To see the other types of publications on this topic, follow the link: Optical thin films.

Journal articles on the topic 'Optical thin films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical thin films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nakayama, T., H. Murotani, and T. Harada. "Optical characteristics and mechanical properties of optical thin films on weathered substrates." Chinese Optics Letters 11, S1 (2013): S10301. http://dx.doi.org/10.3788/col201311.s10301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kryuchyn, A. A. "High-speed optical recording in vitreous chalcogenide thin films." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 4 (November 10, 2014): 389–93. http://dx.doi.org/10.15407/spqeo17.04.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al-dujayli, Sundus M. A., and Nathera A. Al- Tememee. "Optical study of effect of thiourea on CdS thin films." Indian Journal of Applied Research 3, no. 3 (October 1, 2011): 336–40. http://dx.doi.org/10.15373/2249555x/mar2013/114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krupka, Oksana, Vitaliy Smokal, Sergey Studzinsky, Nikolay Davidenko, and Angelina Biitseva. "Electro-Optical Properties in Thin Films of New Azobenzene Polymers." Chemistry & Chemical Technology 9, no. 2 (May 15, 2015): 137–41. http://dx.doi.org/10.23939/chcht09.02.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Studenyak, I. P. "Optical studies of as-deposited and annealed Cu7GeS5I thin films." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 2 (July 6, 2016): 192–96. http://dx.doi.org/10.15407/spqeo19.02.192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Babichuk, I. S. "Thin films of Cu2ZnSnS4 for solar cells: optical and structural properties." Functional materials 20, no. 2 (June 25, 2013): 186–91. http://dx.doi.org/10.15407/fm20.02.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lysiuk, V. O. "Optical properties of ion implanted thin Ni films on lithium niobate." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 1 (February 28, 2011): 59–61. http://dx.doi.org/10.15407/spqeo14.01.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boltovets, P. M. "Effect of microwave radiation on optical characteristics of thin gold films." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 2 (June 30, 2011): 209–12. http://dx.doi.org/10.15407/spqeo14.02.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vuichyk, M. V. "Morphologic and optical characterization of ZnO:Co thin films grown by PLD." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 1 (March 31, 2014): 80–84. http://dx.doi.org/10.15407/spqeo17.01.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peng, Qian, Yadong Qiao, and Yang Liu. "Temperature-dependent optical properties of low-loss plasmonic SrMoO3 thin films." Chinese Optics Letters 21, no. 5 (2023): 053601. http://dx.doi.org/10.3788/col202321.053601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yan, Lei, Qinyong He, Ziyao Gong, Yunqi Yang, Anping Ge, Guohong Ma, Ye Dai, Liaoxin Sun, and Saifeng Zhang. "Ultrafast nonlinear optical absorption and carrier dynamics of CrPS4 thin films." Chinese Optics Letters 22, no. 11 (2024): 111901. http://dx.doi.org/10.3788/col202422.111901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gunkel, Claus. "Properties of Optical Thin Films." Vakuum in Forschung und Praxis 7, no. 2 (1995): 121–34. http://dx.doi.org/10.1002/vipr.19950070207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gauthier, Robert. "Optical thin films, users' handbook." Optics and Lasers in Engineering 10, no. 1 (January 1989): 75–76. http://dx.doi.org/10.1016/0143-8166(89)90057-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schoenes, J., M. Rode, H. Schröter, D. Zur, and A. Borgschulte. "Optical properties of () thin films." Journal of Alloys and Compounds 404-406 (December 2005): 453–56. http://dx.doi.org/10.1016/j.jallcom.2004.10.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Journal, Baghdad Science. "Optical Properties for SeTe Thin Films." Baghdad Science Journal 5, no. 4 (December 7, 2008): 577–80. http://dx.doi.org/10.21123/bsj.5.4.577-580.

Full text
Abstract:
Chalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .
APA, Harvard, Vancouver, ISO, and other styles
16

Journal, Baghdad Science. "Optical properties of CdO thin films." Baghdad Science Journal 7, no. 1 (March 7, 2010): 10–13. http://dx.doi.org/10.21123/bsj.7.1.10-13.

Full text
Abstract:
Cadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.
APA, Harvard, Vancouver, ISO, and other styles
17

Hasan, Bushra A., Issam M. Ibrahim, and Salma M. Shaban. "Effect the Thickness on Structural and Optical Paramteres of PbSe Thin Films." Indian Journal of Applied Research 3, no. 3 (October 1, 2011): 327–29. http://dx.doi.org/10.15373/2249555x/mar2013/111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

F. Y. Al-Shaikley, F. Y. Al-Shaikley. "Electrical and Optical Properties Dependence on Annealing Temperature for CdS Thin Films." Indian Journal of Applied Research 3, no. 5 (October 1, 2011): 544–48. http://dx.doi.org/10.15373/2249555x/may2013/176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sieryk, M. M. "The influence of temperature on optical properties of merocyanine dye thin films." Semiconductor Physics Quantum Electronics and Optoelectronics 16, no. 1 (February 28, 2013): 91–96. http://dx.doi.org/10.15407/spqeo16.01.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lysiuk, V. O. "Modification of optical properties and structure of thin films for enhancing absorption." Semiconductor Physics Quantum Electronics and Optoelectronics 17, no. 2 (June 30, 2014): 209–12. http://dx.doi.org/10.15407/spqeo17.02.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Studenyak, I. P. "Temperature studies of optical parameters in (Ag3AsS3)0.6(As2S3)0.4 thin films." Semiconductor Physics Quantum Electronics and Optoelectronics 18, no. 2 (June 8, 2015): 188–92. http://dx.doi.org/10.15407/spqeo18.02.188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ahmed, Nagham Yassin. "Effect of Boron on Structural, Optical Characterization of Nanostructured Fe2O3 thin Films." Neuroquantology 18, no. 6 (June 20, 2020): 55–60. http://dx.doi.org/10.14704/nq.2020.18.6.nq20183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Martínez, J., F. Retana, and I. Gómez. "Polythiophene/graphene oxide thin films: optical properties." Digest Journal of Nanomaterials and Biostructures 19, no. 3 (August 19, 2024): 1199–205. http://dx.doi.org/10.15251/djnb.2024.193.1199.

Full text
Abstract:
Thin films of polythiophene/graphene oxide (PTh/GO) were prepared using chronoamperometry. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (FESEM), UV-Vis spectroscopy, and photoluminescence spectroscopy (PL) were used for characterization purposes. PTh and PTh/GO thin films were achieved through chronoamperometry at a constant anodic potential of +1.9 V vs. Ag/AgCl. The PTh/GO thin films exhibited visible light absorption. The thicknesses of the thin films were approximately 2.42 µm.
APA, Harvard, Vancouver, ISO, and other styles
24

Kadhim, Bahjat B., and Ali Zamil Manshad. "Optical Properties of Perovskite Thin Film." Al-Mustansiriyah Journal of Science 30, no. 1 (August 15, 2019): 174. http://dx.doi.org/10.23851/mjs.v30i1.564.

Full text
Abstract:
Methyl-ammonium lead tri iodide (CH3NH3PbI3) perovskite thin films have been prepared by solution processing. Thin film after deposited in the laboratory ambient conditions by drop casting, it prepared by two step method PbI2 and CH3NH3I at the glass substrate. The analysis provides: the absorption coefficient, extinction coefficient, refractive indices, real and imaginary components of the dielectric constant of the CH3 NH3 PbI3 films, energy gap. Energy gap of perovskite thin films is reached 1.8 that is very important for solar cell application.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Baozhong, Tianbai He, Mengxian Ding, Ping Zhang, Fubin Gao, and Feng Jing. "Optical anisotropy of flexible polyimide thin films." Journal of Materials Research 13, no. 5 (May 1998): 1368–72. http://dx.doi.org/10.1557/jmr.1998.0194.

Full text
Abstract:
Optical anisotropy of thin films of an organo-soluble flexible polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2-dimethyl-4,4′-methylene dianiline (DMMDA) was detected by a prism-coupler technique. A mechanism is proposed, based on the model of gel film collapse. The degrees of optical anisotropy of the thin films were evaluated via the level of negative birefringence. The residual solvent in the films lessens the levels of negative birefringence so that the residual solvent must be evacuated. The levels of negative birefringence are independent on the solid content of the initial solution, but dependent on the thickness of the films. For a film of 16 μm thick, zero birefringence was achieved, postulated from the dependence of negative birefringence on the thickness of thin films. The relationship between the optical anisotropy and solution properties shows that the degrees of optical anisotropy of thin films on the same scale of thickness depend on macromolecular sizes in their dilute solutions.
APA, Harvard, Vancouver, ISO, and other styles
26

Siddanna, Shivakumar, G. B. Devidas, B. S. Nischit, K. Naveenkumar, and S. M. Hanagodimath. "Optical Studies of Silver Oxide Deposited Thin Films Using the RF Sputtering Technique." Indian Journal Of Science And Technology 17, no. 40 (October 31, 2024): 4138–43. http://dx.doi.org/10.17485/ijst/v17i40.1079.

Full text
Abstract:
Background/Objectives: Silver Oxide is an efficient material because it is used in batteries. Apart from this, it is a moderate oxidizing agent in a variety of processes including the oxidation of aldehydes to carboxylic acids. The objective of the study is to synthesize silver oxide films by RF sputtering technique so that synthesized films can be inserted in the spectrophotometer for optical study. Methods: Silver Oxide films were deposited on Fluorine-doped Tin Oxide (FTO) glass using Radio Frequency (RF) sputtering method and annealed at 200 °C, for two hours, and then it was used in DK2 Ratio recording Spectrophotometer to analyze absorption and transmission data. Findings: The thickness of the films was measured using a non-contact optical Profilometer, in the range of (42– 660) nm. The films were subsequently exposed to optical characterization, revealing exceptionally low transmittance and high absorbance. The band gap is estimated to be 2.2 eV. The X-ray diffraction (XRD) studies reveal that the material is crystalline and Miller indices have also been determined. The morphology and topography of the thin films were analyzed using Field Emission Scanning Electron Microscope (FESEM) and the chemical composition was estimated using EDS. Novelty: The present work reveals that the optical properties are highly dependent on the thickness and the material distribution. The direct band gap energy is evaluated from the absorption spectrum which comes out to be 2.2 eV. The XRD spectra synthesized Silver Oxide films are crystalline in nature. Keywords: Silver Oxide, Band gap, XRD, FESEM
APA, Harvard, Vancouver, ISO, and other styles
27

Korzun, Barys, Marin Rusu, Thomas Dittrich, Anatoly Galyas, and Andrey Gavrilenko. "Optical Properties of Thin Films of Haycockite." MRS Advances 4, no. 37 (2019): 2023–33. http://dx.doi.org/10.1557/adv.2019.273.

Full text
Abstract:
ABSTRACTThin films of haycockite Cu4Fe5S8 on glass substrates were deposited by flash evaporation technique from powders of this compound. The composition of thin films correspond to the atomic content of Cu, Fe, and S of 24.13, 27.90, and 47.97 at.% with the Cu/ Fe and S/ (Cu + Fe) atomic ratios of 0.87 and 0.92 respectively, whereas the corresponding theoretical values for this material amount to 0.80 and 0.89. The as-prepared thin films of haycockite consist of a set of separate fractions of approximately identical areas of about 400 - 600 μm2. It can be assumed that this structure evolved during cooling down of thin films since it completely covers the surface of thin films. A small inclusion of a second phase with the chemical composition close to talnakhite Cu9Fe8S16 is also observed. Haycockite Cu4Fe5S8 is found to be a direct gap semiconductor with the energy band gap Eg equal to 1.26 eV as determined using both transmission and surface photovoltage methods.
APA, Harvard, Vancouver, ISO, and other styles
28

Ibrahim, Sundus S., Ziad T. Khodair, and Adnan A. Mohammed. "Effect of Molar Concentration on the Structural and Optical Properties of the Cd2SnO4 Thin Films." NeuroQuantology 20, no. 2 (April 1, 2022): 129–36. http://dx.doi.org/10.14704/nq.2022.20.2.nq22080.

Full text
Abstract:
In this paper, cadmium stannate (Cd2SnO4) thin films at four different molar concentrations (1:1, 2:1, 3:1, and 4:1) were prepared at a temperature of (400 oC) using a chemical spray pyrolysis technique and have a thickness of about 400±10 nm. XRD patterns of the prepared thin films showed that the thin films have both a polycrystalline and a cubic structure. FE-SEM and AFM were used to investigate the surface morphology of Cd2SnO4 thin films. The measurement of absorbance and transmittance spectra for films in the range of 300–900 nm was part of the optical properties research. The effect of various molar concentrations of these films on transmittance was investigated, and the results revealed a decrease in transmittance. The allowed direct electronic transmission optical energy gap was calculated, and it was discovered that it decreases as the molar concentrations increase, with a value ranging between (2.61-2.91) eV.
APA, Harvard, Vancouver, ISO, and other styles
29

JIANG, Li-Feng, Wen-Zhong SHEN, and Qi-Xin GUO. "Optical properties of AlInN thin films." JOURNAL OF INFRARED AND MILLIMETER WAVES 30, no. 3 (March 19, 2012): 207–11. http://dx.doi.org/10.3724/sp.j.1010.2011.00207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

GOMI, Manabu. "Thin Films for Magneto-Optical Applications." Journal of the Ceramic Society of Japan 99, no. 1154 (1991): 852–61. http://dx.doi.org/10.2109/jcersj.99.852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kurachi, T., T. Yamaguchi, E. Kobayashi, T. Soma, A. Ohtomo, and T. Makino. "Optical properties of LiNbO2 thin films." Physica B: Condensed Matter 621 (November 2021): 413259. http://dx.doi.org/10.1016/j.physb.2021.413259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ammar, A. H., and H. S. Soliman. "Optical Properties of Thin Palladium Films." Journal of Optics 23, no. 2 (June 1994): 73–81. http://dx.doi.org/10.1007/bf03549269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

OGURA, Shigetaro. "Special Issue on “Optical Thin Films”." Review of Laser Engineering 24, no. 1 (1996): 1–2. http://dx.doi.org/10.2184/lsj.24.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

MACLEOD, H. Angus. "Recent Trends in Optical Thin Films." Review of Laser Engineering 24, no. 1 (1996): 3–10. http://dx.doi.org/10.2184/lsj.24.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

FLORY, François, Hervé RIGNEAULT, J. MASSANEDA, and Serge MONNERET. "Optical Waveguide Characterization of Thin Films." Review of Laser Engineering 24, no. 1 (1996): 94–102. http://dx.doi.org/10.2184/lsj.24.94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

El-Raheem, M. M. Abd. "Optical properties of GeSeTl thin films." Journal of Physics: Condensed Matter 19, no. 21 (April 27, 2007): 216209. http://dx.doi.org/10.1088/0953-8984/19/21/216209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gupta, Mool C. "Optical constant determination of thin films." Applied Optics 27, no. 5 (March 1, 1988): 954. http://dx.doi.org/10.1364/ao.27.000954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Akhmedov, O. R., M. G. Guseinaliyev, N. A. Abdullaev, N. M. Abdullaev, S. S. Babaev, and N. A. Kasumov. "Optical properties of PbS thin films." Semiconductors 50, no. 1 (January 2016): 50–53. http://dx.doi.org/10.1134/s1063782616010036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bodnar, I. V. "Optical properties of In2Se3 thin films." Semiconductors 50, no. 6 (June 2016): 715–18. http://dx.doi.org/10.1134/s1063782616060026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

de las Heras, C., and G. Lifante. "Optical parameters of pyrite thin films." Journal of Applied Physics 82, no. 10 (November 15, 1997): 5132–37. http://dx.doi.org/10.1063/1.366316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Buchal, Christoph, and Markus Siegert. "Ferroelectric thin films for optical applications." Integrated Ferroelectrics 35, no. 1-4 (February 2001): 1–10. http://dx.doi.org/10.1080/10584580108016881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kovalenko, S. A. "Optical properties of thin metal films." Semiconductor Physics, Quantum Electronics and Optoelectronics 2, no. 3 (September 12, 1999): 13–20. http://dx.doi.org/10.15407/spqeo2.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kovalenko, S. A. "Optical properties of thin gold films." Semiconductor Physics, Quantum Electronics and Optoelectronics 3, no. 3 (June 16, 2000): 383–88. http://dx.doi.org/10.15407/spqeo3.03.383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Remillard, J. T., W. H. Weber, J. R. McBride, and R. E. Soltis. "Optical studies of PdO thin films." Journal of Applied Physics 71, no. 9 (May 1992): 4515–22. http://dx.doi.org/10.1063/1.350797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Willey, Ronald R., Audrius Valavičius, and Fred T. Goldstein. "Designing with very thin optical films." Applied Optics 59, no. 5 (February 6, 2020): A213. http://dx.doi.org/10.1364/ao.383929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Welsch, E., and D. Ristau. "Photothermal measurements on optical thin films." Applied Optics 34, no. 31 (November 1, 1995): 7239. http://dx.doi.org/10.1364/ao.34.007239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Buchenko, Viktor V., Tatiana V. Rodionova, Anastasia S. Sutyagina, Andrey A. Goloborodko, Volodymyr V. Multian, Andrii V. Uklein, and Volodymyr Ya Gayvoronsky. "Optical properties of thin nanosilicon films." Optical Materials 62 (December 2016): 612–20. http://dx.doi.org/10.1016/j.optmat.2016.10.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sharma, A., Deepak, Satyendra Kumar, M. Katiyar, A. K. Saxena, A. Ranjan, and R. K. Tiwari. "Optical characterization of polysilane thin films." Synthetic Metals 139, no. 3 (October 2003): 835–37. http://dx.doi.org/10.1016/s0379-6779(03)00297-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rosu, D., P. Petrik, G. Rattmann, M. Schellenberger, U. Beck, and A. Hertwig. "Optical characterization of patterned thin films." Thin Solid Films 571 (November 2014): 601–4. http://dx.doi.org/10.1016/j.tsf.2013.11.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Franta, Daniel, Ivan Ohlı́dal, Miloslav Frumar, and Jaroslav Jedelský. "Optical characterization of chalcogenide thin films." Applied Surface Science 175-176 (May 2001): 555–61. http://dx.doi.org/10.1016/s0169-4332(01)00148-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography