To see the other types of publications on this topic, follow the link: Optics and Photonics.

Journal articles on the topic 'Optics and Photonics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optics and Photonics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Hongfei, Xiujuan Zhang, Jinguo Hua, Dangyuan Lei, Minghui Lu, and Yanfeng Chen. "Topological physics of non-Hermitian optics and photonics: a review." Journal of Optics 23, no. 12 (October 25, 2021): 123001. http://dx.doi.org/10.1088/2040-8986/ac2e15.

Full text
Abstract:
Abstract The notion of non-Hermitian optics and photonics rooted in quantum mechanics and photonic systems has recently attracted considerable attention ushering in tremendous progress on theoretical foundations and photonic applications, benefiting from the flexibility of photonic platforms. In this review, we first introduce the non-Hermitian topological physics from the symmetry of matrices and complex energy spectra to the characteristics of Jordan normal forms, exceptional points, biorthogonal eigenvectors, Bloch/non-Bloch band theories, topological invariants and topological classifications. We further review diverse non-Hermitian system branches ranging from classical optics, quantum photonics to disordered systems, nonlinear dynamics and optomechanics according to various physical equivalences and experimental implementations. In particular, we include cold atoms in optical lattices in quantum photonics due to their operability at quantum regimes. Finally, we summarize recent progress and limitations in this emerging field, giving an outlook on possible future research directions in theoretical frameworks and engineering aspects.
APA, Harvard, Vancouver, ISO, and other styles
2

Hsu, Chung-Yu, Gow-Zin Yiu, and You-Chia Chang. "Free-Space Applications of Silicon Photonics: A Review." Micromachines 13, no. 7 (June 24, 2022): 990. http://dx.doi.org/10.3390/mi13070990.

Full text
Abstract:
Silicon photonics has recently expanded its applications to delivering free-space emissions for detecting or manipulating external objects. The most notable example is the silicon optical phased array, which can steer a free-space beam to achieve a chip-scale solid-state LiDAR. Other examples include free-space optical communication, quantum photonics, imaging systems, and optogenetic probes. In contrast to the conventional optical system consisting of bulk optics, silicon photonics miniaturizes an optical system into a photonic chip with many functional waveguiding components. By leveraging the mature and monolithic CMOS process, silicon photonics enables high-volume production, scalability, reconfigurability, and parallelism. In this paper, we review the recent advances in beam steering technologies based on silicon photonics, including optical phased arrays, focal plane arrays, and dispersive grating diffraction. Various beam-shaping technologies for generating collimated, focused, Bessel, and vortex beams are also discussed. We conclude with an outlook of the promises and challenges for the free-space applications of silicon photonics.
APA, Harvard, Vancouver, ISO, and other styles
3

Shi, Peng, Luping Du, and Xiaocong Yuan. "Spin photonics: from transverse spin to photonic skyrmions." Nanophotonics 10, no. 16 (October 21, 2021): 3927–43. http://dx.doi.org/10.1515/nanoph-2021-0046.

Full text
Abstract:
Abstract Spin angular momentum associated with circular polarization is a fundamental and important aspect of photons both in classical and quantum optics. The interaction of this optical spin with matter and structures results in many intriguing optical effects and state-of-the-art applications covered under the emerging subject of spin optics. Distinct from longitudinal optical spin along the mean wavevector, transverse spin, the corresponding vector of which is perpendicular to the mean wavevector, prevails and plays a significant role in confined electromagnetic waves such as focused beams, guided waves, and evanescent waves. In the optical near-field, these transverse spins are generated owing to the spatial variation of the kinetic momentum of confined electromagnetic waves, where the spin and orbital angular momenta are strongly coupled, leading to many interesting topological spin structures and properties. Several reviews on optical transverse spins have been published in recent years in which their concepts and the various configurations producing them were introduced systematically. Here, we introduce in this review the underlying physics and dynamics of transverse spin and the resultant topological structures and properties such as the photonic skyrmions and merons. We term this sub-area ‘spin photonics’, its scope being to cover the design and research of spin structures in strongly confined electromagnetic fields with unique properties and applications. The concepts and framework reviewed have importance in optics, topological photonics, metrology, and quantum technologies and may be used to extend spin-dynamics concepts to fluidic, acoustic, and gravitational waves.
APA, Harvard, Vancouver, ISO, and other styles
4

Kazanskiy, Nikolai Lvovich, and Muhammad Ali Butt. "One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 85. http://dx.doi.org/10.4302/plp.v12i3.1044.

Full text
Abstract:
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF ReferencesB. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
5

Mara, Dimitrije, Bojana Bokic, Thierry Verbiest, Sébastien R. Mouchet, and Branko Kolaric. "Revealing the Wonder of Natural Photonics by Nonlinear Optics." Biomimetics 7, no. 4 (October 5, 2022): 153. http://dx.doi.org/10.3390/biomimetics7040153.

Full text
Abstract:
Nano-optics explores linear and nonlinear phenomena at the nanoscale to advance fundamental knowledge about materials and their interaction with light in the classical and quantum domains in order to develop new photonics-based technologies. In this perspective article, we review recent progress regarding the application of nonlinear optical methods to reveal the links between photonic structures and functions of natural photonic geometries. Furthermore, nonlinear optics offers a way to unveil and exploit the complexity of the natural world for developing new materials and technologies for the generation, detection, manipulation, and storage of light at the nanoscale, as well as sensing, metrology, and communication.
APA, Harvard, Vancouver, ISO, and other styles
6

Harris, Nicholas C., Darius Bunandar, Mihir Pant, Greg R. Steinbrecher, Jacob Mower, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg, and Dirk Englund. "Large-scale quantum photonic circuits in silicon." Nanophotonics 5, no. 3 (August 1, 2016): 456–68. http://dx.doi.org/10.1515/nanoph-2015-0146.

Full text
Abstract:
AbstractQuantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes.Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.
APA, Harvard, Vancouver, ISO, and other styles
7

Novack, Ari, Matt Streshinsky, Ran Ding, Yang Liu, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg. "Progress in silicon platforms for integrated optics." Nanophotonics 3, no. 4-5 (August 1, 2014): 205–14. http://dx.doi.org/10.1515/nanoph-2013-0034.

Full text
Abstract:
AbstractRapid progress has been made in recent years repurposing CMOS fabrication tools to build complex photonic circuits. As the field of silicon photonics becomes more mature, foundry processes will be an essential piece of the ecosystem for eliminating process risk and allowing the community to focus on adding value through clever design. Multi-project wafer runs are a useful tool to promote further development by providing inexpensive, low-risk prototyping opportunities to academic and commercial researchers. Compared to dedicated silicon manufacturing runs, multi-project-wafer runs offer cost reductions of 100× or more. Through OpSIS, we have begun to offer validated device libraries that allow designers to focus on building systems rather than modifying device geometries. The EDA tools that will enable rapid design of such complex systems are under intense development. Progress is also being made in developing practical optical and electronic packaging solutions for the photonic chips, in ways that eliminate or sharply reduce development costs for the user community. This paper will provide a review of the recent developments in silicon photonic foundry offerings with a focus on OpSIS, a multi-project-wafer foundry service offering a silicon photonics platform, including a variety of passive components as well as high-speed modulators and photodetectors, through the Institute of Microelectronics in Singapore.
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Yifan, and Yang Li. "Integrated lithium niobate photonics." Nanophotonics 9, no. 6 (April 28, 2020): 1287–320. http://dx.doi.org/10.1515/nanoph-2020-0013.

Full text
Abstract:
AbstractLithium niobate (LiNbO3) on insulator (LNOI) is a promising material platform for integrated photonics due to single crystal LiNbO3 film’s wide transparent window, high refractive index, and high second-order nonlinearity. Based on LNOI, the fast-developing ridge-waveguide fabrication techniques enabled various structures, devices, systems, and applications. We review the basic structures including waveguides, cavities, periodically poled LiNbO3, and couplers, along with their fabrication methods and optical properties. Treating those basic structures as building blocks, we review several integrated devices including electro-optic modulators, nonlinear optical devices, and optical frequency combs with each device’s operating mechanism, design principle and methodology, and performance metrics. Starting from these integrated devices, we review how integrated LNOI devices boost the performance of LiNbO3’s traditional applications in optical communications and data center, integrated microwave photonics, and quantum optics. Beyond those traditional applications, we also review integrated LNOI devices’ novel applications in metrology including ranging system and frequency comb spectroscopy. Finally, we envision integrated LNOI photonics’ potential in revolutionizing nonlinear and quantum optics, optical computing and signal processing, and devices in ultraviolet, visible, and mid-infrared regimes. Beyond this outlook, we discuss the challenges in integrated LNOI photonics and the potential solutions.
APA, Harvard, Vancouver, ISO, and other styles
9

Wada, Kazumi. "A New Approach of Electronics and Photonics Convergence on Si CMOS Platform: How to Reduce Device Diversity of Photonics for Integration." Advances in Optical Technologies 2008 (July 7, 2008): 1–7. http://dx.doi.org/10.1155/2008/807457.

Full text
Abstract:
Integrated photonics via Si CMOS technology has been a strategic area since electronics and photonics convergence should be the next platform for information technology. The platform is recently referred to as “Si photonics” that attracts much interest of researchers in industries as well as academia in the world. The main goal of Si Photonics is currently to reduce material diversity of photonic devices to pursuing CMOS-compatibility. In contrast, the present paper proposes another route of Si Photonics, reducing diversity of photonic devices. The proposed device unifying functionality of photonics is a microresonator with a pin diode structure that enables the Purcell effect and Franz-Keldysh effect to emit and to modulate light from SiGe alloys.
APA, Harvard, Vancouver, ISO, and other styles
10

Vatarescu, Andre. "Instantaneous Quantum Description of Photonic Wavefronts and Applications." Quantum Beam Science 6, no. 4 (September 30, 2022): 29. http://dx.doi.org/10.3390/qubs6040029.

Full text
Abstract:
Three physical elements are missing from the conventional formalism of quantum photonics: (1) the quantum Rayleigh spontaneous and stimulated emissions; (2) the unavoidable parametric amplification; and (3) the mixed time-frequency spectral structure of a photonic field which specifies its duration or spatial extent. As a single photon enters a dielectric medium, the quantum Rayleigh scattering prevents it from propagating in a straight-line, thereby destroying any possible entanglement. A pure dynamic and coherent state composed of two consecutive number states, delivers the correct expectation values for the number of photons carried by a photonic wave front, its complex optical field, and phase quadratures. The intrinsic longitudinal and lateral field profiles associated with a group of photons for any instantaneous number of photons are independent of the source. These photonic properties enable a step-by-step analysis of the correlation functions characterizing counting of coincident numbers of photons or intensities with unity visibility interference, spanning the classical and quantum optic regimes.
APA, Harvard, Vancouver, ISO, and other styles
11

Gasulla, Ivana, and Mable P. Fok. "Special Issue “Microwave Photonics 2018”." Applied Sciences 10, no. 2 (January 18, 2020): 674. http://dx.doi.org/10.3390/app10020674.

Full text
Abstract:
Bringing together the worlds of radiofrequency and optics engineering, the interdisciplinary field of microwave photonics (MWP) pursues the generation, processing, and distribution of microwave and millimeter-wave signals by photonic means [...]
APA, Harvard, Vancouver, ISO, and other styles
12

Yang, Yang, Hsun-Chi Chan, Ke Bi, Gaoyan Duan, Maoxin Liu, Haoyi Wang, and Liangsheng Li. "Optical forces in photonic Weyl system." New Journal of Physics 24, no. 4 (April 1, 2022): 043019. http://dx.doi.org/10.1088/1367-2630/ac5e88.

Full text
Abstract:
Abstract Topological photonics has attracted extensive attention, since it allows for a platform to explore and exploit versatile nano-optics systems. In particular, the ideal Weyl metamaterials have recently been demonstrated with fascinating phenomena such as chiral zero mode and negative refraction. In this work, we apply the photonic Weyl metamateirals into the optical tweezers. Based on the effective medium approach, the optical force generated by the body state of the Weyl metamaterial is systematically investigated. Interestingly, theoretical results show that for oblique incidence, the optical force spectra present a valley around Weyl frequency with zero magnitude exactly at the Weyl frequency, and the forces show strong optical circular dichroism. In addition, due to the bi-anisotropic properties, transmissions through the Weyl metamaterial exhibit a significant linear-to-circular polarization conversion and the transmitted wavefront acquires spin momenta of photons, which induces abnormal force on chiral particles. Our study may provide potential applications in the optical manipulations, polarization conversions, and wavefront engineering optics.
APA, Harvard, Vancouver, ISO, and other styles
13

Nur-E-Alam, Mohammad, Mikhail Vasiliev, Kamal Alameh, and Viacheslav Kotov. "Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics." Advances in Optical Technologies 2011 (August 2, 2011): 1–7. http://dx.doi.org/10.1155/2011/971267.

Full text
Abstract:
Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu)3(Fe, Ga/Al)5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.
APA, Harvard, Vancouver, ISO, and other styles
14

Miri, Mohammad-Ali, and Andrea Alù. "Exceptional points in optics and photonics." Science 363, no. 6422 (January 3, 2019): eaar7709. http://dx.doi.org/10.1126/science.aar7709.

Full text
Abstract:
Exceptional points are branch point singularities in the parameter space of a system at which two or more eigenvalues, and their corresponding eigenvectors, coalesce and become degenerate. Such peculiar degeneracies are distinct features of non-Hermitian systems, which do not obey conservation laws because they exchange energy with the surrounding environment. Non-Hermiticity has been of great interest in recent years, particularly in connection with the quantum mechanical notion of parity-time symmetry, after the realization that Hamiltonians satisfying this special symmetry can exhibit entirely real spectra. These concepts have become of particular interest in photonics because optical gain and loss can be integrated and controlled with high resolution in nanoscale structures, realizing an ideal playground for non-Hermitian physics, parity-time symmetry, and exceptional points. As we control dissipation and amplification in a nanophotonic system, the emergence of exceptional point singularities dramatically alters their overall response, leading to a range of exotic optical functionalities associated with abrupt phase transitions in the eigenvalue spectrum. These concepts enable ultrasensitive measurements, superior manipulation of the modal content of multimode lasers, and adiabatic control of topological energy transfer for mode and polarization conversion. Non-Hermitian degeneracies have also been exploited in exotic laser systems, new nonlinear optics schemes, and exotic scattering features in open systems. Here we review the opportunities offered by exceptional point physics in photonics, discuss recent developments in theoretical and experimental research based on photonic exceptional points, and examine future opportunities in this area from basic science to applied technology.
APA, Harvard, Vancouver, ISO, and other styles
15

Feist, Armin, Guanhao Huang, Germaine Arend, Yujia Yang, Jan-Wilke Henke, Arslan Sajid Raja, F. Jasmin Kappert, et al. "Cavity-mediated electron-photon pairs." Science 377, no. 6607 (August 12, 2022): 777–80. http://dx.doi.org/10.1126/science.abo5037.

Full text
Abstract:
Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip–based optical microresonator. Spontaneous inelastic scattering produces intracavity photons coincident with energy-shifted electrons, which we employ for noise-suppressed optical mode imaging. This parametric pair-state preparation will underpin the future development of free-electron quantum optics, providing a route to quantum-enhanced imaging, electron-photon entanglement, and heralded single-electron and Fock-state photon sources.
APA, Harvard, Vancouver, ISO, and other styles
16

Koshelev, Kirill, Gael Favraud, Andrey Bogdanov, Yuri Kivshar, and Andrea Fratalocchi. "Nonradiating photonics with resonant dielectric nanostructures." Nanophotonics 8, no. 5 (March 27, 2019): 725–45. http://dx.doi.org/10.1515/nanoph-2019-0024.

Full text
Abstract:
AbstractNonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of light-matter interaction at the nanoscale. This review paper provides a general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical anapoles and photonic bound states in the continuum. We discuss a brief history of these states in optics, as well as their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-Q resonances, nonlinear wave mixing, and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.
APA, Harvard, Vancouver, ISO, and other styles
17

Lessard, Roger A. "Could Photonics Kill Optics?" Optical Engineering 39, no. 3 (March 1, 2000): 585. http://dx.doi.org/10.1117/1.602402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shore, K. Alan. "Nonlinear optics and photonics." Contemporary Physics 56, no. 4 (January 9, 2015): 477–79. http://dx.doi.org/10.1080/00107514.2014.999706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pustelny, Tadeusz. "The 13th conference on Integrated Optics - Sensors, Sensing Structures and Methods IOS'2018." Photonics Letters of Poland 10, no. 1 (March 31, 2018): 1. http://dx.doi.org/10.4302/plp.v10i1.807.

Full text
Abstract:
The conference covers the topical areas of optics, optoelectronics and photonics in the following aspects: fundamental and applied research, physics and technical, materials, components and devices, circuits and systems, technological and design, construction and manufacturing of photonic devices and systems, and metrology.
APA, Harvard, Vancouver, ISO, and other styles
20

Sirleto, Luigi, and Giancarlo C. Righini. "An Introduction to Nonlinear Integrated Photonics: Structures and Devices." Micromachines 14, no. 3 (March 7, 2023): 614. http://dx.doi.org/10.3390/mi14030614.

Full text
Abstract:
The combination of integrated optics technologies with nonlinear photonics, which has led to growth of nonlinear integrated photonics, has also opened the way to groundbreaking new devices and applications. In a companion paper also submitted for publication in this journal, we introduce the main physical processes involved in nonlinear photonics applications and discuss the fundaments of this research area. The applications, on the other hand, have been made possible by availability of suitable materials with high nonlinear coefficients and/or by design of guided-wave structures that can enhance a material’s nonlinear properties. A summary of the traditional and innovative nonlinear materials is presented there. Here, we discuss the fabrication processes and integration platforms, referring to semiconductors, glasses, lithium niobate, and two-dimensional materials. Various waveguide structures are presented. In addition, we report several examples of nonlinear photonic integrated devices to be employed in optical communications, all-optical signal processing and computing, or in quantum optics. We aimed at offering a broad overview, even if, certainly, not exhaustive. However, we hope that the overall work will provide guidance for newcomers to this field and some hints to interested researchers for more detailed investigation of the present and future development of this hot and rapidly growing field.
APA, Harvard, Vancouver, ISO, and other styles
21

Kutluyarov, Ruslan V., Aida G. Zakoyan, Grigory S. Voronkov, Elizaveta P. Grakhova, and Muhammad A. Butt. "Neuromorphic Photonics Circuits: Contemporary Review." Nanomaterials 13, no. 24 (December 14, 2023): 3139. http://dx.doi.org/10.3390/nano13243139.

Full text
Abstract:
Neuromorphic photonics is a cutting-edge fusion of neuroscience-inspired computing and photonics technology to overcome the constraints of conventional computing architectures. Its significance lies in the potential to transform information processing by mimicking the parallelism and efficiency of the human brain. Using optics and photonics principles, neuromorphic devices can execute intricate computations swiftly and with impressive energy efficiency. This innovation holds promise for advancing artificial intelligence and machine learning while addressing the limitations of traditional silicon-based computing. Neuromorphic photonics could herald a new era of computing that is more potent and draws inspiration from cognitive processes, leading to advancements in robotics, pattern recognition, and advanced data processing. This paper reviews the recent developments in neuromorphic photonic integrated circuits, applications, and current challenges.
APA, Harvard, Vancouver, ISO, and other styles
22

Soref, Richard. "Reconfigurable Integrated Optoelectronics." Advances in OptoElectronics 2011 (May 4, 2011): 1–15. http://dx.doi.org/10.1155/2011/627802.

Full text
Abstract:
Integrated optics today is based upon chips of Si and InP. The future of this chip industry is probably contained in the thrust towards optoelectronic integrated circuits (OEICs) and photonic integrated circuits (PICs) manufactured in a high-volume foundry. We believe that reconfigurable OEICs and PICs, known as ROEICs and RPICs, constitute the ultimate embodiment of integrated photonics. This paper shows that any ROEIC-on-a-chip can be decomposed into photonic modules, some of them fixed and some of them changeable in function. Reconfiguration is provided by electrical control signals to the electro-optical building blocks. We illustrate these modules in detail and discuss 3D ROEIC chips for the highest-performance signal processing. We present examples of our module theory for RPIC optical lattice filters already constructed, and we propose new ROEICs for directed optical logic, large-scale matrix switching, and 2D beamsteering of a phased-array microwave antenna. In general, large-scale-integrated ROEICs will enable significant applications in computing, quantum computing, communications, learning, imaging, telepresence, sensing, RF/microwave photonics, information storage, cryptography, and data mining.
APA, Harvard, Vancouver, ISO, and other styles
23

Debord, Benoît, Foued Amrani, Luca Vincetti, Frédéric Gérôme, and Fetah Benabid. "Hollow-Core Fiber Technology: The Rising of “Gas Photonics”." Fibers 7, no. 2 (February 18, 2019): 16. http://dx.doi.org/10.3390/fib7020016.

Full text
Abstract:
Since their inception, about 20 years ago, hollow-core photonic crystal fiber and its gas-filled form are now establishing themselves both as a platform in advancing our knowledge on how light is confined and guided in microstructured dielectric optical waveguides, and a remarkable enabler in a large and diverse range of fields. The latter spans from nonlinear and coherent optics, atom optics and laser metrology, quantum information to high optical field physics and plasma physics. Here, we give a historical account of the major seminal works, we review the physics principles underlying the different optical guidance mechanisms that have emerged and how they have been used as design tools to set the current state-of-the-art in the transmission performance of such fibers. In a second part of this review, we give a nonexhaustive, yet representative, list of the different applications where gas-filled hollow-core photonic crystal fiber played a transformative role, and how the achieved results are leading to the emergence of a new field, which could be coined “Gas photonics”. We particularly stress on the synergetic interplay between glass, gas, and light in founding this new fiber science and technology.
APA, Harvard, Vancouver, ISO, and other styles
24

Sirleto, Luigi, and Giancarlo C. Righini. "An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials." Micromachines 14, no. 3 (March 6, 2023): 604. http://dx.doi.org/10.3390/mi14030604.

Full text
Abstract:
The combination of integrated optics technologies with nonlinear photonics, which has led to the growth of nonlinear integrated photonics, has also opened the way to groundbreaking new devices and applications. Here we introduce the main physical processes involved in nonlinear photonics applications, and we discuss the fundaments of this research area, starting from traditional second-order and third-order phenomena and going to ultrafast phenomena. The applications, on the other hand, have been made possible by the availability of suitable materials, with high nonlinear coefficients, and/or by the design of guided-wave structures, which can enhance the material’s nonlinear properties. A summary of the most common nonlinear materials is presented, together with a discussion of the innovative ones. The discussion of fabrication processes and integration platforms is the subject of a companion article, also submitted for publication in this journal. There, several examples of nonlinear photonic integrated devices to be employed in optical communications, all-optical signal processing and computing, or quantum optics are shown, too. We aimed at offering a broad overview, even if, certainly, not exhaustive. We hope that the overall work could provide guidance for those who are newcomers to this field and some hints to the interested researchers for a more detailed investigation of the present and future development of this hot and rapidly growing field.
APA, Harvard, Vancouver, ISO, and other styles
25

Descrovi, Emiliano, Roberta Ramponi, and Luca de Stefano. "Photonics in Italy." Photoniques, no. 125 (2024): 19–23. http://dx.doi.org/10.1051/photon/202412519.

Full text
Abstract:
Italy can boast a very diversified and lively panorama of educational, research and industrial activities pivoted about Optics and Photonics. Significant advancements in laser technology, optical communication, and optical materials are driving innovation in healthcare, manufacturing, agrifood and generally in promoting digital transition. The National Recovery and Resilience Plan is expected to greatly enhance the country competitiveness on a global scale.
APA, Harvard, Vancouver, ISO, and other styles
26

Briere, Gauthier, and Paul Gallagher. "Enabling new applications with flat optics." Photoniques, no. 119 (2023): 58–61. http://dx.doi.org/10.1051/photon/202311958.

Full text
Abstract:
Over the past decade, flat optics, also known as flat metasurfaces, have been a new hot topic in the photonics community. The application opportunities seem nearly limitless. In this article, we will discuss the exciting potential of flat optics for the photonics industry and market. We will also discuss some of the requirements and challenges
APA, Harvard, Vancouver, ISO, and other styles
27

OPN Staff. "Breaking Barriers, Advancing Optics." Optics and Photonics News 34, no. 5 (May 1, 2023): 34. http://dx.doi.org/10.1364/opn.34.5.000034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Salih, Maithem Naeem, and Alan Mickelson. "Influence of a Polyimide Coating Layer on Losses of Fabricated SOI Slot Waveguides." Photonics Letters of Poland 15, no. 2 (July 2, 2023): 15–17. http://dx.doi.org/10.4302/plp.v15i2.1190.

Full text
Abstract:
We demonstrate experimentally and simultaneously the impact of the Polyimide (PI) coating layer on the coupling and propagation losses of the fabricated SOI slot waveguides at 1550 nm operation wavelength and TE polarization. Full Text: PDF References P. Dong, Y.K. Chen, G.H. Duan, and D.T. Neilson, "Silicon photonic devices and integrated circuits," Nanophot, 3, 215 (2014). CrossRef Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett., 29, 1626 (2004). CrossRef V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., 29, 1209 (2004). CrossRef A. Mickelson, "Silicon photonic slot guides for nonlinear optics," 2013 Int. Conf. Microw. Photonics, ICMAP 2013, (2013). CrossRef A. Martínez et al., "Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths," Nano Lett., 10, 1506 (2010). CrossRef C. Koos et al., "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat. Photonics., 3, 216 (2009). CrossRef Y. Li, K. Cui, X. Feng, Y. Huang, F. Liu, and W. Zhang, "Ultralow propagation loss slot-waveguide in high absorption active material," IEEE Photonics J., 6, 3 (2014). CrossRef Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, S. He, "Ultracompact low-loss coupler between strip and slot waveguides," Opt. Lett., 34, 1498 (2009). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
29

Purmonen, Juha, Tuukka Pakarinen, and Tea Vellamo. "Photonics in Finland." Photoniques, no. 119 (2023): 25–30. http://dx.doi.org/10.1051/photon/202311925.

Full text
Abstract:
Finland has a long tradition of photonics research and industry, which has led to many pioneer photonics related technologies developed in the country. Together with a worldclass research and education environment, wide range of competencies and leading knowhow in optical sensing and imaging, microand nanophotonics, lasers and fiber optics, and in extended reality (XR), makes Finland an ideal place for innovations in photonics, commercialization of new products, company growth, and for international success.
APA, Harvard, Vancouver, ISO, and other styles
30

Tanaka, Katsuhisa. "Materials in Optics and Photonics." Journal of the Japan Society of Powder and Powder Metallurgy 55, no. 3 (2008): 200. http://dx.doi.org/10.2497/jjspm.55.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

WAKAKI, Moriaki. "Development of optics and photonics." Journal of Advanced Science 20, no. 3/4 (2008): 56–59. http://dx.doi.org/10.2978/jsas.20.56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kropotov, Grigory I., and Ekaterina V. Tsygankova. "TYDEX: Optics for THz Photonics." Siberian Journal of Physics 5, no. 4 (December 1, 2010): 113–16. http://dx.doi.org/10.54362/1818-7919-2010-5-4-113-116.

Full text
Abstract:
TYDEX offers a wide range of optics for THz photonics: passive components (lenses, windows, prisms, mirrors, spectral and beam splitters, and waveplates), built up components (low pass and band pass filters, polarizers, and attenuators), and devices (Golay detectors)
APA, Harvard, Vancouver, ISO, and other styles
33

Fan, Shanhui, Yu Shi, and Qian Lin. "Nonreciprocal Photonics Without Magneto-Optics." IEEE Antennas and Wireless Propagation Letters 17, no. 11 (November 2018): 1948–52. http://dx.doi.org/10.1109/lawp.2018.2856258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Soskin, Marat, Svetlana V. Boriskina, Yidong Chong, Mark R. Dennis, and Anton Desyatnikov. "Singular optics and topological photonics." Journal of Optics 19, no. 1 (December 12, 2016): 010401. http://dx.doi.org/10.1088/2040-8986/19/1/010401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Smith, F. Graham, Terry A. King, and Daniel L. Dawes. "Optics and Photonics: An Introduction." American Journal of Physics 69, no. 2 (February 2001): 236–37. http://dx.doi.org/10.1119/1.1336840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

King, F. Graham Smith and Terry A. "Optics and Photonics: An Introduction." Measurement Science and Technology 12, no. 1 (December 18, 2000): 117. http://dx.doi.org/10.1088/0957-0233/12/1/701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wills, Stewart. "Wanted: Optics and Photonics Technicians." Optics and Photonics News 34, no. 2 (February 1, 2023): 26. http://dx.doi.org/10.1364/opn.34.2.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Simon, Jeffrey, Colton Fruhling, Hyunho Kim, Yury Gogotsi, and Alexra Boltasseva. "MXenes for Optics and Photonics." Optics and Photonics News 34, no. 11 (November 1, 2023): 42. http://dx.doi.org/10.1364/opn.34.11.000042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Struk, Przemysław. "Analysis of ridges and grooves shape in grating coupler for optimization of integrated optics sensor structures." Photonics Letters of Poland 14, no. 3 (September 30, 2022): 43. http://dx.doi.org/10.4302/plp.v14i3.1151.

Full text
Abstract:
The paper presents a theoretical analysis of a sensor structure based on a planar waveguide and grating coupler designed to determine selected physical properties of blood – hemoglobin concentration and oxidation level. In particular analysis were focused on optimization of selected geometrical properties of grating coupler (shape of ridges and grooves) to obtain maximum efficiency of uncoupling of light from the sensor structure. The analysis were carried out for three type of ridges and grooves shape in grating coupler: rectangular, triangular and sinusoidal. Full Text: PDF ReferencesI. . Singh, A.Weston, A. Kundur, G. Dobie, Haematology Case Studies with Blood Cell Morphology and Pathophysiology; Elsevier: Amsterdam, The Netherlands, (2017). DirectLink P. Jarolim, M. Lahav, SC. Liu, J. Palek, "Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin", Blood 76, 10 (1990). CrossRef E. Beutler, J. Waalen, "The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?", Blood 107, 5 (2006). CrossRef M. Kiroriwal, P. Singal M. Sharma, A. Singal, "Hemoglobin sensor based on external gold-coated photonic crystal fiber", Optics & Laser Technology 149, 107817 (2022). CrossRef A. A. Boiarski, J. R. Busch, B. S. Bhullar, R. W. Ridgway, V. E. Wood, "Integrated optic sensor with macro-flow cell", Proc. SPIE Integrated Optics and Microstructures 1793 (1993). CrossRef L. Cheng, S. Mao, Z. Li, Y. Han and H. Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines 11, 666 (2020). CrossRef P. Struk, "Design of an Integrated Optics Sensor Structure Based on Diamond Waveguide for Hemoglobin Property Detection", Materials 12, 175 (2019). CrossRef P. Struk, "Numerical analysis of integrated photonics structures for hemoglobin sensor application", Phot. Lett. Poland 12, 2 (2020). CrossRef P.V. Lambeck, "Integrated optical sensors for the chemical domain", Meas. Sci. Technol. 17, (2006). CrossRef W. Lukosz, "Integrated optical chemical and direct biochemical sensors", Sens. Actuators B Chem 29 (1995). CrossRef P. Struk, T. Pustelny, K. Gołaszewska,E. Kaminska, M.A. Borysiewicz, M. Ekielski, A. Piotrowska, "Hybrid photonics structures with grating and prism couplers based on ZnO waveguides", Opto-Electron. Rev. 21, (2013). CrossRef P. Struk, "Design of an integrated optics sensor structure for hemoglobin property detection", Proc. SPIE 11204, (2019). CrossRef OptiFDTD Technical Background and Tutorials - Finite Difference Time Domain Photonics Simulation Software, Optiwave Systems Inc. (2008). DirectLink K. Yee, "Cutoff Frequencies of Eccentric Waveguides", IEEE Transactions 14, 3 (1966). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
40

Glass, Alastair M. "Photonic Materials: Introduction." MRS Bulletin 13, no. 8 (August 1988): 14–15. http://dx.doi.org/10.1557/s0883769400064617.

Full text
Abstract:
Optical technologies have advanced dramatically in recent years. In just two decades the transparency of optical fibers has improved by four orders of magnitude. Semiconductor lasers have evolved from a new invention to highly reliable, high performance commercial devices for wide bandwidth optical communications. New approaches to higher frequency modulation, wider bandwidth transmission, more sensitive detection and optical amplification are constantly being developed. Fundamental limitations are sufficiently far removed from current capabilities that considerable further progress can be anticipated. These advances have provided the stimulus for a much broader investigation of the potential of optics in future information technologies in which optics and electronics play complementary roles. This rapidly developing field is referred to as “photonics.” Increasing attention is now being paid to applying optics to wide bandwidth switching systems and to exploring the potential of optics for image processing and computation.Past progress in optical communication can be traced largely to the dramatic progress in optical fiber and compound semiconductor materials technologies. Likewise, future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials. The future role of optics in these conventionally electronic technologies, and the extent of that role, depends on whether materials can be designed and fabricated with the required characteristics.
APA, Harvard, Vancouver, ISO, and other styles
41

Ma, Qijie, Guanghui Ren, Arnan Mitchell, and Jian Zhen Ou. "Recent advances on hybrid integration of 2D materials on integrated optics platforms." Nanophotonics 9, no. 8 (April 17, 2020): 2191–214. http://dx.doi.org/10.1515/nanoph-2019-0565.

Full text
Abstract:
AbstractThe burgeoning research into two-dimensional (2D) materials opens a door to novel photonic and optoelectronic devices utilizing their fascinating electronic and photonic properties in thin-layered architectures. The hybrid integration of 2D materials onto integrated optics platforms thus becomes a potential solution to tackle the bottlenecks of traditional optoelectronic devices. In this paper, we present the recent advances of hybrid integration of a wide range of 2D materials on integrated optics platforms for developing high-performance photodetectors, modulators, lasers, and nonlinear optics. Such hybrid integration enables fully functional on-chip devices to be readily accessible researchers and technology developers, becoming a potential candidate for next-generation photonics and optoelectronics industries.
APA, Harvard, Vancouver, ISO, and other styles
42

PRASAD, P. N. "POLYMERS FOR PHOTONICS." Journal of Nonlinear Optical Physics & Materials 03, no. 04 (October 1994): 531–41. http://dx.doi.org/10.1142/s0218199194000316.

Full text
Abstract:
Polymers have emerged as an important class of materials for applications in photon-ics. In this review, a brief background is presented on photonics and nonlinear optical processes, the latter providing many of the operational functions for the photonics technology. Nonlinear optical processes in polymeric materials are discussed along with the needed structural requirements. The three types of nonlinear polymeric systems discussed are: (i) χ(2) materials; (ii) χ(3) materials and (iii) photorefractive polymers. The photorefractive polymeric systems utilize the combined action of photoconductivity and nonlinear optical effect. New developments using sol-gel processed inorganic glass: polymer composites for nonlinear optics are discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Zhou, Yi, Lin Wang, Yifan Liu, Yuan Yu, and Xinliang Zhang. "Microwave Photonic Filters and Applications." Photonics 10, no. 10 (September 30, 2023): 1110. http://dx.doi.org/10.3390/photonics10101110.

Full text
Abstract:
Microwave photonics is a promising and rapidly developing interdisciplinary field. It combines microwave and photonic techniques to generate, transmit, process, and manipulate microwave signals by using the advantages of broadband, high frequency, and low loss provided by photonics. As an important branch of microwave photonics, the microwave photonic filter (MPF) can overcome the limitations set by traditional electronic technology and can realize advanced signal processing in modern communication systems due to its higher performance, selectivity, and flexibility. This review provides a comprehensive overview of MPFs, including fundamental principles, typical structures, and key applications. Additionally, the microwave photonic integration is a very important tendence because of its advantages of small size, light weight, low power consumption, and low cost. The recent advances in integrated MPF are also reviewed.
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Xiaozhong, and Qinglei Guo. "Bioresorbable Photonics: Materials, Devices and Applications." Photonics 8, no. 7 (June 25, 2021): 235. http://dx.doi.org/10.3390/photonics8070235.

Full text
Abstract:
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
APA, Harvard, Vancouver, ISO, and other styles
45

B S, Athira, Mandira Pal, Sounak Mukherjee, Niladri Modak, Sudipta Saha, Ankit Kumar Singh, Subhasish Dutta Gupta, Dibyendu Nandy, and Nirmalya Ghosh. "Towards the development of new generation spin-orbit photonic techniques." Journal of Optics 24, no. 5 (April 5, 2022): 054006. http://dx.doi.org/10.1088/2040-8986/ac5cd8.

Full text
Abstract:
Abstract Spin–orbit interaction deals with the interaction and coupling of spin and orbital angular momentum degrees of freedom of spinning particles, which manifests in diverse fields of physics, ranging from atomic, condensed matter to optical systems. In classical light beams, this has led to a number of non-trivial optical phenomena like spin and orbital Hall effect of light, optical Rashba effect, photonic Aharonov–Bohm effect, rotational Doppler effect, transverse spin, Belinfante’s spin-momentum and spin-momentum locking etc. These have been observed in diverse micro- and nano-scale optical systems. These have generated a new area in photonics, namely, spin-orbit photonics that not only deals with fundamental light–matter interaction effects but also opened up the feasibility of a new generation of miniaturized and on-chip integrable multifunctional photonic devices based on the angular momentum and geometrical phase of light. This paper will introduce the emerging field of spin-orbit photonics and will cover the representative spin-orbit photonic effects in a variety of light-matter interactions with examples. In this regard, we also present proof-of-concept demonstrations of two interesting techniques based on the geometrical phase of light, namely, geometrical phase polarimeter and weak value polarimeter.
APA, Harvard, Vancouver, ISO, and other styles
46

Hu, Junkai, Jiayang Wu, Di Jin, Sai Tak Chu, Brent E. Little, Duan Huang, Roberto Morandotti, and David J. Moss. "Thermo-Optic Response and Optical Bistablility of Integrated High-Index Doped Silica Ring Resonators." Sensors 23, no. 24 (December 11, 2023): 9767. http://dx.doi.org/10.3390/s23249767.

Full text
Abstract:
The engineering of thermo-optic effects has found broad applications in integrated photonic devices, facilitating efficient light manipulation to achieve various functionalities. Here, we perform both an experimental characterization and a theoretical analysis of these effects in integrated microring resonators made from high-index doped silica, which have had many applications in integrated photonics and nonlinear optics. By fitting the experimental results with theory, we obtain fundamental parameters that characterize their thermo-optic performance, including the thermo-optic coefficient, the efficiency of the optically induced thermo-optic process, and the thermal conductivity. The characteristics of these parameters are compared to those of other materials commonly used for integrated photonic platforms, such as silicon, silicon nitride, and silica. These results offer a comprehensive insight into the thermo-optic properties of doped silica-based devices. Understanding these properties is essential for efficiently controlling and engineering them in many practical applications.
APA, Harvard, Vancouver, ISO, and other styles
47

Alagappan, Gandhi, Jun Rong Ong, Zaifeng Yang, Thomas Yong Long Ang, Weijiang Zhao, Yang Jiang, Wenzu Zhang, and Ching Eng Png. "Leveraging AI in Photonics and Beyond." Photonics 9, no. 2 (January 28, 2022): 75. http://dx.doi.org/10.3390/photonics9020075.

Full text
Abstract:
Artificial intelligence (AI) techniques have been spreading in most scientific areas and have become a heated focus in photonics research in recent years. Forward modeling and inverse design using AI can achieve high efficiency and accuracy for photonics components. With AI-assisted electronic circuit design for photonics components, more advanced photonics applications have emerged. Photonics benefit a great deal from AI, and AI, in turn, benefits from photonics by carrying out AI algorithms, such as complicated deep neural networks using photonics components that use photons rather than electrons. Beyond the photonics domain, other related research areas or topics governed by Maxwell’s equations share remarkable similarities in using the help of AI. The studies in computational electromagnetics, the design of microwave devices, as well as their various applications greatly benefit from AI. This article reviews leveraging AI in photonics modeling, simulation, and inverse design; leveraging photonics computing for implementing AI algorithms; and leveraging AI beyond photonics topics, such as microwaves and quantum-related topics.
APA, Harvard, Vancouver, ISO, and other styles
48

Jiang, Ping, Na Ma, Xiaozhen Qiao, and Hui Zhang. "Recent Progress in Chiral Topological Quantum Interface." Frontiers in Physics 10 (January 25, 2022). http://dx.doi.org/10.3389/fphy.2022.845579.

Full text
Abstract:
Chiral quantum optics and Topological photonics are both emerging field of research, which have attracted great attention in recent years. Chiral quantum optics provides a new approach to achieve full quantum control of light-matter interaction in a novel manner, which has potential possibility for the implementation of complex quantum information networks. Meanwhile, topological photonics provides a novel route for designing and realizing optical device with unprecedented functionality, such as robust light propagation, the immunity to various structural imperfection, back-scattering suppression as well as unidirectional transmission. The application of topological photonics in chiral quantum optics will promote the whole performance of integrated quantum device with topological protection. In this review, we summarize the progress of chiral quantum optics and topological photonics firstly. Then, we mainly focus on the research of topological chiral edge states based on photonic quantum spin-Hall effect and photonic quantum valley-Hall effect. Furthermore, we introduce the recent work of chiral topological quantum interface formed by embedding quantum dot into the interface between two topologically distinct photonic crystal structures. At last, we give short outlook on the future development direction and prospect for application of topological chiral quantum interface.
APA, Harvard, Vancouver, ISO, and other styles
49

Gyger, Samuel, Julien Zichi, Lucas Schweickert, Ali W. Elshaari, Stephan Steinhauer, Saimon F. Covre da Silva, Armando Rastelli, Val Zwiller, Klaus D. Jöns, and Carlos Errando-Herranz. "Reconfigurable photonics with on-chip single-photon detectors." Nature Communications 12, no. 1 (March 3, 2021). http://dx.doi.org/10.1038/s41467-021-21624-3.

Full text
Abstract:
AbstractIntegrated quantum photonics offers a promising path to scale up quantum optics experiments by miniaturizing and stabilizing complex laboratory setups. Central elements of quantum integrated photonics are quantum emitters, memories, detectors, and reconfigurable photonic circuits. In particular, integrated detectors not only offer optical readout but, when interfaced with reconfigurable circuits, allow feedback and adaptive control, crucial for deterministic quantum teleportation, training of neural networks, and stabilization of complex circuits. However, the heat generated by thermally reconfigurable photonics is incompatible with heat-sensitive superconducting single-photon detectors, and thus their on-chip co-integration remains elusive. Here we show low-power microelectromechanical reconfiguration of integrated photonic circuits interfaced with superconducting single-photon detectors on the same chip. We demonstrate three key functionalities for photonic quantum technologies: 28 dB high-extinction routing of classical and quantum light, 90 dB high-dynamic range single-photon detection, and stabilization of optical excitation over 12 dB power variation. Our platform enables heat-load free reconfigurable linear optics and adaptive control, critical for quantum state preparation and quantum logic in large-scale quantum photonics applications.
APA, Harvard, Vancouver, ISO, and other styles
50

Yan, Qiuchen, Boheng Zhao, Rong Zhou, Rui Ma, Qinghong Lyu, Saisai Chu, Xiaoyong Hu, and Qihuang Gong. "Advances and applications on non-Hermitian topological photonics." Nanophotonics, March 9, 2023. http://dx.doi.org/10.1515/nanoph-2022-0775.

Full text
Abstract:
Abstract Non-Hermitian photonics and topological photonics, as new research fields in optics, have attracted much attention in recent years, accompanying by a great deal of new physical concepts and novel effects emerging. The two fields are gradually crossed during the development process and the non-Hermitian topological photonics was born. Non-Hermitian topological photonics not only constantly produces various novel physical effects, but also shows great potential in optical device applications. It becomes an important part of the modern physics and optics, penetrating into different research fields. On one hand, photonics system can introduce artificially-constructed gain and loss to study non-Hermitian physics. Photonics platform is an important methods and ways to verify novel physical phenomena and promote the development of non-Hermitian physics. On the other hand, the non-Hermitian topological photonics provides a new dimension for manipulating topological states. Active and dissipate materials are common in photonic systems; therefore, by using light pump and dissipation of photonic systems, it is expected to promote further development of topological photonics in device applications. In this review article, we focus on the recent advances and applications on non-Hermitian topological photonics, including the non-Hermitian topological phase transition and skin effect, as well as the applications emerging prosperously in reconfigurable, nonlinear and quantum optical systems. The possible future research directions of non-Hermitian topological photonics are also discussed at the end. Non-Hermitian topological photonics can have great potential in technological revolution and have the capacity of leading the development of both physics and technology industry.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography