Academic literature on the topic 'Optoelectronic oscillator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optoelectronic oscillator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optoelectronic oscillator"

1

Liu, Anni, Jian Dai, and Kun Xu. "Stable and Low-Spurs Optoelectronic Oscillators: A Review." Applied Sciences 8, no. 12 (December 14, 2018): 2623. http://dx.doi.org/10.3390/app8122623.

Full text
Abstract:
An optoelectronic oscillator (OEO) is an optoelectronic hybrid oscillator which utilizes ultra-low loss fiber as an electro-magnetic energy storage element, overcoming the limits of traditional microwave oscillators in phase noise performance. Due to their ability to generate ultra-low phase noise microwave signal, optoelectronic oscillators have attracted considerable attentions and are becoming one of the most promising and powerful microwave signal sources. In this paper, we briefly introduce the operation principle and discuss current research on frequency stability and spurious suppression of optoelectronic oscillators.
APA, Harvard, Vancouver, ISO, and other styles
2

Yao, X. S., and L. Maleki. "Multiloop optoelectronic oscillator." IEEE Journal of Quantum Electronics 36, no. 1 (January 2000): 79–84. http://dx.doi.org/10.1109/3.817641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yang, Jianhui Liang, Guangfu Bai, Lin Hu, Shaohong Cai, Hongxia Li, Yuanyuan Shan, and Chuang Ma. "Multifrequency optoelectronic oscillator." Optical Engineering 53, no. 11 (November 7, 2014): 116106. http://dx.doi.org/10.1117/1.oe.53.11.116106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yao, X. Steve, and Lute Maleki. "Optoelectronic microwave oscillator." Journal of the Optical Society of America B 13, no. 8 (August 1, 1996): 1725. http://dx.doi.org/10.1364/josab.13.001725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsuchida, Hidemi. "Subharmonic Optoelectronic Oscillator." IEEE Photonics Technology Letters 20, no. 17 (September 2008): 1509–11. http://dx.doi.org/10.1109/lpt.2008.928830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Jian, Tengfei Hao, Wei Li, David Domenech, Rocio Baños, Pascual Muñoz, Ninghua Zhu, José Capmany, and Ming Li. "Integrated optoelectronic oscillator." Optics Express 26, no. 9 (April 26, 2018): 12257. http://dx.doi.org/10.1364/oe.26.012257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maleki, Lute. "The optoelectronic oscillator." Nature Photonics 5, no. 12 (December 2011): 728–30. http://dx.doi.org/10.1038/nphoton.2011.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hasanuzzaman, G. K. M., Stavros Iezekiel, and Atsushi Kanno. "W-Band Optoelectronic Oscillator." IEEE Photonics Technology Letters 32, no. 13 (July 1, 2020): 771–74. http://dx.doi.org/10.1109/lpt.2020.2996277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salzenstein, Patrice. "An example of design, optimization, stabilization and noise performances of resonator-based optoelectronic oscillators." International Journal for Simulation and Multidisciplinary Design Optimization 10 (2019): A2. http://dx.doi.org/10.1051/smdo/2019001.

Full text
Abstract:
In this paper we talk about oscillators of optoelectronic type with intensity modulators and high-quality optical resonators technology. This subject is illustrated by an example of realization from the material to the characterization of the realized oscillator. It is explained how such an oscillator is designed and how it can be optimized.
APA, Harvard, Vancouver, ISO, and other styles
10

Raut, Nabin K., Jeffery Miller, and Jay Sharping. "Progress in Optoelectronic Oscillators." Journal of Institute of Science and Technology 24, no. 1 (June 26, 2019): 26–33. http://dx.doi.org/10.3126/jist.v24i1.24625.

Full text
Abstract:
An optoelectronic oscillator (OEO) generates a spectrally pure and ultra-stable radio frequency signal from a continuous wave laser source (Yao et al. 2004). In a conventional electrical oscillator, the energy storage capacity is limited, which compromises stability of the signal. To address this issue, Yao and Maleki invented the optoelectronic oscillator in 1996. This novel oscillator uses low-loss optical fiber to extend the length of the oscillator and thereby increases the amount of energy that can be stored (Madjar & Tibor 2006). Due to this additional energy storing component in the system, the purity and stability of the signal increase significantly. Following their invention, many modifications have been made over the years to improve the frequency stability of OEOs (lower phase noise and timing jitter). This review article discusses some of those key developments and then introduces some ongoing work devoted to understanding the impact of using electrical filters with Q >109.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Optoelectronic oscillator"

1

Prakasha, Prarthana. "A Study of Injection Locking in Optoelectronic Oscillator." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41147.

Full text
Abstract:
The random fluctuations of signal phase of an oscillator limit the precision of time and frequency measurements. The noise and long-term stability of the system’s oscillator or clock is of major importance in applications such as optical and wireless communications, high-speed digital electronics, radar, and astronomy. The Optoelectronic Oscillator (OE Oscillator), a new class of time delay oscillator with promise as a low-phase noise source of microwave carriers, was introduced by Steve Yao and Lute Malek in 1996. The OE Oscillator combines into a closed loop an RF photonic link and an RF chain. The RF photonic link consists of a laser, electro-optic modulator, optical fibre delay line, and a photo-receiver that together provide an RF delay. An RF chain consists of one or more amplifiers and a RF resonator that together provide the sustaining amplification and the frequency selectivity necessary for single mode oscillation of the loop. The low loss of optical fibres enables the attainment of delays that correspond to optical fibre lengths of several kilometers. It is the long delay, unattainable in an all electronic implementations that is responsible for the superior phase noise performance of an OE Oscillator. In this thesis the fundamental principles of operation of an OE Oscillator are described and the principal sources of in-loop phase fluctuations that are responsible for phase-noise identified. This lays the ground for an exposition of the mechanism that describes the perturbation of a time delay oscillator by injection into the loop of a carrier that is detuned in frequency from the natural frequency of the oscillator. For sufficiently small detuning the oscillator can become phase locked to the injected carrier. The model presented in the thesis generalises the traditional Yao-Maleki and Leeson model to include all the important features that describe the injection locking dynamics of an OE Oscillator. In particular the common assumptions of single mode oscillation and weak injection are removed. This is important to correctly predict the effect of injection locking on the spurious peaks in the phase noise spectrum corresponding to the side-modes of a time delay oscillator. Simulation results are presented in order to validate the dynamics of the oscillator under injection and analytic results on the lock-in range and phase noise spectrum. A 10 GHz OE Oscillator with a single 5km delay line is used as an example in the simulation illustration.
APA, Harvard, Vancouver, ISO, and other styles
2

Lelièvre, Oriane. "Oscillateurs optoélectroniques pour la génération de signaux microondes à grande pureté spectrale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS061.

Full text
Abstract:
La génération de signaux microondes à grande pureté spectrale est fondamentale pour différentes applications (systèmes RADAR, échantillonnage large bande). L’optique propose des solutions prometteuses pour la montée en fréquence des d’oscillateurs à bas bruit de phase. L’objectif de cette thèse est d’étudier différentes configurations d’oscillateurs optoélectroniques (OEO) à 10 GHz. Pour cela, nous avons développé puis validé expérimentalement un modèle décrivant le bruit de phase, que nous avons ensuite étendu aux OEOs à boucles multiples. Cet outil unique nous a permis de concevoir un OEO à double boucles à l’état de l’art avec un encombrement réduit (premier mode parasite avec un niveau de bruit de phase de -146 dBc/Hz à 187 kHz de la porteuse). Nous avons également étudié des OEOs à amplification optique qui permettent de lever les verrous associés aux amplificateurs RF lors de la montée en fréquence (contribution de bruit et bande passante) tout en conservant d’excellentes performances. Enfin, nous nous sommes intéressés aux oscillateurs optoélectroniques couplés (COEOs), qui associent un laser à verrouillage de modes à un OEO. Nous avons modélisé le bruit de phase du laser en tenant en compte pour la première fois la non-orthogonalité des modes de la cavité, puis initié un modèle pour le COEO. Après une étude expérimentale des paramètres clef, nous avons réalisé un COEO proche de l’état de l’art, dont le bruit phase au voisinage de la porteuse est amélioré par rapport aux OEOs pour des longueurs de boucle plus courtes
High purity microwave signal generation is required in various applications (RADAR systems, wideband sampling). For high frequency operations, optics offer promising solutions to generate low noise oscillators. The objective of this thesis consists in studying various optoelectronic oscillator (OEO) configurations at 10 GHz. We first worked on a phase noise model and its experimental validation, further extended to multiple loop OEOs. This comprehensive model allowed the design of a state-of-the-art dual loop OEO with consideration to its compactness (first spur located at 187 kHz from the carrier with a phase noise level of 146 dBc/Hz).We then focused on all photonic gain OEOs to get rid of RF amplifiers whose bandwidth and noise contributions are a limit for high frequency operations. Finally, we studied coupled optoelectronic oscillators (COEOs) which may simply be described as a combination of a mode locked laser and an OEO. We worked on a phase noise model for active and harmonically mode locked laser taking into account for the first time the non-orthogonality of the cavity modes. This model is the basis to a COEO model we began to develop. After experimentally determining key parameters, we designed and optimized a low noise COEO exhibiting a close-to-carrier phase noise similar to the state-of-the-art
APA, Harvard, Vancouver, ISO, and other styles
3

Kong, Fanqi. "Dual-frequency Optoelectronic Oscillator and its Application in Transverse Load Sensing." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31537.

