To see the other types of publications on this topic, follow the link: Optoelectronic Oscillators.

Journal articles on the topic 'Optoelectronic Oscillators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optoelectronic Oscillators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Anni, Jian Dai, and Kun Xu. "Stable and Low-Spurs Optoelectronic Oscillators: A Review." Applied Sciences 8, no. 12 (December 14, 2018): 2623. http://dx.doi.org/10.3390/app8122623.

Full text
Abstract:
An optoelectronic oscillator (OEO) is an optoelectronic hybrid oscillator which utilizes ultra-low loss fiber as an electro-magnetic energy storage element, overcoming the limits of traditional microwave oscillators in phase noise performance. Due to their ability to generate ultra-low phase noise microwave signal, optoelectronic oscillators have attracted considerable attentions and are becoming one of the most promising and powerful microwave signal sources. In this paper, we briefly introduce the operation principle and discuss current research on frequency stability and spurious suppression of optoelectronic oscillators.
APA, Harvard, Vancouver, ISO, and other styles
2

Levy, Etgar C., Moshe Horowitz, and Curtis R. Menyuk. "Modeling optoelectronic oscillators." Journal of the Optical Society of America B 26, no. 1 (December 19, 2008): 148. http://dx.doi.org/10.1364/josab.26.000148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Raut, Nabin K., Jeffery Miller, and Jay Sharping. "Progress in Optoelectronic Oscillators." Journal of Institute of Science and Technology 24, no. 1 (June 26, 2019): 26–33. http://dx.doi.org/10.3126/jist.v24i1.24625.

Full text
Abstract:
An optoelectronic oscillator (OEO) generates a spectrally pure and ultra-stable radio frequency signal from a continuous wave laser source (Yao et al. 2004). In a conventional electrical oscillator, the energy storage capacity is limited, which compromises stability of the signal. To address this issue, Yao and Maleki invented the optoelectronic oscillator in 1996. This novel oscillator uses low-loss optical fiber to extend the length of the oscillator and thereby increases the amount of energy that can be stored (Madjar & Tibor 2006). Due to this additional energy storing component in the system, the purity and stability of the signal increase significantly. Following their invention, many modifications have been made over the years to improve the frequency stability of OEOs (lower phase noise and timing jitter). This review article discusses some of those key developments and then introduces some ongoing work devoted to understanding the impact of using electrical filters with Q >109.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Ming, Tengfei Hao, Wei Li, and Yitang Dai. "Tutorial on optoelectronic oscillators." APL Photonics 6, no. 6 (June 1, 2021): 061101. http://dx.doi.org/10.1063/5.0050311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hao, Tengfei, Yanzhong Liu, Jian Tang, Qizhuang Cen, Wei Li, Ninghua Zhu, Yitang Dai, José Capmany, Jianping Yao, and Ming Li. "Recent advances in optoelectronic oscillators." Advanced Photonics 2, no. 04 (July 25, 2020): 1. http://dx.doi.org/10.1117/1.ap.2.4.044001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Salzenstein, Patrice. "An example of design, optimization, stabilization and noise performances of resonator-based optoelectronic oscillators." International Journal for Simulation and Multidisciplinary Design Optimization 10 (2019): A2. http://dx.doi.org/10.1051/smdo/2019001.

Full text
Abstract:
In this paper we talk about oscillators of optoelectronic type with intensity modulators and high-quality optical resonators technology. This subject is illustrated by an example of realization from the material to the characterization of the realized oscillator. It is explained how such an oscillator is designed and how it can be optimized.
APA, Harvard, Vancouver, ISO, and other styles
7

Bánky, Tamás, Bálint Horváth, and Tibor Berceli. "Optimum configuration of multiloop optoelectronic oscillators." Journal of the Optical Society of America B 23, no. 7 (July 1, 2006): 1371. http://dx.doi.org/10.1364/josab.23.001371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Kwang-Hyun, Jae-Young Kim, Woo-Young Choi, Hideki Kamitsuna, Minoru Ida, and Kenji Kurishima. "Low-Cost Optoelectronic Self-Injection-Locked Oscillators." IEEE Photonics Technology Letters 20, no. 13 (July 2008): 1151–53. http://dx.doi.org/10.1109/lpt.2008.925189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chatterjee, S., S. Pal, and B. N. Biswas. "Pole movement in electronic and optoelectronic oscillators." International Journal of Electronics 100, no. 12 (December 2013): 1697–713. http://dx.doi.org/10.1080/00207217.2013.769147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

García, Sergi, and Ivana Gasulla. "Multi-cavity optoelectronic oscillators using multicore fibers." Optics Express 23, no. 3 (January 28, 2015): 2403. http://dx.doi.org/10.1364/oe.23.002403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Romeira, Bruno, Ricardo Avó, Julien Javaloyes, Salvador Balle, Charles N. Ironside, and José M. L. Figueiredo. "Stochastic induced dynamics in neuromorphic optoelectronic oscillators." Optical and Quantum Electronics 46, no. 10 (March 6, 2014): 1391–96. http://dx.doi.org/10.1007/s11082-014-9905-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Erneux, Thomas. "Strongly Nonlinear Oscillators Subject to Delay." Journal of Vibration and Control 16, no. 7-8 (June 2010): 1141–49. http://dx.doi.org/10.1177/1077546309341130.

Full text
Abstract:
A large class of strongly nonlinear conservative oscillators subject to a delayed feedback are modeled mathematically by second-order delay differential equations. Recent applications include the control of crane oscillations and lasers subject to optoelectronic feedback. We apply the method of averaging in the case of weak damping and weak feedback and determine the bifurcation diagram of the limit-cycle solutions. We find that the coexistence of a stable equilibrium with one or several stable periodic solutions is unavoidable if the delay is sufficiently large.
APA, Harvard, Vancouver, ISO, and other styles
13

Adnan, Atyaf. "Chaos synchronization delay in semiconductor lasers with optoelectronic feedback." Iraqi Journal of Physics (IJP) 14, no. 30 (January 13, 2019): 18–23. http://dx.doi.org/10.30723/ijp.v14i30.191.

Full text
Abstract:
In this work we reported the synchronization delay insemiconductor laser (SL) networks. The unidirectionalconfigurations between successive oscillators and the correlationbetween them are achieved. The coupling strength is a controlparameter so when we increase coupling strength the dynamic of thesystem has been change. In addition the time required to synchronizenetwork components (delay of synchronization) has been studied aswell. The synchronization delay has been increased by mean ofincreasing the number of oscillators. Finally, explanation of the timerequired to synchronize oscillators in the network at differentcoupling strengths.
APA, Harvard, Vancouver, ISO, and other styles
14

Kouomou Chembo, Y., Laurent Larger, Hervé Tavernier, Ryad Bendoula, Enrico Rubiola, and Pere Colet. "Dynamic instabilities of microwaves generated with optoelectronic oscillators." Optics Letters 32, no. 17 (August 22, 2007): 2571. http://dx.doi.org/10.1364/ol.32.002571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zou, Xihua, Xinkai Liu, Wangzhe Li, Peixuan Li, Wei Pan, Lianshan Yan, and Liyang Shao. "Optoelectronic Oscillators (OEOs) to Sensing, Measurement, and Detection." IEEE Journal of Quantum Electronics 52, no. 1 (January 2016): 1–16. http://dx.doi.org/10.1109/jqe.2015.2504088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mikitchuk, Kiryl, Alexander Chizh, and Sergei Malyshev. "Modeling and Design of Delay-Line Optoelectronic Oscillators." IEEE Journal of Quantum Electronics 52, no. 10 (October 2016): 1–8. http://dx.doi.org/10.1109/jqe.2016.2600408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Ziye, Chun Yang, En Zhu, and Weijie Xu. "Measurement on Spurious Phase Stability in Optoelectronic Oscillators." IEEE Photonics Technology Letters 33, no. 8 (April 15, 2021): 411–14. http://dx.doi.org/10.1109/lpt.2021.3067692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chizh, A. L., and K. B. Mikitchuk. "Noise conversion in delay-line optoelectronic microwave oscillators." Quantum Electronics 51, no. 3 (March 1, 2021): 260–64. http://dx.doi.org/10.1070/qel17454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Saleh, Khaldoun, Pierre-Henri Merrer, Amel Ali-Slimane, Olivier Llopis, and Gilles Cibiel. "Study of the noise processes in microwave oscillators based on passive optical resonators." International Journal of Microwave and Wireless Technologies 5, no. 3 (April 23, 2013): 371–80. http://dx.doi.org/10.1017/s1759078713000354.

Full text
Abstract:
Two types of optoelectronic oscillators delivering high spectral purity microwave signals are presented in this paper. These oscillators use the Pound–Drever–Hall laser stabilization technique to lock the laser carrier onto two different types of passive optical resonators featuring high-quality factors: a fiber ring resonator (FRR) and a whispering gallery mode monocrystalline disk-shaped micro-resonator. The different noise processes occurring inside these oscillators are discussed. Particular attention is given to the conversion of the laser's amplitude and frequency noise into RF phase noise via the laser stabilization loop and the resonator, and via the photodetector nonlinearity as well. A modeling approach using CAD software is also proposed to qualitatively evaluate laser noise conversion through the optical resonator. Moreover, different contributions of nonlinear optical scattering noise are discussed, mainly in the case of the FRR-based oscillator. When controlling these nonlinear optical effects in the case of the FRR, low-phase noise operation of the oscillator has been achieved, with a −40 dBc/Hz noise level at 10 Hz offset frequency from a 10.2 GHz RF carrier.
APA, Harvard, Vancouver, ISO, and other styles
20

Kwang-Hyun Lee, Jae-Young Kim, and Woo-Young Choi. "Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation." IEEE Photonics Technology Letters 20, no. 19 (October 2008): 1645–47. http://dx.doi.org/10.1109/lpt.2008.2002743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Okusaga, O., E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz. "Spurious mode reduction in dual injection-locked optoelectronic oscillators." Optics Express 19, no. 7 (March 15, 2011): 5839. http://dx.doi.org/10.1364/oe.19.005839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jit, S., and B. B. Pal. "New optoelectronic integrated device for optically controlled microwave oscillators." IEE Proceedings - Optoelectronics 151, no. 3 (June 1, 2004): 177–82. http://dx.doi.org/10.1049/ip-opt:20040390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chembo, Yanne Kouomou, Laurent Larger, and Pere Colet. "Nonlinear Dynamics and Spectral Stability of Optoelectronic Microwave Oscillators." IEEE Journal of Quantum Electronics 44, no. 9 (September 2008): 858–66. http://dx.doi.org/10.1109/jqe.2008.925121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Romeira, B., J. M. L. Figueiredo, C. N. Ironside, and T. Slight. "Chaotic Dynamics in Resonant Tunneling Optoelectronic Voltage Controlled Oscillators." IEEE Photonics Technology Letters 21, no. 24 (December 2009): 1819–21. http://dx.doi.org/10.1109/lpt.2009.2034129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Goune Chengui, Geraud R., Jimmi H. Talla Mbe, Alain Francis Talla, Paul Woafo, and Yanne K. Chembo. "Dynamics of Optoelectronic Oscillators With Electronic and Laser Nonlinearities." IEEE Journal of Quantum Electronics 54, no. 1 (February 2018): 1–7. http://dx.doi.org/10.1109/jqe.2017.2782319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yao, Jianping. "Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing." Journal of Lightwave Technology 35, no. 16 (August 15, 2017): 3489–97. http://dx.doi.org/10.1109/jlt.2016.2586181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wu, Hsiao-Hua, Chen-Shiung Chang, and Ci-Ling Pan. "Optoelectronic Synchronization of Distributed Microwave Oscillators Using Semiconductor Laser Diodes." Japanese Journal of Applied Physics 31, Part 2, No. 9A (September 1, 1992): L1258—L1259. http://dx.doi.org/10.1143/jjap.31.l1258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sun, Tianchi, Li Zhang, and Afshin S. Daryoush. "High-Resolution $X$ -Band Frequency Synthesizer Using SILPLL Optoelectronic Oscillators." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67, no. 1 (January 2020): 217–23. http://dx.doi.org/10.1109/tuffc.2019.2944425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Levy, Etgar C., Moshe Horowitz, and Curtis R. Menyuk. "Noise distribution in the radio frequency spectrum of optoelectronic oscillators." Optics Letters 33, no. 24 (December 3, 2008): 2883. http://dx.doi.org/10.1364/ol.33.002883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mbe, Jimmi H. Talla, Juliette S. D. Kamaha, Yanne K. Chembo, and Paul Woafo. "Dynamics of Wideband Time-Delayed Optoelectronic Oscillators With Nonlinear Filters." IEEE Journal of Quantum Electronics 55, no. 4 (August 2019): 1–6. http://dx.doi.org/10.1109/jqe.2019.2920694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sorrentino, Francesco, Caitlin R. S. Williams, Thomas E. Murphy, and Rajarshi Roy. "Synchronization patterns of an experimental ring of coupled optoelectronic oscillators." IEICE Proceeding Series 2 (March 17, 2014): 404. http://dx.doi.org/10.15248/proc.2.404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Levy, Etgar C., and Moshe Horowitz. "Theoretical and experimental study of passive mode-locked optoelectronic oscillators." Journal of the Optical Society of America B 30, no. 1 (December 12, 2012): 107. http://dx.doi.org/10.1364/josab.30.000107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhu Jigui, 邾继贵, 郭庭航 Guo Tinghang, 林嘉睿 Lin Jiarui, 张涛 Zhang Tao, and 崔鹏飞 Cui Pengfei. "Mode Number Determination of Distance Measurement Method Based on Optoelectronic Oscillators." Chinese Journal of Lasers 41, no. 3 (2014): 0308004. http://dx.doi.org/10.3788/cjl201441.0308004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jaimes-Reátegui, R., R. Sevilla-Escoboza, A. N. Pisarchik, J. H. García-López, G. Huerta-Cuellar, F. Ruiz-Oliveras, D. Lopez Mancilla, and C. E. Castañeda-Hernandez. "Secure optoelectronic communication using laser diode driving by chaotic Rössler oscillators." Journal of Physics: Conference Series 274 (January 1, 2011): 012024. http://dx.doi.org/10.1088/1742-6596/274/1/012024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jahanbakht, Sajad. "Frequency domain phase noise analysis of dual injection-locked optoelectronic oscillators." Applied Optics 55, no. 28 (September 26, 2016): 7900. http://dx.doi.org/10.1364/ao.55.007900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sung, Hyuk-Kee, Xiaoxue Zhao, Erwin K. Lau, Devang Parekh, Connie J. Chang-Hasnain, and Ming C. Wu. "Optoelectronic Oscillators Using Direct-Modulated Semiconductor Lasers Under Strong Optical Injection." IEEE Journal of Selected Topics in Quantum Electronics 15, no. 3 (2009): 572–77. http://dx.doi.org/10.1109/jstqe.2008.2010334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Saleh, Khaldoun, Olivier Llopis, and Gilles Cibiel. "Optical Scattering Induced Noise in Fiber Ring Resonators and Optoelectronic Oscillators." Journal of Lightwave Technology 31, no. 9 (May 2013): 1433–46. http://dx.doi.org/10.1109/jlt.2013.2250917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kim, Jae-Young, Jun-Hyung Jo, Woo-Young Choi, and Hyuk-Kee Sung. "Dual-Loop Dual-Modulation Optoelectronic Oscillators With Highly Suppressed Spurious Tones." IEEE Photonics Technology Letters 24, no. 8 (April 2012): 706–8. http://dx.doi.org/10.1109/lpt.2012.2187278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chang, Chien-Yuan, Michael J. Wishon, Daeyoung Choi, Junliang Dong, Kamel Merghem, Abderrahim Ramdane, Francois Lelarge, Anthony Martinez, Alexandre Locquet, and D. S. Citrin. "Tunable X-Band Optoelectronic Oscillators Based on External-Cavity Semiconductor Lasers." IEEE Journal of Quantum Electronics 53, no. 3 (June 2017): 1–6. http://dx.doi.org/10.1109/jqe.2017.2682702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Williams, Caitlin R. S., Francesco Sorrentino, Thomas E. Murphy, Rajarshi Roy, Thomas Dahms, and Eckehard Schöll. "Group Synchrony in an Experimental System of Delay-coupled Optoelectronic Oscillators." IEICE Proceeding Series 1 (March 17, 2014): 70–73. http://dx.doi.org/10.15248/proc.1.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tseng, Wen-Hung, and Kai-Ming Feng. "Impact of fiber delay fluctuation on reference injection-locked optoelectronic oscillators." Optics Letters 37, no. 17 (August 21, 2012): 3525. http://dx.doi.org/10.1364/ol.37.003525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yao, X. S., L. Davis, and L. Maleki. "Coupled optoelectronic oscillators for generating both RF signal and optical pulses." Journal of Lightwave Technology 18, no. 1 (January 2000): 73–78. http://dx.doi.org/10.1109/50.818909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Devgan, Paul. "A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications." ISRN Electronics 2013 (April 29, 2013): 1–16. http://dx.doi.org/10.1155/2013/401969.

Full text
Abstract:
The Optoelectronic Oscillator (OEO) was first demonstrated in 1996 as a low phase noise RF source. Low phase noise RF sources have uses for multiple applications, ranging from analog to digital converters to radar to metrology. In the past sixteen years, the OEO has been shown to be useful for other signal processing applications. This paper will provide a background of the OEO’s principles of operation, as well as multiple examples of signal processing applications where the OEO can be used. The OEO can be applied to both analog and digital problems, providing new techniques to solve these challenges.
APA, Harvard, Vancouver, ISO, and other styles
44

Jahanbozorgi, Mandana, S. Esmail Hosseini, Sajad Jahanbakht, and Kambiz Jamshidi. "Dispersion effects on the performance of whispering gallery mode based optoelectronic oscillators." Optics & Laser Technology 135 (March 2021): 106665. http://dx.doi.org/10.1016/j.optlastec.2020.106665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yang, Yue-De, Ming-Long Liao, Jun-Yuan Han, Hai-Zhong Weng, Jin-Long Xiao, and Yong-Zhen Huang. "Narrow-Linewidth Microwave Generation by Optoelectronic Oscillators With AlGaInAs/InP Microcavity Lasers." Journal of Lightwave Technology 36, no. 19 (October 2018): 4379–85. http://dx.doi.org/10.1109/jlt.2018.2828461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Salzenstein, Patrice, Vitaly B. Voloshinov, and Arseniy S. Trushin. "Investigation in acousto-optic laser stabilization for crystal resonator-based optoelectronic oscillators." Optical Engineering 52, no. 2 (February 6, 2013): 024603. http://dx.doi.org/10.1117/1.oe.52.2.024603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chembo, Yanne Kouomou, Kirill Volyanskiy, Laurent Larger, Enrico Rubiola, and Pere Colet. "Determination of Phase Noise Spectra in Optoelectronic Microwave Oscillators: A Langevin Approach." IEEE Journal of Quantum Electronics 45, no. 2 (February 2009): 178–86. http://dx.doi.org/10.1109/jqe.2008.2002666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nguimdo, R. M., Y. K. Chembo, P. Colet, and L. Larger. "On the Phase Noise Performance of Nonlinear Double-Loop Optoelectronic Microwave Oscillators." IEEE Journal of Quantum Electronics 48, no. 11 (November 2012): 1415–23. http://dx.doi.org/10.1109/jqe.2012.2215843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Romeira, B., J. Javaloyes, J. M. L. Figueiredo, C. N. Ironside, H. I. Cantu, and A. E. Kelly. "Delayed Feedback Dynamics of Liénard-Type Resonant Tunneling-Photo-Detector Optoelectronic Oscillators." IEEE Journal of Quantum Electronics 49, no. 1 (January 2013): 31–42. http://dx.doi.org/10.1109/jqe.2012.2225415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen Zhenwei, 陈振炜, 孟义朝 Meng Yichao, and 詹遥牧 Zhan Yaomu. "Characteristics and Generation Routes of Chaos in Time Delay Varying Optoelectronic Oscillators." Laser & Optoelectronics Progress 57, no. 19 (2020): 191902. http://dx.doi.org/10.3788/lop57.191902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography