Journal articles on the topic 'Optoelectronic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Optoelectronic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin, and Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices." Materials 15, no. 24 (2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Full textKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology." Journal of Composites Science 6, no. 12 (2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Full textMatei, Andrei Teodor, Anita Ioana Visan, and Irina Negut. "Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications." Micromachines 16, no. 5 (2025): 573. https://doi.org/10.3390/mi16050573.
Full textSang, Xianhe, Yongfu Wang, Qinglin Wang, et al. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction." Molecules 28, no. 3 (2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Full textVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin, and Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES." Electrical and data processing facilities and systems 18, no. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Full textAlles, M. A., S. M. Kovalev, and S. V. Sokolov. "Optoelectronic Defuzzification Devices." Физические основы приборостроения 1, no. 3 (2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Full textBhattacharya, Pallab, and Lily Y. Pang. "Semiconductor Optoelectronic Devices." Physics Today 47, no. 12 (1994): 64. http://dx.doi.org/10.1063/1.2808754.
Full textOsten, W. "Advanced Optoelectronic Devices." Optics & Laser Technology 31, no. 8 (1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Full textJerrard, H. G. "Picosecond optoelectronic devices." Optics & Laser Technology 18, no. 2 (1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Full textChapman, David. "Optoelectronic semiconductor devices." Microelectronics Journal 25, no. 8 (1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Full textDjuris˘Ić, A. B., and W. K. Chan. "Organic Optoelectronic Devices." HKIE Transactions 11, no. 2 (2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Full textLugli, Paolo, Fabio Compagnone, Aldo Di Carlo, and Andrea Reale. "Simulation of Optoelectronic Devices." VLSI Design 13, no. 1-4 (2001): 23–36. http://dx.doi.org/10.1155/2001/19585.
Full textMILLER, D. A. B. "QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES." International Journal of High Speed Electronics and Systems 01, no. 01 (1990): 19–46. http://dx.doi.org/10.1142/s0129156490000034.
Full textWu, Jieyun, Qing Li, Wen Wang, and Kaixin Chen. "Optoelectronic Properties and Structural Modification of Conjugated Polymers Based on Benzodithiophene Groups." Mini-Reviews in Organic Chemistry 16, no. 3 (2019): 253–60. http://dx.doi.org/10.2174/1570193x15666180406144851.
Full textBerini, Pierre. "Plasmonic optoelectronic devices and metasurfaces." EPJ Web of Conferences 309 (2024): 01003. http://dx.doi.org/10.1051/epjconf/202430901003.
Full textNowsherwan, Ghazi Aman, Qasim Ali, Umar Farooq Ali, Muhammad Ahmad, Mohsin Khan, and Syed Sajjad Hussain. "Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges." Organics 5, no. 4 (2024): 520–60. http://dx.doi.org/10.3390/org5040028.
Full textMa, Qijie, Guanghui Ren, Arnan Mitchell, and Jian Zhen Ou. "Recent advances on hybrid integration of 2D materials on integrated optics platforms." Nanophotonics 9, no. 8 (2020): 2191–214. http://dx.doi.org/10.1515/nanoph-2019-0565.
Full textBasri, Nur Fadzilah, Afishah Alias, Megat Muhammad Ikhsan Megat Hasnan, Mohammad Syahmi Nordin, Fahrettin Sarcan, and Khairul Anuar Mohamad. "Comparison of Non-Linear Impedance AC Response of 10 and 20 Multiple Quantum Wells (MQWs) p-i-n Diode with DBR Towards Low Leakage Current Generation of Optoelectronic Device." Journal of Advanced Research in Applied Sciences and Engineering Technology 62, no. 3 (2024): 178–88. https://doi.org/10.37934/araset.62.3.178188.
Full textLi, Ziwei, Boyi Xu, Delang Liang, and Anlian Pan. "Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials." Research 2020 (August 29, 2020): 1–35. http://dx.doi.org/10.34133/2020/5464258.
Full textWu, Zhiyong, Lu Zhu, and Zhengji Xu. "Editorial for the Special Issue on Micro/Nano-Structure Based Optoelectronics and Photonics Devices." Micromachines 14, no. 10 (2023): 1867. http://dx.doi.org/10.3390/mi14101867.
Full textLiu, Zhixiong, and Husam N. Alshareef. "MXenes for Optoelectronic Devices." Advanced Electronic Materials 7, no. 9 (2021): 2100295. http://dx.doi.org/10.1002/aelm.202100295.
Full textChuang, Shun Lien, Nasser Peyghambarian, and Stephan Koch. "Physics of Optoelectronic Devices." Physics Today 49, no. 7 (1996): 62. http://dx.doi.org/10.1063/1.2807693.
Full textDemming, Anna, Mark Brongersma, and Dai Sik Kim. "Plasmonics in optoelectronic devices." Nanotechnology 23, no. 44 (2012): 440201. http://dx.doi.org/10.1088/0957-4484/23/44/440201.
Full textCai, Yuanjing, Anjun Qin, and Ben Zhong Tang. "Siloles in optoelectronic devices." Journal of Materials Chemistry C 5, no. 30 (2017): 7375–89. http://dx.doi.org/10.1039/c7tc02511d.
Full textBouscher, Shlomi, Dmitry Panna, and Alex Hayat. "Semiconductor–superconductor optoelectronic devices." Journal of Optics 19, no. 10 (2017): 103003. http://dx.doi.org/10.1088/2040-8986/aa8888.
Full textBhattacharya, Pallab, and Zetian Mi. "Quantum-Dot Optoelectronic Devices." Proceedings of the IEEE 95, no. 9 (2007): 1723–40. http://dx.doi.org/10.1109/jproc.2007.900897.
Full textGoldstein, L. "Optoelectronic devices by GSMBE." Journal of Crystal Growth 105, no. 1-4 (1990): 93–96. http://dx.doi.org/10.1016/0022-0248(90)90344-k.
Full textLiang, Zhiqiang, Jun Sun, Yueyue Jiang, Lin Jiang, and Xiaodong Chen. "Plasmonic Enhanced Optoelectronic Devices." Plasmonics 9, no. 4 (2014): 859–66. http://dx.doi.org/10.1007/s11468-014-9682-7.
Full textStar, Alexander, Yu Lu, Keith Bradley, and George Grüner. "Nanotube Optoelectronic Memory Devices." Nano Letters 4, no. 9 (2004): 1587–91. http://dx.doi.org/10.1021/nl049337f.
Full textHenini, M. "Physics of optoelectronic devices." Microelectronics Journal 28, no. 1 (1997): 101–2. http://dx.doi.org/10.1016/s0026-2692(97)87853-6.
Full textHenini, Mohamed. "Optoelectronic materials and devices." Microelectronics Journal 25, no. 8 (1994): 607–8. http://dx.doi.org/10.1016/0026-2692(94)90126-0.
Full textHo, P. K. "All-Polymer Optoelectronic Devices." Science 285, no. 5425 (1999): 233–36. http://dx.doi.org/10.1126/science.285.5425.233.
Full textTomas, R. "Physics of optoelectronic devices." Optics and Lasers in Engineering 26, no. 1 (1997): 72. http://dx.doi.org/10.1016/0143-8166(96)81156-0.
Full textHövel, S., N. C. Gerhardt, M. R. Hofmann, et al. "Spin-controlled optoelectronic devices." physica status solidi (c) 6, no. 2 (2009): 436–39. http://dx.doi.org/10.1002/pssc.200880357.
Full textShan, Xuanyu, Chenyi Zhao, Ya Lin, et al. "Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system." Applied Physics Letters 121, no. 26 (2022): 263501. http://dx.doi.org/10.1063/5.0129642.
Full textZhuo, Linqing, Dongquan Li, Weidong Chen, et al. "High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber." Nanophotonics 11, no. 6 (2022): 1137–47. http://dx.doi.org/10.1515/nanoph-2021-0688.
Full textGorham, D. "Amorphous and microcrystalline semiconductor devices: Optoelectronic devices." Microelectronics Journal 24, no. 7 (1993): 733. http://dx.doi.org/10.1016/0026-2692(93)90016-8.
Full textSakurai, Makoto, Ke Wei Liu, Romain Ceolato, and Masakazu Aono. "Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles." Key Engineering Materials 547 (April 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.
Full textTang, Hongyu, and Giulia Tagliabue. "Tunable photoconductive devices based on graphene/WSe2 heterostructures." EPJ Web of Conferences 266 (2022): 09010. http://dx.doi.org/10.1051/epjconf/202226609010.
Full textXu, Jiyuan, Zailan Zhang, Wei Zhang, and Zhesheng Chen. "Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials." Processes 12, no. 8 (2024): 1728. http://dx.doi.org/10.3390/pr12081728.
Full textابراهيم السنوسي نصر و احمد ابوسيف عبد الرحمن. "Interactive Learning Material for Optoelectronic Devices using MATLAB-based GUI." Journal of Pure & Applied Sciences 19, no. 2 (2020): 141–47. http://dx.doi.org/10.51984/jopas.v19i2.878.
Full textParkhomenko, Hryhorii P., Erik O. Shalenov, Zarina Umatova, Karlygash N. Dzhumagulova, and Askhat N. Jumabekov. "Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells." Energies 15, no. 9 (2022): 3056. http://dx.doi.org/10.3390/en15093056.
Full textKumar, Swarup, Usha Akter, and Sree Biddut Kumar. "Compound Materials in Optoelectronics: A Review of Their Prospects and Applications." European Journal of Theoretical and Applied Sciences 3, no. 2 (2025): 371–82. https://doi.org/10.59324/ejtas.2025.3(2).32.
Full textSwarup, Kumar, Akter Usha, and Biddut Kumar Sree. "Compound Materials in Optoelectronics: A Review of Their Prospects and Applications." European Journal of Theoretical and Applied Sciences 3, no. 2 (2025): 371–82. https://doi.org/10.59324/ejtas.2025.3(2).32.
Full textXu, Shaoheng, Jiajun Luo, Haisheng Song, and Jiang Tang. "Recent advances in monolithic-integrated lead-based optoelectronic devices." Frontiers of Optoelectronics 18, no. 1 (2025). https://doi.org/10.1007/s12200-025-00158-2.
Full textOuyang, Yi, Chaoyi Zhang, Jun Wang, Zheng Guo, Zegao Wang, and Mingdong Dong. "Gate‐Tunable Dual‐Mode Optoelectronic Device for Self‐Powered Photodetector and Optoelectronic Synapse." Advanced Science, March 12, 2025. https://doi.org/10.1002/advs.202416259.
Full textAhmad, Waqas, Ye Wang, Jamal Kazmi, et al. "Janus 2D Transition Metal Dichalcogenides: Research Progress, Optical Mechanism and Future Prospects for Optoelectronic Devices." Laser & Photonics Reviews, November 30, 2024. https://doi.org/10.1002/lpor.202400341.
Full textDong, He, Chenxin Ran, Weiyin Gao, Mingjie Li, Yingdong Xia, and Wei Huang. "Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects." eLight 3, no. 1 (2023). http://dx.doi.org/10.1186/s43593-022-00033-z.
Full textLee, SangMyeong, Hee Jung Kim, Young Ju Kim, et al. "Relative Permittivity and Optoelectronic Performances of Halide Perovskites: Study of Combined First‐Principles Simulation and Combinatorial Synthesis." Advanced Photonics Research, September 4, 2024. http://dx.doi.org/10.1002/adpr.202400039.
Full textLiu, Jingjing, Junle Qu, Thomas Kirchartz, and Jun Song. "Optoelectronic devices based on the integration of halide perovskites with silicon-based materials." Journal of Materials Chemistry A, 2021. http://dx.doi.org/10.1039/d1ta04527j.
Full text