Full text
Abstract:
In this thesis, dual-frequency optoelectronic oscillators (OEOs) and their applications to transverse load sensing are studied. Two configurations of dual-frequency OEOs are proposed and investigated. In the first configuration, a polarization-maintaining phase-shifted fiber Bragg grating (PM-PSFBG) is employed in the OEO loop to the generation of two oscillating frequencies. The beat between the two oscillating frequencies is a function of the load applied to the PM-PSFBG, which is used in transverse load sensing. To avoid the frequency measurement ambiguity, a second configuration is proposed by coupling a dual-wavelength fiber laser to the dual-frequency OEO. A single tone microwave signal with the frequency determined by the birefringence of the grating is generated in the OEO and is fed into the fiber ring laser to injection lock the dual wavelengths. The sensitivity and the resolution are measured to be 9.73 GHz/(N/mm) and 2.06×10-4 N/mm, respectively. The high stability of the single-tone microwave signal permits accurate measurement, while the frequency interrogation allows an ultra-high speed demodulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wangzhe. "Photonic Generation of Microwave and Millimeter Wave Signals." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24026.

Full text
Abstract:
Photonic generation of ultra-low phase noise and frequency-tunable microwave or millimeter-wave (mm-wave) signals has been a topic of interest in the last few years. Advanced photonic techniques, especially the recent advancement in photonic components, have enabled the generation of microwave and mm-wave signals at high frequencies with a large tunable range and ultra-low phase noise. In this thesis, techniques to generate microwave and mm-wave signals in the optical domain are investigated, with an emphasis on system architectures to achieve large frequency tunability and low phase noise. The thesis consists of two parts. In the first part, techniques to generate microwave and mm-wave signals based on microwave frequency multiplication are investigated. Microwave frequency multiplication can be realized in the optical domain based on external modulation using a Mach-Zehnder modulator (MZM), but with limited multiplication factor. Microwave frequency multiplication based on external modulation using two cascaded MZMs to provide a larger multiplication factor has been proposed, but no generalized approach has been developed. In this thesis, a generalized approach to achieving microwave frequency multiplication using two cascaded MZMs is presented. A theoretical analysis leading to the operating conditions to achieve frequency quadrupling, sextupling or octupling is developed. The system performance in terms of phase noise, tunability and stability is investigated. To achieve microwave generation with a frequency multiplication factor (FMF) of 12, a technique based on a joint operation of polarization modulation, four-wave mixing and stimulated-Brillouin-scattering-assisted filtering is also proposed. The generation of a frequency-tunable mm-wave signal from 48 to 132 GHz is demonstrated. The proposed architecture can even potentially boost the FMF up to 24. In the second part, techniques to generate ultra-low phase noise and frequency-tunable microwave and mm-wave signals based on an optoelectronic oscillator (OEO) are studied. The key component in an OEO to achieve low phase noise and large frequency-tunable operation is the microwave bandpass filter. In the thesis, we first develop a microwave photonic filter with an ultra-narrow passband and large tunability based on a phase-shifted fiber Bragg grating (PS-FBG). Then, an OEO incorporating such a microwave photonic filter is developed. The performance including the tunable range and phase noise is evaluated. To further increase the frequency tunable range, a technique to achieve microwave frequency multiplication in an OEO is proposed. An mm-wave signal with a tunable range more than 40 GHz is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Chujun. "Silicon-on-insulator based optical microring resonator sensor and improvement methods." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19894.

Full text
Abstract:
Photonic sensing technologies offer unexceptionable features for taking high requirement measurement in a harsh environment. They inherit advantages such as fast speed and immunity from electromagnetic interference from optical communications. In addition, with the silicon-on-insulator (SOI) technologies, chip scale optical sensors are capable of providing high sensitivity with an ultra-compact form factor. The motivation is derived from the high demand for sensors in the new era of the Data Age and the great potential of fast response, highly sensitive and ultra-compact photonic sensor. Furthermore, rapid sensor development puts forward a new prospect for many areas such as medical and health measurement, defence technology, and the internet of things. With all the advantages that SOI-based chip scale optical sensors provide, there are still shortcomings can be improving to provided much more capable sensing abilities from many aspects. With that in mind, this thesis will focus on SOI-based optical microring resonator, one of the most popular SOI-based optical structure for sensing purpose; and solutions for two shortcomings of the common SOI-based optical sensor. One of the solutions that will be mentioned in this thesis is intended to solve the issues of limited measurement speed and low resolution that caused by the way of the data analysis in the common SOI-based optical sensing system. The second purposed solutions in this thesis focused on the connection schemes of the SOI-based optical sensor; Common connection schemes of SOI-based optical chip needs at least two optical ports for coupling the light into and out of the silicon photonics chip which limits the ability to perform measurements at remote locations that are hard to be reached. Chapter 4 and 5 of this thesis contains detailed explorations of these shortcomings and solutions. An integrated photonic sensor based on optoelectronic oscillator with an on-chip sensing probe that is capable of realising highly sensitive and high-resolution optical sensing is presented in this thesis as a solution for the first shortcoming. The key component is an integrated SOI-based microring resonator which is used to implement a microwave photonic bandpass filter (MPBF) to effectively suppress the side modes of the optoelectronic oscillator (OEO) by more than 30dB, thus generating a peak RF signal that maps the detected optical change into a resulting shift in the oscillating frequency. As an application example, the proposed optical sensor system is employed to detect small changes in temperature, and experimental results demonstrate a highly sensitive optical temperature sensor with an achieved sensitivity of 7.7 GHz/°C. Moreover, the proposed sensing system revealed a 0.02°C measurement resolution which is a tenfold improvement compared with the modest resolution of 0.23°C seen by the conventional MPBF system without the OEO loop, rendering it highly suitable for diverse high-resolution sensing applications. With the purpose of reducing the size of the SOI-based photonic sensor and to overcoming the second shortcoming, an ultra-compact, reflective optical sensor probe based on SOI microring resonator and Y-junction structure is also presented in this thesis. This structure is capable of simultaneously achieving high sensitivity and fine resolution optical sensing. The reflective configuration of the probe enables remote measurements at locations which are otherwise hard to be assessed by transmission based sensors. As an application example, the proposed sensor probe for temperature measurement is demonstrated. Experiment results show that the center wavelength shift of the sensor’s reflected spectrum offers a linear response to temperature change with a high sensitivity of 66 pm/°C.
APA, Harvard, Vancouver, ISO, and other styles
6

