of the system are derived via an auxiliary function, and the bright one- and two-soliton solutions are constructed. Based on those soliton solutions, soliton propagation and interaction are investigated analytically and graphically. Non-singular cases of the bright one-soliton solutions are presented, from which the single-peak and two-peak solitons can arise, respectively. Through the analysis on the bright two-soliton solutions, the elastic and inelastic interactions are investigated. Three kinds of the elastic interactions are presented, between the two one-peak solitons, a one-peak soliton and a two-peak soliton, and the two two-peak solitons.
APA, Harvard, Vancouver, ISO, and other styles
9

Konyukhov, Andrey I. "Transformation of Eigenvalues of the Zakharov–Shabat Problem under the Effect of Soliton Collision." Izvestiya of Saratov University. New series. Series: Physics 20, no. 4 (2020): 248–57. http://dx.doi.org/10.18500/1817-3020-2020-20-4-248-257.

Full text
Abstract:
Background and Objectives: The Zakharov–Shabat spectral problem allows to find soliton solutions of the nonlinear Schrodinger equation. Solving the Zakharov–Shabat problem gives both a discrete set of eigenvalues λj and a continuous one. Each discrete eigenvalue corresponds to an individual soliton with the real part Re(λj) providing the soliton velocity and the imaginary part Im(λj) determining the soliton amplitude. Solitons can be used in optical communication lines to compensate both non-linearity and dispersion. However, a direct use of solitons in return-to-zero signal encoding is inhibited. The interaction between solitions leads to the loss of transmitted data. The problem of soliton interaction can be solved using eigenvalues. The latter do not change when the solitons obey the nonlinear Schrodinger equation. Eigenvalue communication was realized recently using electronic signal processing. To increase the transmission speed the all-optical method for controlling eigenvalues should be developed. The presented research is useful to develop optical methods for the transformation of the eigenvalues. The purpose of the current paper is twofold. First, we intend to clarify the issue of whether the dispersion perturbation can not only split a bound soliton state but join solitons into a short oscillating period breather. The second goal of the paper is to describe the complicated dynamics and mutual interaction of complex eigenvalues of the Zakharov–Shabat spectral problem. Materials and Methods: Pulse propagation in single-mode optical fibers with a variable core diameter can be described using the nonlinear Schrödinger equation (NLSE) which coefficients depends on the evolution coordinate. The NLSE with the variable dispersion coefficient was considered. The dispersion coefficient was described using a hyperbolic tangent function. The NLSE and the Zakharov– Shabat spectral problem were solved using the split-step method and the layer-peeling method, respectively. Results: The results of numerical analysis of the modification of soliton pulses under the effect of variable dispersion coefficient are presented. The main attention is paid to the process of transformation of eigenvalues of the Zakharov–Shabat problem. Collision of two in-phase solitons, which are characterized by two complex eigenvalues is considered. When the coefficients of the nonlinear Schrodinger equation change, the collision of the solitons becomes inelastic. The inelastic collision is characterized by the change of the eigenvalues. It is shown that the variation of the coefficients of the NLSE allows to control both real and imaginary parts of the eigenvalues. Two scenarios for the change of the eigenvalues were identified. The first scenario is characterized by preserving the zero real part of the eigenvalues. The second one is characterized by the equality of their imaginary parts. The transformation of eigenvalues is most effective at the distance where the field spectrum possesses a two-lobe shape. Variation of the NLSE coefficient can introduce splitting or joining of colliding soliton pulses. Conclusion: The presented results show that the eigenvalues can be changed only with a small variation of the NLSE coefficients. On the one hand, a change in the eigenvalues under the effect of inelastic soliton collision is an undesirable effect since the inelastic collision of solitons will lead to unaccounted modulation in soliton optical communication links. On the other hand, the dependence of the eigenvalues on the parameters of the colliding solitons allows to modulate the eigenvalues using all-fiber optical devices. Currently, the modulation of the eigenvalues is organized using electronic devices. Therefore, the transmission of information is limited to nanosecond pulses. For picosecond pulse communication, the development of all-optical modulation methods is required. The presented results will be useful in the development of methods for controlling optical solitons and soliton states of the Bose–Einstein condensate.
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Hui-Min, Bo Tian, Hui-Ling Zhen, Jun Chai, and Xiao-Yu Wu. "Bright optical solitons or light bullets for a (3 + 1)-dimensional generalized nonlinear Schrödinger equation with the distributed coefficients." Modern Physics Letters B 30, no. 25 (September 20, 2016): 1650306. http://dx.doi.org/10.1142/s0217984916503061.

Full text
Abstract:
Under investigation in this paper is a (3 + 1)-dimensional generalized nonlinear Schrödinger equation with the distributed coefficients for the spatiotemporal optical solitons or light bullets. Through the symbolic computation and Hirota method, one- and two-soliton solutions are derived. We also present the Bäcklund transformation, through which we derive the soliton solutions. When the gain/loss coefficient is the monotonically decreasing function for the propagation coordinate [Formula: see text], amplitude for the spatiotemporal optical soliton or light bullet decreases along [Formula: see text], while when the gain/loss coefficient is the monotonically increasing function for [Formula: see text], amplitude for the spatiotemporal optical soliton or light bullet increases along [Formula: see text]. Directions of the solitons are different because the signs of imaginary parts of the frequencies are adverse. Based on the two-soliton solutions, elastic and inelastic collisions between the two spatiotemporal optical solitons or light bullets are derived under different conditions presented in the paper.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Optical soliton"

1

Horikis, Theodore. "Soliton radiation in optical fibre." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Charles Xiao 1973. "Soliton squeezing in optical fibers." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86587.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2001.
Includes bibliographical references (p. 113-122).
by Charles Xiao Yu.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Khatri, Farzana Ibrahim. "Optical soliton propagation and control." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40224.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (leaves 122-130).
by Farzana Ibrahim Khatri.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Semaan, Georges. "Soliton dynamics in fiber lasers : from dissipative soliton to dissipative soliton resonance." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0029/document.

Full text
Abstract:
Dans cette thèse, nous étudions expérimentalement la génération d'impulsions carrées très énergétiques et accordable à l’échelle nanosecondes et d'impulsions ultracourtes à haute puissance moyenne de sortie dans les lasers à fibre utilisant les nanomatériaux comme absorbant saturable. Tout d'abord, puisque la dynamique des impulsions est dominée par l'interaction de la non linéarité et de la dispersion chromatique cubique de la fibre avec un mécanisme de discrimination d'intensité appelé absorbant saturable, la stabilité d'une distribution harmonique en mode verrouillé est étudiée par injection externe d'une onde continue.Enfin, nous avons utilisés des absorbant saturable à base de nanomatériaux déposés sur des tapers optiques dans les lasers à fibre pour générer des impulsions ultracourtes avec une puissance de sortie moyenne élevée
In this thesis, we investigate experimentally the generation of high energy nanosecond tunable square pulses and high output power ultrashort pulses in fiber lasers. First, since pulse dynamics are dominated by the interaction of the fiber's cubic Kerr nonlinearity and chromatic dispersion with an intensity-discriminating mechanism referred to as a saturable absorber, the stability of a harmonic mode-locked distribution is studied by external injection of a continuous wave. Finally, we implemented nanomaterial based saturable absorbers in fiber laser configuration to generate ultrashort pulses with high average output power. Different techniques of achieving such components are explicitly detailed: ultrashort pulse generation in ring cavities where graphene and topological insulators are deposited on optical tapers to form a saturable absorber
APA, Harvard, Vancouver, ISO, and other styles
5

Pickartz, Sabrina. "All-optical control of fiber solitons." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19468.

Full text
Abstract:
Das Thema dieser Arbeit ist eine mögliche Steuerung eines optischen Solitons in nichtlinearen optischen Fasern. Es gelang, die interessierenden Solitonparameter wie Intensität, Dauer und Zeitverschiebung durch die Wechselwirkung mit einer dispersiven Welle geringer Intensität kontrollierbar zu modifizieren. Es wird eine neue analytische Theorie vorgestellt für die Wechselwirkung zwischen Solitonen und dispersiven Wellen, die auf der Kreuzphasenmodulation in nichtlinearen Fasern beruht. Das vorgestellte Modell kombiniert quantenmechnische Streutheorie und eine Erweiterung der Störungstheorie für Solitonen aus der nichtlinearen Optik. Damit wurden folgende neue Ergebnisse erzielt: (1) Die Entwicklung aller Solitonparameter wird korrekt vorhergesagt. Insbesondere wird die mögliche Verstärkung der Solitonamplitude erfolgreich bestimmt. (2) Passende Intervalle der Kontrollparameter, die eine effektive Solitonmanipulation garantieren, können quantitativ bestimmt werden. (3) Der Raman-Effekt wurde in die Modellbeschreibung eingebunden. Die klassische Abschätzung der Eigenfrequenzverschiebung des Solitons durch den Raman-Effekt wurde verbessert und erweitert durch eine neue Relation für den einhergehenden Amplitudenverlust. Weiterhin wurden solche Kontrollpulse bestimmt, die dieser Schwächung des Solitons entgegenwirken. Im Unterschied zu früheren Versuchen liefert die hier entwickelte Modellbeschreibung die passenden Parameterbereiche für eine stabile Auslöschung des Raman-Effektes. (4) Obwohl die Wechselwirkung selbst auf der Kreuzphasenmodulation basiert, spielt der ”self-steepening“- Effekt, der die Bildung von optischen Schocks beschreibt, eine entscheidende Rolle für eine effiziente Veränderung der Solitonparameter.
This work discusses the problem how to control an optical soliton propagating along a non- linear fiber. The approach chosen here is to change soliton delay, duration and intensity in a simple, predictable manner by applying low-intensity velocity-matched dispersive light waves. A new analytic theory of cross-phase modulation interactions of solitons with dispersive control waves is presented which combines quantum mechanical scattering theory, a modified soliton perturbation theory and a multi-scale approach. This led to the following new results: (1) The evolution of all soliton parameters is correctly predicted. In particular the possible amplitude enhancement of solitons is successfully quantified, which could not be obtained by the standard formulation of the soliton perturbation theory. (2) General ranges for control parameters are quantitatively determined, which ensure an effective interaction. (3) The Raman effect is incorporated into the theory. The classical estimation of the Raman self-frequency shift is refined and expanded by a new relation for the amplitude loss arising with the Raman self-frequency shift. Furthermore, control pulses are identified which cancel soliton degradation due to Raman effect. In contrast to previously reported attempts with the interaction scheme under consideration, even parameter ranges are found which lead to a stable cancellation of the Raman effect. (4) New qualitative insights into the underlying process emerged. The prominent role of the self-steepening effect could be isolated. Though the pulse interaction is mediated by cross-phase modulation, the self-steepening effect causes an essential enhancement leading to much stronger changes in soliton parameters.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Zhiyong. "All-optical soliton control in photonic lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6907.

Full text
Abstract:
Los solitones ópticos son paquetes de luz (haces y/o pulsos) que no se dispersan gracias al balance entre difracción/dispersión y no linealidad. Al propagarse e interactuar los unos con los otros muestran propiedades que normalmente se asocian a partículas. Las propiedades de los solitones ópticos en fibras ópticas y cristales han sido investigadas en profundidad durante las últimas dos décadas. Sin embargo, los solitones en mallas, o redes, ópticas, que podrían ser usados para procesado y direccionamiento totalmente óptico de señales, se han convertido en una nueva área de investigación. El principal objetivo de esta tesis es el estudio de nuevas técnicas para controlar solitotes en medios no lineales en mallas ópticas.
El capítulo 2 se centra en ciertas propiedades de los solitones ópticos en medios no lineales cuadráticos. La primera sección presenta en detalle la existencia y estabilidad de tres familias representativas de solitones espacio temporales en dos dimensiones en series de frentes de onda cuadráticos no lineales. Se asume, además de la dispersión temporal del pulso, la combinación de difracción discreta que surge debido al acoplamiento débil entre frentes de onda vecinos. La otra sección da cuenta de la existencia y estabilidad de vórtices de solitones multicolores en retículo, consistentes en cuatro jorobas principales dispuestas en una configuración cuadrada. También se investiga la posibilidad de generarlos dinámicamente a partir de haces de entrada Gaussianos con vórtices anidados.
La técnica de inducción de mallas ópticas ofrece un sinfín de posibilidades para la creación de configuraciones de guía de ondas con varios haces de luz no difractantes. El capítulo 3 presenta el concepto de estructuras reconfigurables ópticamente inducidas por haces no difractantes de Bessel mutuamente incoherentes en medios no lineales de tipo Kerr. Los acopladores de dos nucleos son introducidos y se muestra cómo calibrar las propiedades de conmutación de estas estructuras variando la intensidad de los haces de Bessel. El capítulo también discute varios escenarios de conmutación para solitones lanzados al interior de acopladores direccionales multinucleares ópticamente inducidos por apropiadas series de haces de Bessel. Es más, la propagación de solitones es investigada en redes reconfigurables bidimensionales inducidas ópticamente por series de haces de Bessel no difractantes. Se muestra que los haces anchos de solitones pueden moverse a través de redes con diferentes topologías casi sin pérdidas por radiación. Finalmente, se estudian las propiedades de las uniones X, que se crean a partir de dos haces de Bessel intersectantes.
La respuesta no local de los medios no lineales puede jugar un papel importante en las propiedades de los solitones. El capítulo 4 trata el impacto de la no localidad en las características físicas exhibidas por los solitones que permiten los medios no lineales de tipo Kerr con una retícula óptica integrada. El capítulo investiga propiedades de diferentes familias de solitones en mallas en medios no lineales no locales. Se muestra que la no localidad de la respuesta no lineal puede afectar profundamente la movilidad de los solitones. Las propiedades de los solitones de gap también se discuten en el caso de cristales fotorefractivos con una respuesta de difusión no local asimétrica y en presencia de una malla inducida.
El capítulo 5 trata del impacto de la no localidad en la estabilidad de complejos de solitones en medios no lineales de tipo Kerr uniformes. En primer lugar, se muestra que la diferente respuesta no local de los materiales tiene distinta influencia en la estabilidad de los complejos de solitones en el caso escalar. En segundo lugar, se da cuenta de una serie de resultados experimentales sobre solitones multipolares escalares en medios no lineales fuertemente no locales en 2D, incluyendo solitones dipolares, tripolares y de tipo pajarita, organizados en series de puntos brillantes fuera de fase. Finalmente, el capítulo estudia la interacción entre la no linealidad no local y el acoplamiento vectorial, enfatizando especialmente la estabilización de efectos vectoriales en complejos de solitones en medios no lineales no locales.
Por último, el capítulo 6 resume los principales resultados obtenidos en la tesis y discute algunas cuestiones abiertas.
Optical solitons are light packets (beams and/or pulses) that do not broaden because of the proper balance between diffraction/dispersion and nonlinearity. They propagate and interact with one another while displaying properties that are normally associated with real particles. The properties of optical solitons in optical fibers and crystals have been investigated comprehensively during the last two decades. However, solitons in optical lattices, which might be used for all-optical signal processing and routing have recently emerged a new area of research. The main objective of this thesis is the investigation of new techniques for soliton control in nonlinear media with/without an imprinted optical lattice.
Chapter 2 focuses on properties of optical solitons in quadratic nonlinear media. The first section presents in detail the existence and stability of three representative families of two-dimensional spatiotemporal solitons in quadratic nonlinear waveguide arrays. It is assumed in addition to the temporal dispersion of the pulse, the combination of discrete diffraction that arises because of the weak coupling between neighboring waveguides. The other section reports on the existence and stability of multicolor lattice vortex solitons, which comprise four main humps arranged in a square configuration. It is also investigated the possibility of their dynamical generation from Gaussian-type input beams with nested vortices.
The technique of optical lattice induction opens a wealth of opportunities for creation of waveguiding configurations with various nondiffracting light beams. Chapter 3 puts forward the concept of reconfigurable structures optically induced by mutually incoherent nondiffracting Bessel beams in Kerr-type nonlinear media. Two-core couplers are introduced and it is shown how to tune the switching properties of such structures by varying the intensity of the Bessel beams. The chapter also discusses various switching scenarios for solitons launched into the multi core directional couplers optically-induced by suitable arrays of Bessel beams. Furthermore, propagation of solitons is investigated in reconfigurable two-dimensional networks induced optically by arrays of nondiffracting Bessel beams. It is shown that broad soliton beams can move across networks with different topologies almost without radiation losses. Finally, properties of X-junctions are studied, which are created with two intersecting Bessel beams.
Nonlocal response of nonlinear media can play an important role in properties of solitons. Chapter 4 treats the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. The chapter investigates properties of different families of lattice solitons in nonlocal nonlinear media. It is shown that the nonlocality of the nonlinear response can profoundly affect the soliton mobility. The properties of gap solitons are also discussed for photorefractive crystals with an asymmetric nonlocal diffusion response and in the presence of an imprinted optical lattice.
Chapter 5 is devoted to the impact of nonlocality on the stability of soliton complexes in uniform nonlocal Kerr-type nonlinear media. First, it is shown that the different nonlocal response of materials has different influence on the stability of soliton complexes in scalar case. Second, experimental work is reported on scalar multi-pole solitons in 2D highly nonlocal nonlinear media, including dipole, tripole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. Finally, the chapter addresses the interplay between nonlocal nonlinearity and vectoral coupling, specially emphasizing the stabilization of vector effects on soliton complexes in nonlocal nonlinear media.
Finally, Chapter 6 summarizes the main results obtained in the thesis and discusses some open prospects.
APA, Harvard, Vancouver, ISO, and other styles
7

GORNSZTEJN, TANIA. "SOLITON PROPAGATION IN OPTICAL FIBRES ANALYSIS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8751@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Neste trabalho, a propagação de sólitons em fibras óticas é analisada através de simulação numérica da equação não linear de Schrödinger, a qual descreve a propagação de pulsos óticos em fibras monomodo do tipo degrau. Uma vez que soluções analíticas para esta equação só podem ser obtidas em alguns casos específicos, implementaram-se dois métodos numéricos, possibilitando a análise da evolução de diferentes formas de pulsos incidentes ao longo de fibras com propriedades diversas de atenuação, dispersão e não linearidades. O método da propagação de Raios, cujo desempenho mostrou-se superior ao do método da série de Fourier, foi o escolhido para a obtenção dos resultados aqui apresentados. Várias características do sóliton fundamental, dos sólitons de ordens superiores, dos sólitons escuros e do fenômeno da interação entre pulsos adjacentes são apresentadas e discutidas, levando-se em consideração as possíveis implicações no desempenho de sistemas óticos. Contrabalançando os efeitos da dispersão da fibra com os efeitos não lineares da automodulações de fase, o que permite sua propagação sem alteração de forma, os sólitons encontram potencial aplicação na transmissão de altas taxas a longas distâncias.
In this work, soliton propagation in optical fibres is analysed by means of numerical simulation of the nonlinear Schrödinger equation, which governs optical pulse propagation in step-index monomode fibres. Since analytic solutions to this equation are admitted only for some specific cases, two numerical methods have been implemented in order to study the evolution of different kinds of input pulses, under the effects of attenuation, dispersion and nonlinearities. Showing a better performance than the Fourier Series Method in a comparative test, the Beam Propagation Method has been chosen to obtain the results here presented. Many characteristics of the fundamental, higher order and dark solitons, as well as interaction phenomena between adjacent pulses, are investigated, taking into account possible implications on optical systems performance. By properly counteracting the effects of fibre dispersion and nonlinearities, solitons can propagate without changing its shape, finding potential application in high bit-rate long distance optical communication systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Moores, John Demeritt. "All-optical soliton communication : devices and limitations." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12212.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.
Includes bibliographical references (leaves 140-157).
by John Demeritt Moores.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
9

Hori, Takashi, Norihiko Nishizawa, Hiroyuki Nagai, Makoto Yoshida, and Toshio Goto. "Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator." IEEE, 2001. http://hdl.handle.net/2237/6768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nishizawa, Norihiko, Youta Ito, and Toshio Goto. "0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber." IEEE, 2002. http://hdl.handle.net/2237/6769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Optical soliton"

1

Sadegh Amiri, Iraj, and Harith Ahmad. Optical Soliton Communication Using Ultra-Short Pulses. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-558-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sadegh Amiri, Iraj, Sayed Ehsan Alavi, and Sevia Mahdaliza Idrus. Soliton Coding for Secured Optical Communication Link. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-161-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hasegawa, Akira, ed. New Trends in Optical Soliton Transmission Systems. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5141-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amiri, Iraj Sadegh, and Abdolkarim Afroozeh. Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-197-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Daud, Suzairi, Sevia Mahdaliza Idrus, and Jalil Ali. Simulation of Optical Soliton Control in Micro- and Nanoring Resonator Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15485-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasegawa, Akira. New Trends in Optical Soliton Transmission Systems: Proceedings of the Symposium held in Kyoto, Japan, 18-21 November 1997. Dordrecht: Springer Netherlands, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akira, Hasegawa. Massive WDM and TDM soliton transmission systems: A ROSC symposium. New York: Kluwer Academic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abdullaev, F. Kh. Optical solitons. Berlin: Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Porsezian, K., and V. C. Kuriakose, eds. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abdullaev, Fatkhulla, Sergei Darmanyan, and Pulat Khabibullaev. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87716-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Optical soliton"

1

Town, G. E., N. N. Akhmediev, and J. M. Soto-Crespo. "Optical Fiber Soliton Lasers." In Optical Solitons, 265–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weinert-Raczka, E. "Solitons in Optical Switching Devices." In Soliton-driven Photonics, 397–421. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0682-8_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hasegawa, A. "Optical Soliton Theory and Its Applications in Communication." In Optical Solitons, 9–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leble, S. B. "Nonlinear Waves in Optical Waveguides and Soliton Theory Applications." In Optical Solitons, 71–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luther-Davies, Barry. "Spatial Solitons in Saturating Nonlinear Optical Materials." In Soliton-driven Photonics, 115–39. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0682-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasegawa, Akira. "Amplification of a Soliton — Application to the Optical Soliton Transmission System." In Optical Solitons in Fibers, 42–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-09113-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muskens, O. L., and J. I. Dijkhuis. "Propagation and Diffraction of Picosecond Acoustic Wave Packets in the Soliton Regime." In Optical Solitons, 391–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sadegh Amiri, Iraj, and Abdolkarim Afroozeh. "Soliton Generation Based Optical Communication." In Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton, 49–68. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-197-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, A. "Soliton Propagation in Optical Fibres." In Springer Series in Nonlinear Dynamics, 328–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73193-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hasegawa, Akira, and Masayuki Matsumoto. "All-Optical Soliton Transmission Systems." In Springer Series in Photonics, 61–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-46064-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optical soliton"

1

Suzuki, Masatoshi, Hidenori Taga, Noboru Edagawa, Hideaki Tanaka, Shu Yamamoto, and Shigeyuki Akiba. "10Gbit/s, 9100km Soliton Data Transmission With Alternating-Amplitude Solitons Without Inline Soliton Controls." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/oaa.1993.pd1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serkin, V. N., Akira Hasegawa, and T. L. Belyaeva. "Soliton management: from optical solitons to matter-wave solitons." In SPIE Proceedings, edited by Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva, and Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.727102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubota, H., and M. Nakazawa. "Subterabit soliton transmission using soliton control." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1994. http://dx.doi.org/10.1364/ofc.1994.wm1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tajima, Kazuhito. "Optical soliton fibers." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.thk28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakazawa, Masataka. "Soliton Systems." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/oaa.1997.to13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sugawa, T., K. Kurokawa, H. Kubota, and M. Nakazawa. "Polarization dependence of soliton interactions and soliton self-frequency shift in a femtosecond soliton transmission." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ofc.1995.fb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meulenberg, A. "The photonic soliton." In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Al F. Kracklauer, and Hans De Raedt. SPIE, 2013. http://dx.doi.org/10.1117/12.2022001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakazawa, Masataka. "Dynamic soliton communication." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1991. http://dx.doi.org/10.1364/ofc.1991.thl1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hansen, P. B., U. Koren, and G. Raybon. "Monolithic semiconductor soliton transmitter." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1994. http://dx.doi.org/10.1364/ofc.1994.wb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Town, G. E., J. Chow, A. J. Robertson, and M. Romagnoli. "Sliding-frequency soliton laser." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ofc.1995.thm7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Optical soliton"

1

Peyghambarian, Nasser, and Irina Talanina. Novel Scheme of All-Optical Signal Switching in Semiconductor NLDC: Self-Induced Transparency Soliton Switch. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada342599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Willner, Allan E., and Paniz Ebrahimi. Using a Recirculating Fiber Loop to Determine the Limitations Placed on Ultra-High-Performance Soliton and Linear Optical Systems by Polarization Mode Dispersion. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fork, Richard L. Exploring Coupled Solitons in Multi-Core Optical Fiber. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada299184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sauer, Jon R., and Mark J. Ablowitz. Multi-Gb/s Computer Interconnect Using Optical Solitons. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada301163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaup, D. J., and B. A. Malomed. Gap Solitons in Assymmetric Dual-Core Nonlinear Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada342070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gerdjikov, Vladimir. Perturbed Complex Toda Chain and Soliton Interactions in Nonlinear Optics. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-79-93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Druhl, Kai J. Solitons in Stimulated Raman Scattering: Generation and Control of Ultrashort Optical Pulses. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada165744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography