Academic literature on the topic 'Optically active polymer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optically active polymer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optically active polymer"
AOKI, Toshiki, and Eizo OIKAWA. "Optical Resolution by Optically Active Polymer Membrane." Kobunshi 44, no. 9 (1995): 621. http://dx.doi.org/10.1295/kobunshi.44.621.
Full textOISHI, Tsutomu, and Kenjiro ONIMURA. "Chiral Chromatography with Optically Active Polymer." Kobunshi 54, no. 8 (2005): 558–61. http://dx.doi.org/10.1295/kobunshi.54.558.
Full textin het Panhuis, Marc, Raquel Sainz, Peter C. Innis, Leon A. P. Kane-Maguire, Ana M. Benito, M. Teresa Martínez, Simon E. Moulton, Gordon G. Wallace, and Wolfgang K. Maser. "Optically Active Polymer Carbon Nanotube Composite." Journal of Physical Chemistry B 109, no. 48 (December 2005): 22725–29. http://dx.doi.org/10.1021/jp053025z.
Full textYuan, Chao, Ping Liu, Long Hua Chen, and Yuan Zhang. "Radical Polymerization of a Novel Methacrylamide Derivative." Advanced Materials Research 1095 (March 2015): 359–62. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.359.
Full textVilela, Sérgio M. F., Artem A. Babaryk, Rim Jaballi, Fabrice Salles, Marta E. G. Mosquera, Zakaria Elaoud, Stijn Van Cleuvenbergen, Thierry Verbiest, and Patricia Horcajada. "A Nonlinear Optically Active Bismuth-Camphorate Coordination Polymer." European Journal of Inorganic Chemistry 2018, no. 20-21 (May 18, 2018): 2437–43. http://dx.doi.org/10.1002/ejic.201800197.
Full textMuto, Shinzo, Tomoyasu Sakagami, Yoshihiko Sakane, Akira Namazue, Eisuke Nihei, and Yasuhiro Koike. "TE-TM Mode Converter Using Optically Active Polymer." Optical Review 3, no. 2 (March 1996): 120–23. http://dx.doi.org/10.1007/s10043-996-0120-8.
Full textBuckley, L. J., and G. C. Neumeister. "Fiber optic strain measurements using an optically-active polymer." Smart Materials and Structures 1, no. 1 (March 1, 1992): 1–4. http://dx.doi.org/10.1088/0964-1726/1/1/001.
Full textMorisaki, Yasuhiro, Kentaro Suzuki, Hiroaki Imoto, and Yoshiki Chujo. "P-Stereogenic Optically Active Polymer and the Complexation Behavior." Macromolecular Chemistry and Physics 212, no. 24 (October 31, 2011): 2603–11. http://dx.doi.org/10.1002/macp.201100432.
Full textGe, Chang Hong, Feng Xian Qiu, Xiao Xian Gu, and Dong Ya Yang. "Synthesis, Photoisomerization and Thermo-Optic Property of Azo Optically Active Polymer." Materials Science Forum 663-665 (November 2010): 41–44. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.41.
Full textJintoku, Hirokuni, Momoko Dateki, Makoto Takafuji, and Hirotaka Ihara. "Supramolecular gel-functionalized polymer films with tunable optical activity." Journal of Materials Chemistry C 3, no. 7 (2015): 1480–83. http://dx.doi.org/10.1039/c4tc02948h.
Full textDissertations / Theses on the topic "Optically active polymer"
Singfield, Kathy L. (Kathy Lee). "Crystallization and morphology of optically active polyethers." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40257.
Full textThe spherulite radial growth rates of the melt-crystallized PECH equimolar polyenantiomer blend are depressed relative to those of either optically pure components over the range of crystallization temperatures from the glass transition temperature ($T sb{ rm g} = -26 sp circ$C) to the equilibrium melting temperature ($T sb{ rm m} sp circ = 138 sp circ$C), which were determined to be the same for all of the PECH polymers. A further marked reduction in growth rates is recorded for the stereoblock polymer. Conversion of the PECH polyenantiomers to PPrO results in an overall order of magnitude increase in the spherulite radial growth rates. The growth rates of the PPrO stereoblock are only slightly depressed relative to those of either optically pure polyenantiomer over the range of crystallization temperatures from $T sb{ rm g}({-}65 sp circ$C) to $T sb{ rm m} sp circ(82 sp circ$C), which were determined to be the same for all of the PPrO polymers. An analysis of the linear spherulite radial growth rates of the PECH polymers in terms of the Hoffman-Lauritzen treatment gives evidence of a rougher lamellar fold surface in the stereoblock polymer than in the polyenantiomers, but suggests similar surface free energies among the polyenantiomers and stereoblock form of PPrO.
The multiple melting behavior exhibited by the different forms of PECH is greatly dependent on DSC heating rate and isothermal crystallization time, for samples crystallized at low temperatures and high temperatures, respectively. The behavior is demonstrated to be due to reorganization during the DSC heating scan in the former case, and linked to the process of secondary crystallization in the latter.
The optically pure polyenantiomers, their equimolar blend, and the stereoblock form of PPrO exhibit regularly banded spherulites, observed using PLOM. In contrast, only the optically active polyenantiomers of PECH form banded spherulites, whereas the equimolar polyenantiomer blend and the stereoblock display nonbanded, coarser spherulites. The birefringent extinction banding pattern of the PECH optically pure polyenantiomer spherulites corresponds directly to the surface topography mapped by AFM: Regularly alternating concentric ridges and valleys indicate the edges and the fold surfaces, respectively, of the radiating helicoidal lamellae. The direction or "sense" of an apparent surface spiral pattern of a banded spherulite is directly dependent on the chiral sense of the constituent polyenantiomer. It is suggested that the effects of the backbone chirality are being transmitted to the level of the gross spherulite morphology.
On the basis of the observed differences in crystallization kinetics and spherulite morphology among the well characterized PECH polymers, a mechanism of stereospecific segregation at the growth front is proposed.
Goutte, Pascale. "Synthese et proprietes de polyoxirannes et polythiirannes porteurs de fonctions aldehyde potentielles." Paris 6, 1988. http://www.theses.fr/1988PA066266.
Full textLaguerre, Albert. "Oligomerisation et fonctionnalisation en serie methacrylique : greffage d'acides alpha amines." Le Mans, 1987. http://www.theses.fr/1987LEMA1017.
Full textMauriello, Francesco <1980>. "Optically active photoresponsive multifunctional polymeric materials." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/711/.
Full textKoch, Alexander. "Nonlinearly optically active liquid crystalline main-chain polymers." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621785.
Full textMcCann, Jennifer L. "A vibrational circular dichroism study of optically active polymers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34685.pdf.
Full textJana, Satyasankar. "Novel synthesis of carbon-carbon mainchain optically active polymers." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415300.
Full textKelly, Elizabeth Jane. "Investigations of optically active polymeric chiral stationary phases." Thesis, University of Warwick, 1997. http://wrap.warwick.ac.uk/78770/.
Full textTerada, Kayo. "Synthesis and Properties of Amino Acid-derived Optically Active Polymers." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/77990.
Full text0048
新制・課程博士
博士(工学)
甲第14642号
工博第3110号
新制||工||1463(附属図書館)
26994
UT51-2009-D354
京都大学大学院工学研究科高分子化学専攻
(主査)教授 中條 善樹, 教授 木村 俊作, 准教授 三田 文雄
学位規則第4条第1項該当
Ouchi, Yuko. "Synthesis of optically active polymers consisting of chiral phosphorus atoms." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136251.
Full textBooks on the topic "Optically active polymer"
Dutta, Pradip K., and Vinod Kumar. Optically Active Polymers. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2606-5.
Full textKelly, Elizabeth Jane. Investigations of optically active polymeric chiral stationary phases. [s.l.]: typescript, 1997.
Find full textEurophysics Conference on Macromolecular Physics (21st 1989 Łodź, Poland). Electrical and optical active polymers: Structure, morphology, and properties. Edited by Kryszewski Marian, Ulański J, European Physical Society. Macromolecular Physics Section., Politechnika Łódzka Instytut Polimerów, Politechnika Łódzka. Polymer Physics Laboratory., and Centrum Badań Molekularnych i Makromolekularnych (Polska Akademia Nauk). Polymer Physics Dept. Geneva: European Physical Society, 1989.
Find full textBryant, Richard. Optically active polymers, organometallics, and biomolecular materials/devices: A technical/economic analysis. Norwalk, CT: Business Communications Co., 1991.
Find full textBrédas, J. L. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials. Dordrecht: Springer Netherlands, 1991.
Find full textShibaev, Valery P. Polymers as Electrooptical and Photooptical Active Media. Springer, 2011.
Find full textP, Shibaev V., ed. Polymers as electrooptical and photooptical active media. Berlin: Springer, 1996.
Find full text1954-, Brédas J. L., and Silbey Robert J, eds. Conjugated polymers: The novel science and technology of highly conducting and nonlinear optically active materials. Dordrecht: Kluwer Academic Publishers, 1991.
Find full text(Editor), J. L. Brédas, and R. Silbey (Editor), eds. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials. Springer, 1991.
Find full textBook chapters on the topic "Optically active polymer"
Nozaki, Kyoko. "Optically Active Polyketones." In Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis, 407–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118063965.ch14.
Full textSasabe, H., T. Wada, H. Ookawa, M. Hosoda, M. Sekiya, A. Yamada, and A. F. Garito. "Nonlinear Optically Active Polymers for Waveguide Application." In Progress in Pacific Polymer Science, 193–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84115-6_24.
Full textLavallee, Claude, Daniel Grenier, Robert E. Prud’homme, Alain Leborgne, and Nicolas Spassky. "Synthesis and Properties of Racemic and Optically Active Substituted Poly(β-Propiolactones)." In Advances in Polymer Synthesis, 441–60. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2121-7_22.
Full textHu, Qiao-Sheng, and Lin Pu. "Optically Active Polymer and Dendrimer Synthesis and their Use in Asymmetric Catalysis." In Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis, 323–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118063965.ch11.
Full textZhang, J. Z., M. A. Kreger, E. H. Goka, L. Pu, Q. S. Hu, D. Vitharana, and L. J. Rothberg. "Femtosecond Studies of Exciton Dynamics in a Novel Optically Active Conjugated Polymer." In Springer Series in Chemical Physics, 284–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_123.
Full textGooch, Jan W. "Optically-Active Polymers." In Encyclopedic Dictionary of Polymers, 504. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8220.
Full textFujiki, Michiya, and Julian R. Koe. "Optically Active Silicon-Containing Polymers." In Silicon-Containing Polymers, 643–65. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3939-7_24.
Full textOkamoto, Yoshio, Eiji Yashima, and Chiyo Yamamoto. "Optically Active Polymers with Chiral Recognition Ability." In Materials-Chirality, 157–208. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471471895.ch3.
Full textWulff, Günter. "Optically Active Vinyl Polymers with Backbone Chirality." In Recent Advances in Mechanistic and Synthetic Aspects of Polymerization, 399–408. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3989-9_32.
Full textBuckley, A., and J. B. Stamatoff. "Non Linear Optical Polymers for Active Optical Devices." In Nonlinear Optical Effects in Organic Polymers, 327–36. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2295-2_25.
Full textConference papers on the topic "Optically active polymer"
Huyal, Ilkem Ozge, Tuncay Ozel, Donus Tuncel, and Hilmi Volkan Demir. "Optically active bi-polymer hetero-nanoparticles." In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society (LEO). IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343275.
Full textYang, E. H., Y. Hishinuma, J. Su, T. B. Xu, R. Morgan, and Z. Chang. "Active Membrane Using Electrostructure Graft Elastomer for Deployable and Lightweight Mirrors." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43541.
Full textKulkarni, Sudhir, Kunal Mitra, and Swaminathan Ramesh. "Optical Performance of a Hybrid Nano-Polymer Solar Cell." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41509.
Full textDomakonda, S., L. Gouti, S. Earles, C. Baum, S. Ramesh, and K. Mitra. "Characterization of Hybrid-Nano Polymer Solar Cell." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12895.
Full textJung, Erik, Dirk Wojakowski, Alexander Neumann, Andreas Ostmann, Rolf Aschenbrenner, and Herbert Reichl. "Chip in Polymer: 3D Integration of Active Circuitry in Polymeric Substrate." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35025.
Full textPaiva, Laura Simonassi Raso de, Leonardo Evaristo de Sousa, and Pedro Henrique de Oliveira Neto. "Energy transport in conjugated polymers: electronic structure and kinetic Monte Carlo simulations." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202076.
Full textWysokiński, Karol, Marta Filipowicz, Tomasz Stańczyk, Stanisław Lipiński, Marek Napierała, Michał Murawski, and Tomasz Nasiłowski. "Active polymer materials for optical fiber CO2 sensors." In 25th International Conference on Optical Fiber Sensors, edited by Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura, and Libo Yuan. SPIE, 2017. http://dx.doi.org/10.1117/12.2265623.
Full textTsujita, Yuichi. "Plastic optical fiber and polymer waveguide for active optical cable." In Ultra-High-Definition Imaging Systems IV, edited by Toyohiko Yatagai, Yasuhiro Koike, and Seizo Miyata. SPIE, 2021. http://dx.doi.org/10.1117/12.2585366.
Full textNumata, Hidetoshi, Masao Tokunari, and Jean Benoit Heroux. "60-micrometer Pitch Polymer Waveguide Array attached Active Optical Flex." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ofc.2017.w1a.5.
Full textJungwirth, Matthew E. L., Christopher C. Wilcox, David V. Wick, Michael S. Baker, Clinton G. Hobart, Jared J. Milinazzo, Joseph Robichaud, et al. "Large-aperture active optical carbon fiber reinforced polymer mirror." In SPIE Defense, Security, and Sensing, edited by Thomas George, M. Saif Islam, and Achyut K. Dutta. SPIE, 2013. http://dx.doi.org/10.1117/12.2020722.
Full text