Weicker, Lionel. "Slow-fast oscillations of delayed feedback systems: theory and experiment." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209242.

Full text
Abstract:
Dans ce travail, nous étudions deux types de problèmes à retard. Le premier traite des oscillateurs optoélectroniques (OOEs). Un OOE est un système bouclé permettant de délivrer une onde électromagnétique radio-fréquence de grande pureté spectrale et de faible bruit électronique. Le second problème traite du couplage retardé de neurones. Une nouvelle forme de synchronisation est observée où un régime oscillant est une alternative à un état stationnaire stable. Ces deux problèmes présentent des oscillations de type slow-fast. Une grande partie de ma thèse est dévouée à l’analyse de ces régimes. Etant donné qu’il s’agit d’équations nonlinéaires à retard, les techniques asymptotiques classiques ont dû être revues. En plus d’une étude théorique, des expériences ont été effectuées. Le travail sur les OOEs a été rendu possible grâce aux invitations respectives de L. Larger dans son laboratoire à l’Université de Franche-Comté et de D.J. Gauthier à Duke University. Le travail sur le couplage de neurones a bénéficié d’expériences réalisées par L. Keuninckx du groupe « Applied Physics » de la Vrije Universiteit Brussel.

Une contribution importante de cette thèse est à la fois l’analyse mathématique mais aussi l’observation expérimentale d’ondes carrées stables asymétriques présentant des longueurs de plateau différentes mais ayant la même période dans un OOE. Une bifurcation de Hopf primaire d’un état stationnaire est le mécanisme menant à ces régimes. Un deuxième phénomène qui a été à la fois observé pour l’OOE et pour les neurones couplés est la coexistence entre plusieurs ondes carrées ayant des périodes différentes. Pour l’OOE, ces oscillations peuvent être reliées à plusieurs bifurcations de Hopf primaires qui sont proches les unes des autres à cause du grand délai. Le mécanisme de stabilité est similaire à celui de "Eckhaus" pour les systèmes spatialement étendus. Pour le couplage de cellules excitables, nous avons étudié des équations couplées de type FitzHugh-Nagumo (FHN) linéaires par morceaux et obtenu des résultats analytiques. Nous montrons que le mécanisme menant à ces régimes périodiques correspond à un point limite d’un cycle-limite. La robustesse de ces régimes par rapport au bruit a ensuite été explorée expérimentalement en utilisant des circuits électroniques couplés et retardés. Ce système peut être modélisé mathématiquement par les mêmes équations de type FHN. Pour terminer, nous montrons que les équations pour l’OOE et le FHN possèdent des propriétés similaires. Ceci nous permet de généraliser nos principaux résultats à une plus grande variété d’équations différentielles à retard.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
7

Do, Thi Phuong. "Oscillateurs optoélectroniques à base de résonateurs silicium pour applications à la génération de signaux hyperfréquences et aux capteurs." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN024/document.

Full text
Abstract:
Ces travaux portent sur l'insertion de résonateurs en anneau de silicium dans des boucles d’oscillateurs optoélectroniques (OEO) pour la génération de signaux micro-ondes à faible bruit de phase et constituent une contribution à la future intégration complète des systèmes OEO en photonique silicium. L'orientation de l'application qui a été explorée a été d'évaluer la performance de ces systèmes pour la détection de variations d’indice optique en volume. Deux configurations différentes de résonateurs en anneau de silicium à base d'OEO ont été proposées et démontrées : des OEO à base de résonateurs en anneau silicium millimétriques et des OEO accordables à base d’anneaux plus compacts et d'un schéma spécifique de réinjection de porteuse optique.Dans la première approche, le signal optique est utilisé comme porteuse optique, qui est modulée par un modulateur d'intensité qui produit un ensemble de deux bandes latérales dans le domaine optique, tandis que le résonateur en anneau génère un peigne optique qui agit comme un filtre optique, transposant son intervalle spectral libre (ISL) dans le domaine micro-onde. Par le battement des deux raies optiques adjacentes dans un photodétecteur, l’information est ainsi traduite dans le domaine RF. La contribution de notre travail a été de démontrer que la réalisation de résonateurs millimétriques (environ 6mm) en photonique silicium était une approche viable et intéressante pour la réalisation directe d'OEO. Dans les configurations étudiées, les résonateurs en anneau SOI ont été optimisés pour satisfaire la cible requise d'un ISL d’environ 15 GHz et un facteur de qualité optique supérieur à 10^5. Les résultats expérimentaux obtenus ont démontré la viabilité et la stabilité de l'approche proposée, tandis qu’un niveau de bruit de phase de -100dBc/Hz à un décalage de 100 kHz par rapport à la porteuse et une capacité de détection du système d’environ 3,72 GHz/RIU ont été quantifiés pour une variation de l'indice de réfraction comprise entre 1,572 et 1,688, en bon accord avec les résultats des simulations.En complément de cette première étape, nous avons abordé la question très importante de l'accordabilité de la fréquence du signal hyperfréquence généré. À cette fin, nous avons proposé, conçu, puis développé et testé une configuration d’OEO originale, basée sur l'utilisation d'une seule bande de modulation et d'un mécanisme de réinjection de la porteuse optique du laser de la boucle. Dans ce schéma, le signal oscillant est créé par le battement entre le faisceau laser et une bande latérale unique du signal de modulation sélectionnée par un résonateur en anneau. Dans l'implémentation que nous avons réalisée, un résonateur photonique SOI avec un ISL de 77 GHz et un facteur de qualité optique à 8,1×10^4 a été utilisé. En modifiant la fréquence du laser tout en conservant une longueur d'onde de résonance du résonateur fixe, une accordabilité de 5,8 GHz à 18,2 GHz a été démontrée, qui est seulement limitée par le fonctionnement de l'amplificateur RF utilisé dans les expériences réalisées. Parallèlement, un niveau de bruit de phase de -115 dBc/Hz à une fréquence de décalage de 1 MHz a été obtenu pour tous les signaux générés, démontrant la possibilité de créer des fréquences d'oscillation élevées avec le même niveau de bruit de phase. Nous avons ensuite appliqué cette approche à la détection de l'indice de réfraction en volume et démontré une sensibilité de détection de 94350 GHz/RIU et une limite de détection d'indice de 10^-8 RIU. Au-delà de ces résultats expérimentaux, l'apport de cette seconde approche apporte une solution simple et flexible au problème de la génération de signaux hyperfréquences à fréquences variables à la demande, et ouvre des perspectives d'application très riches.Tous les résultats de la thèse contribuent à la question de l'intégration des OEO sur puces silicium et permettent d'anticiper diverses applications dans le domaine des communications et des capteurs
This work focuses on the insertion of silicon ring resonators into the loops of optoelectronic oscillators (OEO) for the generation of low phase noise microwave signals and is a contribution to the future full integration of OEO systems on single silicon chips. The application orientation that was explored was to evaluate the performance of these systems for bulk optical index detection. Two different configurations of silicon ring resonators based OEO have been proposed and demonstrated: OEO based on millimeter-long silicon ring resonators and tunable OEO based on more compact silicon ring resonators and a specific optical carrier reinjection scheme.In the first approach, the optical signal is used as an optical carrier, which is modulated by an intensity modulator that produces a set of sidebands in the optical domain, while the ring resonator generates an optical comb that acts as an optical filter, translating its Free Spectral Range (FSR) into the microwave domain. By the beating of two adjacent optical comb lines in a photodetector, the optical spectral lines are then translated into the RF domain. The contribution of our work has been to demonstrate that the realization of millimeter resonators (about 6mm) in silicon photonics was a viable and interesting approach for the direct realization of OEO. In the investigated configurations, SOI ring resonators were optimized to satisfy the required target of a FSR of around 15GHz and an optical quality factor above 10^5. The demonstrated experimental results showed the viability and the stability of the proposed approach, while phase noise level of -100dBc/Hz at an offset of 100 kHz from carrier was obtained and sensing capability of the studied system was quantified to around 3.72 GHz/RIU for a refractive index variation in the range of 1.572 to 1.688, in good agreement with simulation results.In a complementary direction to this first step, we addressed the very important issue of the tunability of the frequency of the microwave signal generated. To this end, we proposed, designed, and then developed and tested an original OEO configuration based on the use of a single modulation band and a mechanism for reinjection of the optical carrier from the loop laser. In this scheme, the oscillation signal is created under the beating between the laser light beam and a single modulation signal sideband selected by an add-drop ring resonator working as an effective optical bandpass filter. In the implementation we have carried out, a SOI photonic resonator with a FSR of 77 GHz and an optical quality factor at 8.1×10^4 was used. By changing the laser frequency while keeping a fixed resonator resonance wavelength, a tunability from 5.8GHz to 18.2GHz was demonstrated, being only limited by the working operation of the RF amplifier used in the carried out experiments. Meanwhile, a phase noise level of -115 dBc/Hz at 1MHz offset frequency was obtained for all generated signals, showing the possibility of creating high oscillation frequencies with the same phase noise level. We then applied this approach for bulk refractive index sensing application and demonstrated a sensing sensitivity of 94350GHz/RIU and an index limit of detection of 10^-8 RIU by considering a signal resolution of 1MHz. Beyond these experimental results, the contribution of this second approach provides a simple and flexible solution to the problem of generating microwave signals with variable frequencies on demand, and opens up very rich application perspectives.All the results of the thesis contribute to the question of the integration of OEOs on silicon chips and make it possible to anticipate various applications in the field of communications and sensors
APA, Harvard, Vancouver, ISO, and other styles
8

Gomes, Nathan Joseph. "Diode mixers with optical local oscillator injection." Thesis, University College London (University of London), 1988. http://discovery.ucl.ac.uk/1317546/.

Full text
Abstract:
The results of an investigation into the use of diodes as mixers with optical local oscillator injection are presented. Such 'optically pumped mixers' might be employed in complex microwave systems where the optical distribution of the local oscillator is attractive. The photocurrent generation, through which the optical local oscillator is coupled into the device, the frequency conversion and noise mechanisms in optically pumped mixers are all investigated. Computer models of optically pumped mixing have been developed, and are shown to give very good agreement with experimental measurements. A novel optically pumped mixer structure using the tunnelling nonlinearity in a metal contact to heavily doped gallium arsenide has been investigated theoretically and experimentally. The prototype device has been found to be limited to relatively low frequencies (\simeq 100MHz) as an optically pumped mixer, although for a device of smaller area low conversion loss may be achieved at frequencies up to 1GHz. The structure is limited by the large capacitance per unit area, the generally poor responsivity, and the dependence of the responsivity on relatively slow, minority-carrier diffusion, current transport mechanisms. The results from the above investigation have enabled an improved, Mott diode structure to be proposed for optically pumped mixers. Predictions from the accurate computer model indicate efficient operation should be achievable at X-band frequencies and beyond using gallium arsenide lasers of moderate output power (\geqslant 3mW average). Similar performance at lower power levels should be achievable with shorter wavelength illumination. Due to the simplicity of using a single device, it is shown that optically pumped mixers may be more attractive than photodetector-mixer combinations in many complex microwave systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Luong, Vu Hai Nam. "Studying optical micro-resonators coupling for future insertion in an opto-electronic oscillator." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00905958.

Full text
Abstract:
The classical structure of an Opto-Electronic Oscillator (OEO) is based on a long fiber loop acting as a delay line and leading to the high spectral purity, or very low phase noise, of the oscillator. Such an OEO has been developed in SATIE/LPQM laboratory at ENS Cachan, operating at 8 GHz frequency. However, this system has some main disadvantages such as a bulky size, the difficulty to control temperature and a wide range of peaks among which it is difficult to select only one mode. In order to eliminate these disadvantages, high quality factor optical resonator can be used instead of the optical fiber loop. In this thesis, two resonator structures are produced and investigated. Microspheres are fabricated based on optical single mode fiber. Whispering gallery modes of these resonators are characterized by tapered fiber -resonator coupling. The experimental results show that the quality factor of the microsphere is up to 106 and FSR depends on the diameter of the resonator. A microsphere with a diameter of 300 µm, presents a FSR of 0.2 nm corresponding to a frequency of 25 GHz. However, for an OEO system which should work at 8 GHz, microsphere with a smaller FSR or with diameter of some millimeters should be fabricated- that is really difficult to obtain. Another add/drop racetrack resonator is designed and investigated. Optical experimental behavior of racetrack is characterized via fiber micro-lens coupling. The transmission spectrum shows resonance dips with average quality factor of 105 and a small FSR of 0.050 ± 0.003 nm (actually corresponding to 6 GHz) for a scanning wavelength range from 1534 nm to 1610 nm. The most promising features of the racetrack resonator are its high quality factor, and its free spectral range, which give it the high suitability for being used in the OEO system. Nevertheless the coupling with fiber lens leads to high losses and it is not possible to fulfill the oscillation conditions. Future work should be conducted for improving the coupling and for controlling the resonance dips position in agreement with the wavelength of the laser used in the OEO.
APA, Harvard, Vancouver, ISO, and other styles
10

Muñoz-Arcos, Christian Daniel. "Optical Microwave Signal Generation for Data Transmission in Optical Networks." Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0013.

Full text
Abstract:
La croissance des services de télécommunications et l’augmentation du trafic de données àl’échelle mondiale favorise le développement et l’intégration de différents réseaux de transmissionde données. Un exemple de ce développement est constitué par les réseaux defibres optiques, qui sont actuellement chargés d’interconnecter les continents par des liaisonslongues avec des taux de transfert importants. Les réseaux optiques, ainsi que les réseauxsupportés par d’autres moyens de transmission, utilisent des signaux électriques à certainesfréquences pour la synchronisation des éléments du réseau. La qualité de ces signaux est unfacteur décisif dans la performance globale du système, c’est pourquoi leur bruit de phasedoit ˆetre aussi faible que possible.Ce document décrit la conception et la mise en œuvre d’un système optoélectronique pour lagénération de signaux micro-ondes à l’aide de diodes laser à cavité verticale (VCSEL) et sonintégration dans un système de transmission optique de données. Compte tenu du fait que lesystème proposé intègre un laser VCSEL directement modulé, une caractérisation théoriqueet expérimentale a été élaborée sur la base des équations d’évolution du laser, de mesuresdynamiques et statiques, et d’un modèle électrique équivalent de la région active. Cetteméthode a permis l’extraction de certains paramètres intrinsèques du VCSEL, ainsi que lavalidation et la simulation de ses performances dans différentes conditions de modulation.Le VCSEL utilisé émet en bande C et a été sélectionné en considérant que cette bande estcouramment utilisée dans les liaisons à longue distance.Le système proposé est constitué d’une boucle fermée qui déclenche l’oscillation grâce auxsources de bruit des composants et module le VCSEL en fort signal pour générer des impulsionsoptiques (gain switching). Ces impulsions optiques, qui dans le domaine des fréquencescorrespondent à un peigne de fréquences optiques, sont détectées pour générer simultanémentune fréquence fondamentale (déterminée par un filtre passe-bande) et plusieurs harmoniques.Le bruit de phase mesuré à10 kHz de la porteuse à1,25 GHz est de -127,8 dBc/Hz, etconstitue la valeur la plus faible signalée dans la littérature pour cette fréquence et cette architecture.La gigue et la largeur d’impulsion optique ont été déterminées lorsque différentescavités résonantes et différents courants de polarisation étaient utilisés. La durée d’impulsion
The massive growth of telecommunication services and the increasing global data traffic boostthe development, implementation, and integration of different networks for data transmission.An example of this development is the optical fiber networks, responsible today for theinter-continental connection through long-distance links and high transfer rates. The opticalnetworks, as well as the networks supported by other transmission media, use electricalsignals at specific frequencies for the synchronization of the network elements. The qualityof these signals is usually determined in terms of phase noise. Due to the major impact ofthe phase noise over the system performance, its value should be minimized.The research work presented in this document describes the design and implementation ofan optoelectronic system for the microwave signal generation using a vertical-cavity surfaceemittinglaser (VCSEL) and its integration into an optical data transmission system. Consideringthat the proposed system incorporates a directly modulated VCSEL, a theoreticaland experimental characterization was developed based on the laser rate equations, dynamicand static measurements, and an equivalent electrical model of the active region. This proceduremade possible the extraction of some VCSEL intrinsic parameters, as well as thevalidation and simulation of the VCSEL performance under specific modulation conditions.The VCSEL emits in C-band, this wavelength was selected because it is used in long-haullinks. The proposed system is a self-initiated oscillation system caused by internal noise sources,which includes a VCSEL modulated in large signal to generate optical pulses (gain switching).The optical pulses, and the optical frequency comb associated, generate in electricaldomain simultaneously a fundamental frequency (determined by a band-pass filter) and severalharmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture.Both the jitter and optical pulse width were determined when different resonantcavities and polarization currents were employed. The lowest pulse duration was 85 ps andwas achieved when the fundamental frequency was 2.5 GHz. As for the optical frequencycomb, it was demonstrated that its flatness depends on the electrical modulation conditions.The flattest profiles are obtained when the fundamental frequency is higher than the VCSELrelaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter.The electrical signal provides the synchronization of the data generating equipment,whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated thatthe fundamental frequency and harmonics could be extracted from the optical data signaltransmitted by a band-pass filter. It was also experimentally proved that the pulsed returnto-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−9 whenthe optical power at the receiver is higher than -33 dBm. la plus faible, 85 ps, a été obtenue lorsque la fréquence fondamentale du système était de 2,5 GHz. En ce qui concerne le peigne de fréquences optiques, il a été démontré que la formedu peigne dépend des conditions de modulation électrique et que les profils les plus platssont obtenus lorsque la fréquence fondamentale est supérieure à la fréquence de relaxationdu VCSEL. Les sorties électrique et optique du système ont été intégrées dans un émetteur optique. Lesignal électrique permet la synchronisation de l’équipement responsable de la génération desdonnées, tandis que les impulsions optiques sont utilisées comme porteuse optique. La transmissionde données à 155,52 Mb/s, 622,08 Mb/s et 1,25 Gb/s a été validée expérimentalement
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Optoelectronic oscillator"

1

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. Laser Optoelectronic Oscillators. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

IEEE International Frequency Control Symposium (54th 2000 Kansas City, Mo.). Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium & Exhibition: 7-9 June, 2000, Kansas City, Missouri, U.S.A. Piscataway, New Jersey: IEEE, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Electronics technology handbook. New York: McGraw-Hill, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smolskiy, Sergey M., Alexander A. Bortsov, and Yuri B. Il'in. Laser Optoelectronic Oscillators. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smolskiy, Sergey M., Alexander A. Bortsov, and Yuri B. Il’in. Laser Optoelectronic Oscillators. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marhic, Michel. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. Cambridge University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. University of Cambridge ESOL Examinations, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marhic, Michel E. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marhic, Michel E. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Institute Of Electrical and Electronics Engineers and CH37052. Proceedings of the 2000 IEEE/EIA International Frequency and Control Symposium and Exhibition. Inst Elect & Electronic Engineers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Optoelectronic oscillator"

1

Pal, Srishti, Kankana Choudhury, Shayantan Kr Roy, Arindum Mukherjee, and Dia Ghosh. "Birhythmic Behavior in a New Dual Loop Optoelectronic Oscillator." In Lecture Notes in Electrical Engineering, 61–71. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6301-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. "Semiclassical Theory and Laser Differential Equations for Optoelectronic oscillator (OEO) Analysis." In Springer Series in Optical Sciences, 133–201. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. "Operation Analysis of Optoelectronic oscillator (OEO) with External Mach–Zehnder Modulator." In Springer Series in Optical Sciences, 285–366. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Rongrong, Yanhong Zhu, and Xiaofeng Jin. "Frequency Stabilization of an Optoelectronic Oscillator Based on Phase-Locked-Loop." In Proceedings of the 28th Conference of Spacecraft TT&C Technology in China, 525–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4837-1_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yadav, Shivangi, Ritesh Kumar, and Pooja Lohia. "Photonic Generation of Arbitrary Microwave Signal Based on Tunable Optoelectronic Oscillator." In Lecture Notes in Electrical Engineering, 675–84. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. "Experimental Investigations and Practical Circuits of Optoelectronic oscillator (OEO) with RF FODL." In Springer Series in Optical Sciences, 465–506. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coronel, Juan Fernando, C. Camilo Cano, Margarita Varón, Héctor Guarnizo, and Mónica Rico. "Optoelectronic Oscillator at S-Band and C-Band for 5G Telecommunications Purpose." In Lecture Notes in Electrical Engineering, 433–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53021-1_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. "Modulation Methods of Laser Emission in Optoelectronic oscillator (OEO) and OEO Differential Equations." In Springer Series in Optical Sciences, 73–131. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bortsov, Alexander A., Yuri B. Il’in, and Sergey M. Smolskiy. "Optoelectronic oscillator (OEO) Differential Equations as the Laser System with Modulation and Positive Feedback." In Springer Series in Optical Sciences, 203–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45700-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghosh, Dia, Arindum Mukherjee, Nikhil Ranjan Das, and Baidya Nath Biswas. "A Study on the Effect of an External Periodic Signal in a Chaotic Optoelectronic Oscillator." In Advances in Intelligent Systems and Computing, 27–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74808-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optoelectronic oscillator"

1

Netesova, Nadezhda P. "Oscillator parameters of semiconductor heterostructures." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Peter Blood, Akira Ishibashi, and Marek Osinski. SPIE, 1999. http://dx.doi.org/10.1117/12.356932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Ming. "An Integrated Optoelectronic Oscillator." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.th3f.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Jian, Tengfei Hao, Wei Li, Ninghua Zhu, Ming Li, David Domenech, Rocio Banos, Pascual Munoz, and Jose Capmany. "An integrated optoelectronic oscillator." In 2017 International Topical Meeting on Microwave Photonics (MWP). IEEE, 2017. http://dx.doi.org/10.1109/mwp.2017.8168642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steiner-Shepard, Michael K., Xuren Huang, and Murray K. Reed. "Vitesse: a compact diode-pumped Ti:sapphire ultrafast oscillator." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Murray K. Reed and Joseph Neev. SPIE, 1999. http://dx.doi.org/10.1117/12.351826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ilchenko, Vladimir S., X. S. Yao, and Lute Maleki. "High-Q microsphere cavity for laser stabilization and optoelectronic microwave oscillator." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Alexis V. Kudryashov. SPIE, 1999. http://dx.doi.org/10.1117/12.349244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pillet, Gregoire, Loic Morvan, Daniel Dolfi, and Jean-Pierre Huignard. "Highly-tunable optoelectronic microwave oscillator." In 2010 IEEE Topical Meeting on Microwave Photonics (MWP 2010). IEEE, 2010. http://dx.doi.org/10.1109/mwp.2010.5664188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fan, Zhiqiang, Jun Su, and Qi Qiu. "Dual-frequency tunable optoelectronic oscillator." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/acpc.2020.t3e.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ozdur, Ibrahim, Mehmetcan Akbulut, Nazanin Hoghooghi, Dimitrios Mandridis, Mohammad U. Piracha, and Peter J. Delfyett. "An Etalon based Optoelectronic Oscillator." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cfl1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kotb, Hussein E., Yasser M. Sabry, Mohab S. Abdallah, and Haitham Omran. "MEMS-SOA Tunable Optoelectronic Oscillator." In 2022 39th National Radio Science Conference (NRSC). IEEE, 2022. http://dx.doi.org/10.1109/nrsc57219.2022.9971320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lowenthal, Dennis D. "CW periodically poled LiNbO 3 optical parametric oscillator model with strong idler absorption." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Richard Scheps. SPIE, 1999. http://dx.doi.org/10.1117/12.347674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography