Academic literature on the topic 'Optical soliton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical soliton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optical soliton"
BISWAS, ANJAN. "SOLITON–SOLITON INTERACTION IN OPTICAL FIBERS." Journal of Nonlinear Optical Physics & Materials 08, no. 04 (December 1999): 483–95. http://dx.doi.org/10.1142/s0218863599000369.
Full textPENG, GANG-DING, and ADRIAN ANKIEWICZ. "FUNDAMENTAL AND SECOND-ORDER SOLITION TRANSMISSION IN NONLINEAR DIRECTIONAL FIBER COUPLERS." Journal of Nonlinear Optical Physics & Materials 01, no. 01 (January 1992): 135–50. http://dx.doi.org/10.1142/s021819919200008x.
Full textXIAO, YAN, ZHIYONG XU, LU LI, ZHONGHAO LI, and GUOSHENG ZHOU. "SOLITON PROPAGATION IN NONUNIFORM OPTICAL FIBERS." Journal of Nonlinear Optical Physics & Materials 12, no. 03 (September 2003): 341–48. http://dx.doi.org/10.1142/s0218863503001444.
Full textBhrawy, A. H., A. A. Alshaery, E. M. Hilal, Wayne N. Manrakhan, Michelle Savescu, and Anjan Biswas. "Dispersive optical solitons with Schrödinger–Hirota equation." Journal of Nonlinear Optical Physics & Materials 23, no. 01 (March 2014): 1450014. http://dx.doi.org/10.1142/s0218863514500143.
Full textSeadawy, Aly R., and Mujahid Iqbal. "Optical soliton solutions for nonlinear complex Ginzburg–Landau dynamical equation with laws of nonlinearity Kerr law media." International Journal of Modern Physics B 34, no. 19 (July 27, 2020): 2050179. http://dx.doi.org/10.1142/s0217979220501799.
Full textDai, Chao-Qing, Hai-Ping Zhu, and Chun-Long Zheng. "Tunnelling Effects of Solitons in Optical Fibers with Higher-Order Effects." Zeitschrift für Naturforschung A 67, no. 6-7 (July 1, 2012): 338–46. http://dx.doi.org/10.5560/zna.2012-0033.
Full textXiao, Zi-Jian, Bo Tian, Xiao-Yu Wu, Lei Liu, and Yan Sun. "Soliton interactions of a (2+1)-dimensional nonlinear Schrödinger equation in a nonlinear photonic quasicrystal or Kerr medium." Modern Physics Letters B 31, no. 22 (August 10, 2017): 1750130. http://dx.doi.org/10.1142/s0217984917501305.
Full textSun, Ya, Bo Tian, Yu-Feng Wang, Yun-Po Wang, and Zhi-Ruo Huang. "Bright solitons and their interactions of the (3 + 1)-dimensional coupled nonlinear Schrödinger system for an optical fiber." Modern Physics Letters B 29, no. 35n36 (December 30, 2015): 1550245. http://dx.doi.org/10.1142/s0217984915502450.
Full textKonyukhov, Andrey I. "Transformation of Eigenvalues of the Zakharov–Shabat Problem under the Effect of Soliton Collision." Izvestiya of Saratov University. New series. Series: Physics 20, no. 4 (2020): 248–57. http://dx.doi.org/10.18500/1817-3020-2020-20-4-248-257.
Full textYin, Hui-Min, Bo Tian, Hui-Ling Zhen, Jun Chai, and Xiao-Yu Wu. "Bright optical solitons or light bullets for a (3 + 1)-dimensional generalized nonlinear Schrödinger equation with the distributed coefficients." Modern Physics Letters B 30, no. 25 (September 20, 2016): 1650306. http://dx.doi.org/10.1142/s0217984916503061.
Full textDissertations / Theses on the topic "Optical soliton"
Horikis, Theodore. "Soliton radiation in optical fibre." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251957.
Full textYu, Charles Xiao 1973. "Soliton squeezing in optical fibers." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86587.
Full textIncludes bibliographical references (p. 113-122).
by Charles Xiao Yu.
Ph.D.
Khatri, Farzana Ibrahim. "Optical soliton propagation and control." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40224.
Full textIncludes bibliographical references (leaves 122-130).
by Farzana Ibrahim Khatri.
Ph.D.
Semaan, Georges. "Soliton dynamics in fiber lasers : from dissipative soliton to dissipative soliton resonance." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0029/document.
Full textIn this thesis, we investigate experimentally the generation of high energy nanosecond tunable square pulses and high output power ultrashort pulses in fiber lasers. First, since pulse dynamics are dominated by the interaction of the fiber's cubic Kerr nonlinearity and chromatic dispersion with an intensity-discriminating mechanism referred to as a saturable absorber, the stability of a harmonic mode-locked distribution is studied by external injection of a continuous wave. Finally, we implemented nanomaterial based saturable absorbers in fiber laser configuration to generate ultrashort pulses with high average output power. Different techniques of achieving such components are explicitly detailed: ultrashort pulse generation in ring cavities where graphene and topological insulators are deposited on optical tapers to form a saturable absorber
Pickartz, Sabrina. "All-optical control of fiber solitons." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19468.
Full textThis work discusses the problem how to control an optical soliton propagating along a non- linear fiber. The approach chosen here is to change soliton delay, duration and intensity in a simple, predictable manner by applying low-intensity velocity-matched dispersive light waves. A new analytic theory of cross-phase modulation interactions of solitons with dispersive control waves is presented which combines quantum mechanical scattering theory, a modified soliton perturbation theory and a multi-scale approach. This led to the following new results: (1) The evolution of all soliton parameters is correctly predicted. In particular the possible amplitude enhancement of solitons is successfully quantified, which could not be obtained by the standard formulation of the soliton perturbation theory. (2) General ranges for control parameters are quantitatively determined, which ensure an effective interaction. (3) The Raman effect is incorporated into the theory. The classical estimation of the Raman self-frequency shift is refined and expanded by a new relation for the amplitude loss arising with the Raman self-frequency shift. Furthermore, control pulses are identified which cancel soliton degradation due to Raman effect. In contrast to previously reported attempts with the interaction scheme under consideration, even parameter ranges are found which lead to a stable cancellation of the Raman effect. (4) New qualitative insights into the underlying process emerged. The prominent role of the self-steepening effect could be isolated. Though the pulse interaction is mediated by cross-phase modulation, the self-steepening effect causes an essential enhancement leading to much stronger changes in soliton parameters.
Xu, Zhiyong. "All-optical soliton control in photonic lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6907.
Full textEl capítulo 2 se centra en ciertas propiedades de los solitones ópticos en medios no lineales cuadráticos. La primera sección presenta en detalle la existencia y estabilidad de tres familias representativas de solitones espacio temporales en dos dimensiones en series de frentes de onda cuadráticos no lineales. Se asume, además de la dispersión temporal del pulso, la combinación de difracción discreta que surge debido al acoplamiento débil entre frentes de onda vecinos. La otra sección da cuenta de la existencia y estabilidad de vórtices de solitones multicolores en retículo, consistentes en cuatro jorobas principales dispuestas en una configuración cuadrada. También se investiga la posibilidad de generarlos dinámicamente a partir de haces de entrada Gaussianos con vórtices anidados.
La técnica de inducción de mallas ópticas ofrece un sinfín de posibilidades para la creación de configuraciones de guía de ondas con varios haces de luz no difractantes. El capítulo 3 presenta el concepto de estructuras reconfigurables ópticamente inducidas por haces no difractantes de Bessel mutuamente incoherentes en medios no lineales de tipo Kerr. Los acopladores de dos nucleos son introducidos y se muestra cómo calibrar las propiedades de conmutación de estas estructuras variando la intensidad de los haces de Bessel. El capítulo también discute varios escenarios de conmutación para solitones lanzados al interior de acopladores direccionales multinucleares ópticamente inducidos por apropiadas series de haces de Bessel. Es más, la propagación de solitones es investigada en redes reconfigurables bidimensionales inducidas ópticamente por series de haces de Bessel no difractantes. Se muestra que los haces anchos de solitones pueden moverse a través de redes con diferentes topologías casi sin pérdidas por radiación. Finalmente, se estudian las propiedades de las uniones X, que se crean a partir de dos haces de Bessel intersectantes.
La respuesta no local de los medios no lineales puede jugar un papel importante en las propiedades de los solitones. El capítulo 4 trata el impacto de la no localidad en las características físicas exhibidas por los solitones que permiten los medios no lineales de tipo Kerr con una retícula óptica integrada. El capítulo investiga propiedades de diferentes familias de solitones en mallas en medios no lineales no locales. Se muestra que la no localidad de la respuesta no lineal puede afectar profundamente la movilidad de los solitones. Las propiedades de los solitones de gap también se discuten en el caso de cristales fotorefractivos con una respuesta de difusión no local asimétrica y en presencia de una malla inducida.
El capítulo 5 trata del impacto de la no localidad en la estabilidad de complejos de solitones en medios no lineales de tipo Kerr uniformes. En primer lugar, se muestra que la diferente respuesta no local de los materiales tiene distinta influencia en la estabilidad de los complejos de solitones en el caso escalar. En segundo lugar, se da cuenta de una serie de resultados experimentales sobre solitones multipolares escalares en medios no lineales fuertemente no locales en 2D, incluyendo solitones dipolares, tripolares y de tipo pajarita, organizados en series de puntos brillantes fuera de fase. Finalmente, el capítulo estudia la interacción entre la no linealidad no local y el acoplamiento vectorial, enfatizando especialmente la estabilización de efectos vectoriales en complejos de solitones en medios no lineales no locales.
Por último, el capítulo 6 resume los principales resultados obtenidos en la tesis y discute algunas cuestiones abiertas.
Optical solitons are light packets (beams and/or pulses) that do not broaden because of the proper balance between diffraction/dispersion and nonlinearity. They propagate and interact with one another while displaying properties that are normally associated with real particles. The properties of optical solitons in optical fibers and crystals have been investigated comprehensively during the last two decades. However, solitons in optical lattices, which might be used for all-optical signal processing and routing have recently emerged a new area of research. The main objective of this thesis is the investigation of new techniques for soliton control in nonlinear media with/without an imprinted optical lattice.
Chapter 2 focuses on properties of optical solitons in quadratic nonlinear media. The first section presents in detail the existence and stability of three representative families of two-dimensional spatiotemporal solitons in quadratic nonlinear waveguide arrays. It is assumed in addition to the temporal dispersion of the pulse, the combination of discrete diffraction that arises because of the weak coupling between neighboring waveguides. The other section reports on the existence and stability of multicolor lattice vortex solitons, which comprise four main humps arranged in a square configuration. It is also investigated the possibility of their dynamical generation from Gaussian-type input beams with nested vortices.
The technique of optical lattice induction opens a wealth of opportunities for creation of waveguiding configurations with various nondiffracting light beams. Chapter 3 puts forward the concept of reconfigurable structures optically induced by mutually incoherent nondiffracting Bessel beams in Kerr-type nonlinear media. Two-core couplers are introduced and it is shown how to tune the switching properties of such structures by varying the intensity of the Bessel beams. The chapter also discusses various switching scenarios for solitons launched into the multi core directional couplers optically-induced by suitable arrays of Bessel beams. Furthermore, propagation of solitons is investigated in reconfigurable two-dimensional networks induced optically by arrays of nondiffracting Bessel beams. It is shown that broad soliton beams can move across networks with different topologies almost without radiation losses. Finally, properties of X-junctions are studied, which are created with two intersecting Bessel beams.
Nonlocal response of nonlinear media can play an important role in properties of solitons. Chapter 4 treats the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. The chapter investigates properties of different families of lattice solitons in nonlocal nonlinear media. It is shown that the nonlocality of the nonlinear response can profoundly affect the soliton mobility. The properties of gap solitons are also discussed for photorefractive crystals with an asymmetric nonlocal diffusion response and in the presence of an imprinted optical lattice.
Chapter 5 is devoted to the impact of nonlocality on the stability of soliton complexes in uniform nonlocal Kerr-type nonlinear media. First, it is shown that the different nonlocal response of materials has different influence on the stability of soliton complexes in scalar case. Second, experimental work is reported on scalar multi-pole solitons in 2D highly nonlocal nonlinear media, including dipole, tripole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. Finally, the chapter addresses the interplay between nonlocal nonlinearity and vectoral coupling, specially emphasizing the stabilization of vector effects on soliton complexes in nonlocal nonlinear media.
Finally, Chapter 6 summarizes the main results obtained in the thesis and discusses some open prospects.
GORNSZTEJN, TANIA. "SOLITON PROPAGATION IN OPTICAL FIBRES ANALYSIS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8751@1.
Full textNeste trabalho, a propagação de sólitons em fibras óticas é analisada através de simulação numérica da equação não linear de Schrödinger, a qual descreve a propagação de pulsos óticos em fibras monomodo do tipo degrau. Uma vez que soluções analíticas para esta equação só podem ser obtidas em alguns casos específicos, implementaram-se dois métodos numéricos, possibilitando a análise da evolução de diferentes formas de pulsos incidentes ao longo de fibras com propriedades diversas de atenuação, dispersão e não linearidades. O método da propagação de Raios, cujo desempenho mostrou-se superior ao do método da série de Fourier, foi o escolhido para a obtenção dos resultados aqui apresentados. Várias características do sóliton fundamental, dos sólitons de ordens superiores, dos sólitons escuros e do fenômeno da interação entre pulsos adjacentes são apresentadas e discutidas, levando-se em consideração as possíveis implicações no desempenho de sistemas óticos. Contrabalançando os efeitos da dispersão da fibra com os efeitos não lineares da automodulações de fase, o que permite sua propagação sem alteração de forma, os sólitons encontram potencial aplicação na transmissão de altas taxas a longas distâncias.
In this work, soliton propagation in optical fibres is analysed by means of numerical simulation of the nonlinear Schrödinger equation, which governs optical pulse propagation in step-index monomode fibres. Since analytic solutions to this equation are admitted only for some specific cases, two numerical methods have been implemented in order to study the evolution of different kinds of input pulses, under the effects of attenuation, dispersion and nonlinearities. Showing a better performance than the Fourier Series Method in a comparative test, the Beam Propagation Method has been chosen to obtain the results here presented. Many characteristics of the fundamental, higher order and dark solitons, as well as interaction phenomena between adjacent pulses, are investigated, taking into account possible implications on optical systems performance. By properly counteracting the effects of fibre dispersion and nonlinearities, solitons can propagate without changing its shape, finding potential application in high bit-rate long distance optical communication systems.
Moores, John Demeritt. "All-optical soliton communication : devices and limitations." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12212.
Full textIncludes bibliographical references (leaves 140-157).
by John Demeritt Moores.
Ph.D.
Hori, Takashi, Norihiko Nishizawa, Hiroyuki Nagai, Makoto Yoshida, and Toshio Goto. "Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator." IEEE, 2001. http://hdl.handle.net/2237/6768.
Full textNishizawa, Norihiko, Youta Ito, and Toshio Goto. "0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber." IEEE, 2002. http://hdl.handle.net/2237/6769.
Full textBooks on the topic "Optical soliton"
Sadegh Amiri, Iraj, and Harith Ahmad. Optical Soliton Communication Using Ultra-Short Pulses. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-558-7.
Full textSadegh Amiri, Iraj, Sayed Ehsan Alavi, and Sevia Mahdaliza Idrus. Soliton Coding for Secured Optical Communication Link. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-161-9.
Full textHasegawa, Akira, ed. New Trends in Optical Soliton Transmission Systems. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5141-2.
Full textAmiri, Iraj Sadegh, and Abdolkarim Afroozeh. Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-197-8.
Full textDaud, Suzairi, Sevia Mahdaliza Idrus, and Jalil Ali. Simulation of Optical Soliton Control in Micro- and Nanoring Resonator Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15485-5.
Full textHasegawa, Akira. New Trends in Optical Soliton Transmission Systems: Proceedings of the Symposium held in Kyoto, Japan, 18-21 November 1997. Dordrecht: Springer Netherlands, 1998.
Find full textAkira, Hasegawa. Massive WDM and TDM soliton transmission systems: A ROSC symposium. New York: Kluwer Academic, 2002.
Find full textPorsezian, K., and V. C. Kuriakose, eds. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3.
Full textAbdullaev, Fatkhulla, Sergei Darmanyan, and Pulat Khabibullaev. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87716-2.
Full textBook chapters on the topic "Optical soliton"
Town, G. E., N. N. Akhmediev, and J. M. Soto-Crespo. "Optical Fiber Soliton Lasers." In Optical Solitons, 265–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_13.
Full textWeinert-Raczka, E. "Solitons in Optical Switching Devices." In Soliton-driven Photonics, 397–421. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0682-8_45.
Full textHasegawa, A. "Optical Soliton Theory and Its Applications in Communication." In Optical Solitons, 9–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_2.
Full textLeble, S. B. "Nonlinear Waves in Optical Waveguides and Soliton Theory Applications." In Optical Solitons, 71–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_4.
Full textLuther-Davies, Barry. "Spatial Solitons in Saturating Nonlinear Optical Materials." In Soliton-driven Photonics, 115–39. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0682-8_16.
Full textHasegawa, Akira. "Amplification of a Soliton — Application to the Optical Soliton Transmission System." In Optical Solitons in Fibers, 42–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-09113-5_6.
Full textMuskens, O. L., and J. I. Dijkhuis. "Propagation and Diffraction of Picosecond Acoustic Wave Packets in the Soliton Regime." In Optical Solitons, 391–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3_18.
Full textSadegh Amiri, Iraj, and Abdolkarim Afroozeh. "Soliton Generation Based Optical Communication." In Ring Resonator Systems to Perform Optical Communication Enhancement Using Soliton, 49–68. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-197-8_4.
Full textKumar, A. "Soliton Propagation in Optical Fibres." In Springer Series in Nonlinear Dynamics, 328–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73193-8_22.
Full textHasegawa, Akira, and Masayuki Matsumoto. "All-Optical Soliton Transmission Systems." In Springer Series in Photonics, 61–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-46064-0_6.
Full textConference papers on the topic "Optical soliton"
Suzuki, Masatoshi, Hidenori Taga, Noboru Edagawa, Hideaki Tanaka, Shu Yamamoto, and Shigeyuki Akiba. "10Gbit/s, 9100km Soliton Data Transmission With Alternating-Amplitude Solitons Without Inline Soliton Controls." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/oaa.1993.pd1.
Full textSerkin, V. N., Akira Hasegawa, and T. L. Belyaeva. "Soliton management: from optical solitons to matter-wave solitons." In SPIE Proceedings, edited by Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva, and Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.727102.
Full textKubota, H., and M. Nakazawa. "Subterabit soliton transmission using soliton control." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1994. http://dx.doi.org/10.1364/ofc.1994.wm1.
Full textTajima, Kazuhito. "Optical soliton fibers." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.thk28.
Full textNakazawa, Masataka. "Soliton Systems." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/oaa.1997.to13.
Full textSugawa, T., K. Kurokawa, H. Kubota, and M. Nakazawa. "Polarization dependence of soliton interactions and soliton self-frequency shift in a femtosecond soliton transmission." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ofc.1995.fb1.
Full textMeulenberg, A. "The photonic soliton." In SPIE Optical Engineering + Applications, edited by Chandrasekhar Roychoudhuri, Al F. Kracklauer, and Hans De Raedt. SPIE, 2013. http://dx.doi.org/10.1117/12.2022001.
Full textNakazawa, Masataka. "Dynamic soliton communication." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1991. http://dx.doi.org/10.1364/ofc.1991.thl1.
Full textHansen, P. B., U. Koren, and G. Raybon. "Monolithic semiconductor soliton transmitter." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1994. http://dx.doi.org/10.1364/ofc.1994.wb1.
Full textTown, G. E., J. Chow, A. J. Robertson, and M. Romagnoli. "Sliding-frequency soliton laser." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ofc.1995.thm7.
Full textReports on the topic "Optical soliton"
Peyghambarian, Nasser, and Irina Talanina. Novel Scheme of All-Optical Signal Switching in Semiconductor NLDC: Self-Induced Transparency Soliton Switch. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada342599.
Full textWillner, Allan E., and Paniz Ebrahimi. Using a Recirculating Fiber Loop to Determine the Limitations Placed on Ultra-High-Performance Soliton and Linear Optical Systems by Polarization Mode Dispersion. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416674.
Full textFork, Richard L. Exploring Coupled Solitons in Multi-Core Optical Fiber. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada299184.
Full textSauer, Jon R., and Mark J. Ablowitz. Multi-Gb/s Computer Interconnect Using Optical Solitons. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada301163.
Full textKaup, D. J., and B. A. Malomed. Gap Solitons in Assymmetric Dual-Core Nonlinear Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada342070.
Full textGerdjikov, Vladimir. Perturbed Complex Toda Chain and Soliton Interactions in Nonlinear Optics. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-79-93.
Full textDruhl, Kai J. Solitons in Stimulated Raman Scattering: Generation and Control of Ultrashort Optical Pulses. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada165744.
Full text