Academic literature on the topic 'Optomechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optomechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optomechanics"

1

Kranert, Fabian, Moritz Hinkelmann, Roland Lachmayer, Jörg Neumann, and Dietmar Kracht. "Polymer-based 3D printing of function-integrated optomechanics – design guidelines and system evaluation." Rapid Prototyping Journal 30, no. 11 (August 28, 2024): 246–58. http://dx.doi.org/10.1108/rpj-02-2023-0073.

Full text
Abstract:
Purpose This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components, specifically optomechanical parts. The potential of this approach is demonstrated by manufacturing function-integrated optomechanics for a low-power solid-state laser system. Design/methodology/approach For the production of function-integrated additively manufactured optomechanics using the FFF process, essential components and subsystems have been identified for which no design guidelines are available. This includes guidelines for integrating elements, particularly optics, into a polymer structure as well as guidelines for printing functional threads and ball joints. Based on these results, combined with prior research, a function-integrated low-power solid-state laser optomechanic was fabricated via the FFF process, using a commercial 3D printer of the type Ultimaker 3. The laser system's performance was assessed and compared to a reference system that employed commercial optomechanics, additionally confirming the design guidelines derived from the study. Findings Based on the design goal of function integration, the existing design guidelines for the FFF process are systematically extended. This success is demonstrated by the fabrication of an integrated optomechanic for a solid-state laser system. Practical implications Based on these results, scientists and engineers will be able to use the FFF process more extensively and benefit from the possibilities of function-integrated manufacturing. Originality/value Extensive research has been published on additive manufacturing of optomechanics. However, this research often emphasizes only cost reduction and short-term availability of components by reprinting existing parts. This paper aims to explore the capabilities of additive manufacturing in the production of function-integrated components to reduce the number of individual parts required, thereby decreasing the workload for system assembly and leading to an innovative production process for optical systems. Consequently, where needed, it provides new design guidelines or extends existing ones and verifies them by means of test series.
APA, Harvard, Vancouver, ISO, and other styles
2

Piergentili, Paolo, Letizia Catalini, Mateusz Bawaj, Stefano Zippili, Nicola Malossi, Riccardo Natali, David Vitali, and Giovanni Di Giuseppe. "Multimode Cavity Optomechanics." Proceedings 12, no. 1 (November 12, 2019): 54. http://dx.doi.org/10.3390/proceedings2019012054.

Full text
Abstract:
We study theoretically and experimentally the behavior of an optomechanical system where two vibrating dielectric membranes are placed inside a driven Fabry-Pérot cavity. We prove that multi–element systems of mechanical resonators are suitable for enhancing optomechanical performances, and we report a ∼2.47 gain in the optomechanical coupling strength of the membrane relative motion with respect to the single membrane case. With this configuration it is possible to enable cavity optomechanics in the strong single-photon coupling regime.
APA, Harvard, Vancouver, ISO, and other styles
3

Farooq, K., H. M. Noor ul Huda Khan Asghar, M. A. Khan, and Khalil Khan. "Transmissivity of optomechanical system containing a two-level system." International Journal of Modern Physics B 33, no. 22 (September 10, 2019): 1950252. http://dx.doi.org/10.1142/s0217979219502527.

Full text
Abstract:
The field of quantum optomechanics is newly grooming research field, availed good attention in the last couple of years. Here, we theoretically study the system of optomechanics containing a two-level atom, which is coupled to the cavity field, and driven coherently by external fields. Analytical results for the system’s operator dynamics, steady state solutions and transmissivity of optomechanical system are calculated. Transmission (optical response) from the optomechanical system shows some useful information about the current optomechanical system. Particularly, [Formula: see text] = [Formula: see text]-g0([Formula: see text] + [Formula: see text]) is a crucial quantity in optomechanics, focused as main parameters in this paper. Optical transmission is studied in two regions. The first region (case) (i) when [Formula: see text] = [Formula: see text] - [Formula: see text], and in second region (case), (ii) [Formula: see text] = [Formula: see text] + [Formula: see text]. The transmission is examined and discussed with respect to the mechanical frequency of the oscillating mirror.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Ning, Kaiyu Cui, Xue Feng, Fang Liu, Wei Zhang, and Yidong Huang. "Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics." Photonics 9, no. 2 (January 29, 2022): 78. http://dx.doi.org/10.3390/photonics9020078.

Full text
Abstract:
Multimode optomechanics exhibiting several intriguing phenomena, such as coherent wavelength conversion, optomechanical synchronization, and mechanical entanglements, has garnered considerable research interest for realizing a new generation of information processing devices and exploring macroscopic quantum effect. In this study, we proposed and designed a hetero-optomechanical crystal (OMC) zipper cavity comprising double OMC nanobeams as a versatile platform for multimode optomechanics. Herein, the heterostructure and breathing modes with high mechanical frequency ensured the operation of the zipper cavity at the deep-sideband-resolved regime and the mechanical coherence. Consequently, the mechanical breathing mode at 5.741 GHz and optical odd mode with an intrinsic optical Q factor of 3.93 × 105 were experimentally demonstrated with an optomechanical coupling rate g0 = 0.73 MHz between them, which is comparable to state-of-the-art properties of the reported OMC. In addition, the hetero-zipper cavity structure exhibited adequate degrees of freedom for designing multiple mechanical and optical modes. Thus, the proposed cavity will provide a playground for studying multimode optomechanics in both the classical and quantum regimes.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jian-Qi, Jing-Xin Liu, Hui-Lai Zhang, Zhi-Rui Gong, Shuo Zhang, Lei-Lei Yan, Shi-Lei Su, Hui Jing, and Mang Feng. "Topological optomechanical amplifier in synthetic PT $\mathcal{PT}$ -symmetry." Nanophotonics 11, no. 6 (February 2, 2022): 1149–58. http://dx.doi.org/10.1515/nanoph-2021-0721.

Full text
Abstract:
Abstract We propose how to achieve synthetic PT $\mathcal{PT}$ symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e., the coalescing of both the eigenvalues and the eigenvectors of the system. By encircling the EP, both nonreciprocal optical amplification and chiral mode switching can be achieved. As a result, our synthetic PT $\mathcal{PT}$ -symmetric optomechanics works as a topological optomechanical amplifier. This provides a surprisingly simplified route to realize PT $\mathcal{PT}$ -symmetric optomechanics, indicating that a wide range of EP devices can be created and utilized for various applications such as topological optical engineering and nanomechanical processing or sensing.
APA, Harvard, Vancouver, ISO, and other styles
6

Farooq, K., M. A. Khan, L. C. Wang, and X. X. Yi. "Dynamics and transmissivity of optomechanical system in squeezed environment." International Journal of Modern Physics B 29, no. 28 (October 29, 2015): 1550201. http://dx.doi.org/10.1142/s021797921550201x.

Full text
Abstract:
Cavity quantum optomechanics offers the potential to explore quantum nature and characteristics in microscopic and nanoquantum systems. In this area, various experimental setup trends to explore, while theoretical approaches seek to lead the concrete bases for these amazing characteristics. In this paper, we present the dynamic features, stabilization and the optical response (transmission) properties of an optomechanical system in the squeezed environment theoretically. Particularly, we calculate optical intensity transmission coefficient of the optomechanical system. The optomechanical system has driven coherently with the external laser field.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Lingchao, and Jian-Qi Zhang. "Force Dependent Quantum Phase Transition in the Hybrid Optomechanical System." Photonics 8, no. 12 (December 18, 2021): 588. http://dx.doi.org/10.3390/photonics8120588.

Full text
Abstract:
The optomechanics shows a great potential in quantum control and precise measurement due to appropriate mechanical control. Here we theoretically study the quantum phase transition in a hybrid atom-optomechanical cavity with an external force. Our study shows, in the thermodynamic limit, the critical value of quantum phase transition between the normal phase and super-radiant phase can be controlled and modified by the external force via the tunable frequency of optomechanics, then a force dependent quantum phase transition can be achieved in our system. Moreover, this force dependent quantum phase transition can be employed to detect the external force variation. In addition, our numerical simulations illustrate the sensitivity of the external force measurement can be improved by the squeezing properties of the quantum phase transition.
APA, Harvard, Vancouver, ISO, and other styles
8

Schmidt, Mikołaj K., Ruben Esteban, Felix Benz, Jeremy J. Baumberg, and Javier Aizpurua. "Linking classical and molecular optomechanics descriptions of SERS." Faraday Discussions 205 (2017): 31–65. http://dx.doi.org/10.1039/c7fd00145b.

Full text
Abstract:
The surface-enhanced Raman scattering (SERS) of molecular species in plasmonic cavities can be described as an optomechanical process where plasmons constitute an optical cavity of reduced effective mode volume which effectively couples to the vibrations of the molecules. An optomechanical Hamiltonian can address the full quantum dynamics of the system, including the phonon population build-up, the vibrational pumping regime, and the Stokes–anti-Stokes correlations of the photons emitted. Here we describe in detail two different levels of approximation to the methodological solution of the optomechanical Hamiltonian of a generic SERS configuration, and compare the results of each model in light of recent experiments. Furthermore, a phenomenological semi-classical approach based on a rate equation of the phonon population is demonstrated to be formally equivalent to that obtained from the full quantum optomechanical approach. The evolution of the Raman signal with laser intensity (thermal, vibrational pumping and instability regimes) is accurately addressed when this phenomenological semi-classical approach is properly extended to account for the anti-Stokes process. The formal equivalence between semi-classical and molecular optomechanics descriptions allows us to describe the vibrational pumping regime of SERS through the classical cross sections which characterize a nanosystem, thus setting a roadmap to describing molecular optomechanical effects in a variety of experimental situations.
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Sumit, Sebastian Spence, Simon Perrett, Zaynab Tahir, Angadjit Singh, Chichi Qi, Sara Perez Vizan, and Xavier Rojas. "A novel architecture for room temperature microwave optomechanical experiments." Journal of Applied Physics 133, no. 9 (March 7, 2023): 094501. http://dx.doi.org/10.1063/5.0136214.

Full text
Abstract:
We have developed a novel architecture for room temperature microwave cavity optomechanics, which is based on the coupling of a 3D microwave re-entrant cavity to a compliant membrane. Device parameters have enabled resolving the thermomechanical motion of the membrane and observing optomechanically induced transparency/absorption in the linear regime for the first time in a microwave optomechanical system operated at room temperature. We have extracted the single-photon coupling rate ([Formula: see text]) using four independent measurement techniques and, hence, obtained a full characterization of the proposed cavity optomechanical system.
APA, Harvard, Vancouver, ISO, and other styles
10

Piergentili, Paolo, Riccardo Natali, David Vitali, and Giovanni Di Giuseppe. "Two-Membrane Cavity Optomechanics: Linear and Non-Linear Dynamics." Photonics 9, no. 2 (February 8, 2022): 99. http://dx.doi.org/10.3390/photonics9020099.

Full text
Abstract:
In this paper, we review the linear and non-linear dynamics of an optomechanical system made of a two-membrane etalon in a high-finesse Fabry–Pérot cavity. This two-membrane setup has the capacity to modify on demand the single-photon optomechanical coupling, and in the linearized interaction regime to cool simultaneously two mechanical oscillators. It is a promising platform for realizing cavity optomechanics with multiple resonators. In the non-linear regime, an analytical approach based on slowly varying amplitude equations allows us to derive a consistent and full characterization of the non-linear displacement detection, enabling a truthful detection of membrane displacements much above the usual linear sensing limited by the cavity linewidth. Such a high quality system also shows a pre-synchronization regime.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Optomechanics"

1

Latmiral, Ludovico. "Quantumness in optomechanics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/60655.

Full text
Abstract:
Cavity optomechanics has become an established and equally promising branch in quantum optics. Thanks to the interaction between matter and electromagnetic radiation, it has proved to be an optimal platform for a range of scopes, from weak force sensing to the study of non-classicality of mechanical motion. Besides, the capability to isolate genuine quantum features of the interaction represents a test ground to address many important questions regarding decoherence, quantum-to-classical transitions and the interface between quantum mechanics and gravity. The first part of the research embedded in this thesis is addressed towards the clear identification and characterisation of quantum features in optomechanics. The main model we will refer to is a deformable Fabry-P\'erot cavity where one of the two mirrors moves under the radiation pressure of light. After having properly assessed the quantum peculiarities of the system, and also having revised some intakes from past literature, we will focus on the study of mechanical non-linearities, as they have been proved to be a key resource to bring out and enhance quantum properties. These investigations provide the basis to eventually propose a method to deterministically prepare and measure macroscopic quantum superposition states of the movable mirror. Such massive quantum states play a key role to inspect the foundations of physics, e.g. to test the collapse of the wave function and phenomenological models of quantum gravity, as well as to develop new enhanced quantum technologies.
APA, Harvard, Vancouver, ISO, and other styles
2

Frangeskou, Angelo. "Nanodiamonds in levitated optomechanics." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/103509/.

Full text
Abstract:
This thesis reports on research undertaken to explore the viability of using nanodiamonds containing nitrogen vacancy (NV) centres in optical dipole traps. The impact of illuminating single NV centres with 1550 nm, a common dipole trap wavelength, is investigated. A reduction of 7% in the fluorescence intensity is observed using 20-30 mW of illumination, whilst the NV centre’s optically detected magnetic resonance (ODMR) signal contrast and electron spin T2 time remain unaffected. These results are better than those of similar experiments with 1064 nm. A method for creating and characterising pure type IIa nanodiamonds containing NV centres is presented. Bulk chemical vapour deposition (CVD) diamonds are electron irradiated and annealed, before being ball milled into nanodiamonds. The bulk purity is determined by quantitative electron paramagnetic resonance. The nanodiamonds are characterised by Raman spectroscopy, electron microscopy and energy dispersive X-ray spectroscopy (EDX). Small quantities of contamination by the silicon nitride milling material could be found using EDX. A confocal microscope was constructed and single NV centres inside the nanodiamonds were found to be photostable and ODMR shows an average ODMR contrast of 9%. An optical dipole trap was constructed and CVD derived nanodiamonds were levitated. Measurements of the centre-of-mass motion show that unlike commercial type 1b nanodiamonds, they mostly remain at or close to thermal equilibrium in moderate vacuum where commercial material was previously reported to burn and/or graphitise, even when the optical intensity is raised above 700 GW/m2. Nanodiamonds are observed to be suddenly ejected from the trap at ~1 mbar.
APA, Harvard, Vancouver, ISO, and other styles
3

Neumeier, Lukas. "Novel regimes of quantum optomechanics." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620785.

Full text
Abstract:
In everyday life the impact of light on the motion of mechanical objects is negligible. However, modern experiments making use of high quality optical resonators are able to observe significant effects originating from the forces associated with photons on small mechanical systems. The common feature of these systems is the dependence of the optical resonance frequency on the position of the mechanical object, laying the framework of optomechanics. Many interesting regimes have been explored which allow for photon-light entanglement, laser cooling of motion, generation of squeezed states of light, and even the detection of gravitational waves. Interestingly, the optomechanical interaction is so generic that its underlying concepts and derived insights can be generally applied to a large variety of systems, as we will see in this thesis. In Chapter 1, we provide a brief overview of key concepts and results from the field of optomechanics, before going on to discuss the novel regimes and applications that we have identified and proposed. In Chapter 2, we theoretically investigate results from a couple of experiments, that were previously not well-understood. These experiments trap dielectric nano-particles through an optical resonator mode and observe that the intensities experienced by the particles are strongly reduced compared to a conventional optical tweezer trap. We find that these systems can be fully described by a simple optomechanical toy model and derive that the optical potential inside resonators can approach a nearly perfect square well. This potential can be dynamically reshaped by changing the driving laser frequency and we find a dramatic reduction of intensities seen by the trapped particle, which could significantly increase the range of systems to which optical trapping can be applied. These results are quite remarkable and should have important implications for future trapping technologies. In Chapter 3, we recognize that a major trend within the field of cavity QED is to attain the strong coupling regime. Additional rich dynamics can occur by considering the atomic motional degree of freedom. In particular, we show that such a system is a natural candidate to explore the single-photon optomechanical strong coupling regime of quantum optomechanics, but where the motional frequency cannot be resolved by the cavity. We show that this regime can result in a number of remarkable phenomena, such as strong entanglement between the atomic wave-function and the scattering properties of single incident photons, or an anomalous heating mechanism of atomic motion. In Chapter 4 we show that an atom trapped in and coupled to a cavity constitutes an attractive platform for realizing the optomechanical single-photon strong coupling regime with resolved mechanical sidebands. Realizing this regime is a major goal within the field of optomechanics, as it would enable the deterministic generation of non-classical states of light. However, this regime is difficult to achieve with conventional mechanical systems due to their small zero-point motions. As an example, we show that optomechanically-induced photon blockade can be realized in realistic setups, wherein non-classical light is generated due to the interaction of photons with the atomic motion alone.
En la vida cotidiana, el impacto de la luz sobre el movimiento de los objetos mecánicos es insignificante. Sin embargo, los experimentos modernos que usan resonadores ópticos de alta calidad son capaces de observar efectos significativos que se originan de las fuerzas asociadas con los fotones en pequeños sistemas mecánicos. La característica común de estos sistemas es la dependencia de la frecuencia de resonancia óptica en la posición del objeto mecánico, que establece el campo de la optomecánica. Se han explorado muchos regímenes interesantes que permiten el entrelazamiento de fotones, el enfriamiento del movimiento por láser, la generación de estados de luz comprimidos e incluso la detección de ondas gravitacionales. Curiosamente, la interacción optomecánica es tan genérica que sus conceptos subyacentes y sus profundas consecuencias pueden aplicarse generalmente a una gran variedad de sistemas, como veremos en esta tesis. En el Capítulo 1, proporcionamos una breve descripción de los principales conceptos y resultados del campo de la optomecánica, antes de pasar a analizar los nuevos regímenes y aplicaciones que hemos identificado y propuesto. En el Capítulo 2, investigamos teóricamente los resultados de un par de experimentos que antes no se entendían bien. Estos experimentos atrapan nanopartículas dieléctricas a través de un modo de un resonador óptico y observan que las intensidades experimentadas por las partículas se reducen considerablemente en comparación con una trampa de pinzas ópticas convencional. Encontramos que estos sistemas se pueden describir completamente mediante un modelo optomecánico de juguete simple y demostramos que el potencial óptico dentro de los resonadores puede aproximarse a un pozo cuadrado casi perfecto. Este potencial se puede modificar dinámicamente cambiando la frecuencia de entrada del láser y encontramos una reducción drástica de las intensidades vistas por la partícula atrapada, lo que podría aumentar significativamente el rango de sistemas a los que se puede aplicar el atrapamiento óptico. Estos resultados son bastante notables y deberían tener implicaciones importantes para las futuras tecnologías de atrapamiento. En el Capítulo 3, reconocemos que una tendencia importante en el campo de la electrodinámica cuántica de cavidades (del inglés, "cavity QED") es lograr un régimen de acoplamiento fuerte. Se pueden producir dinámicas adicionales al considerar el grado de libertad de movimiento atómico. En particular, mostramos que dicho sistema es un candidato natural para explorar el régimen de acoplamiento fuerte optomecánico de un único fotón en optomecánica cuántica, pero donde la frecuencia de movimiento no puede ser resuelta por la cavidad. Mostramos que este régimen puede dar lugar a una serie de fenómenos notables, como un fuerte entrelazamiento entre la función de onda atómica y las propiedades de dispersión de los fotones incidentes individuales, o un mecanismo de calentamiento anómalo del movimiento atómico. En el Capítulo 4 mostramos que un átomo atrapado y acoplado a una cavidad constituye una plataforma atractiva para obtener el régimen de acoplamiento fuerte optomecánico con un único fotón y con bandas laterales mecánicas resueltas. La obtención de este régimen es un objetivo principal en el campo de la optomecánica, ya que permitiría la generación determinista de estados de luz no clásicos. Sin embargo, este régimen es difícil de lograr con los sistemas mecánicos convencionales debido a sus pequeños movimientos de punto cero. Como ejemplo, mostramos que el bloqueo de fotones inducido de forma mecánica puede realizarse en configuraciones realistas, donde la luz no clásica se genera solamente debido a la interacción de fotones con el movimiento atómico.
APA, Harvard, Vancouver, ISO, and other styles
4

Hempston, David William. "Force detection in levitated optomechanics." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/418004/.

Full text
Abstract:
The use of levitated optomechanical systems as force sensors is a growing field with great potential. This thesis presents a system that achieves a sensitivity of ≈ 10⁻²² N/√Hz by using on-resonance forces and an optically levitated nanoparticle in a gradient force trap. It is possible to reach pressures of 10⁻⁶ mbar and trap particles with diameters of 50 nm to 300 nm. The particle's motion is detected with a homodyne-like detection system that measures the phase difference in the scattered and un-scattered, divergent, light. With this system it was possible to detect the changes in the particle's motion due to the application of an external AC and DC electric fields. DC electric fields showed a shift in the average position of up to 100 nm and also a shift of the relevant oscillator frequency of up to 1500 Hz. Applying an AC electric field resulted in the particle's motion being driven at the AC frequency. On resonance the detected signal increased by a factor of 200 which helps to measure smaller changes in the particle's motion compared to the undriven signal. Using the AC driving it was possible to detect a particle with a charge of just 4 3 electrons. In addition to this, two vacuum sources were investigated, the first being an ablating source that generated particles directly in the chamber, and the second being a sonicating source that releases pre-made particles from a surface. The ablated source used a high power nano-second Neodymium-doped Yttrium aluminium garnet (Nd:YAG) laser that was able to remove material from a silicon wafer with a 200 nm layer of silicon dioxide. It was possible to trap a nanoparticle with a radius of 353 nm at atmosphere but there was a large thermal distribution in the particle sizes. The sonicating source had the advantage that the particle's size range could be known before hand and also the source could be very close to the trap site. An acoustic horn was developed that focused the energy down to a 3 mm radius surface. It was possible to see a large release of 100 nm particles, however, none of them were trapped. It was assumed that the particles were still too large to trap so steps were taken towards a MHz source. This resulted in the first detection of a particle from an ultrasonic source at the trap site. The signal didn't last long but this still holds promise as a source once a transducer or even a horn have been designed.
APA, Harvard, Vancouver, ISO, and other styles
5

Seok, HyoJun. "Aspects Of Multimode Quantum Optomechanics." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332877.

Full text
Abstract:
This dissertation aims to investigate systems in which several optical and mechanical degrees of freedom are coupled through optomechanical interactions. Multimode optomechanics creates the prospect of integrated functional devices and it allows us to explore new types of optomechanical interactions which account for collective dynamics and optically mediated mechanical interactions. Owing to the development of fabrication techniques for micro- and nano-sized mechanical elements, macroscopic mechanical oscillators can be cooled to the deep quantum regime via optomechanical interaction. Based on the possibility to control the motion of mechanical oscillators at the quantum level, we design several schemes involving mechanical systems of macroscopic length and mass scales and we explore the nonlinear dynamics of mechanical oscillators. The first scheme includes a quantum cantilever coupled to a classical tuning fork via magnetic dipole-dipole interaction and also coupled to a single optical field mode via optomechanical interaction. We investigate the generation of nonclassical squeezed states in the quantum cantilever and their detection by transferring them to the optical field. The second scheme involves a quantum membrane coupled to two optical modes via optomechanical interaction. We explore dynamic stabilization of an unstable position of a quantum mechanical oscillator via modulation of the optical fields. We then develop a general formalism to fully describe cavity mediated mechanical interactions. We explore a rather general configuration in which multiple mechanical oscillators interact with a single cavity field mode. We specifically consider the situation in which the cavity dissipation is the dominant source of damping so that the cavity field follows the dynamics of the mechanical modes. In particular, we study two limiting regimes with specific applications: the weak-coupling regime and single-photon strong-coupling regime. In the weak-coupling regime, we build a protocol for quantum state transfer between mechanical modes. In the single-photon coupling regime, we investigate the nonlinear nature of the mechanical system which generates bistability and bifurcation in the classical analysis and we also explore how these features manifest themselves in interference, entanglement, and correlation in the quantum theory.
APA, Harvard, Vancouver, ISO, and other styles
6

Moghadas, Nia Ramon [Verfasser]. "Multimode optomechanics in the strong cooperativity regime : towards optomechanical entanglement with micromechanical membranes / Ramon Moghadas Nia." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1173321829/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mestres, Junqué Pau. "Cavity optomechanics with optically trapped particles." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/460885.

Full text
Abstract:
Optical trapping and manipulation have emerged as powerful tools to investigate single microscopic objects in a controlled environment. Using the momentum carried by light, forces can be exerted to confine and manipulate objects in a wide range of conditions ranging from liquid environments to high vacuum. In this thesis I implement different optical manipulation schemes to trap nano-objects and coupled them to optical cavities, giving rise to a cavity optomechanical interaction between the trapped object and the cavity mediated by the light¿s radiation-pressure. In a first experiment I implement a mobile optical tweezer (MobOT) with nanometer precision to place a levitated silica nanosphere at the standing wave of a high Finesse Fabry-Perot cavity aiming to cool its center of mass motion to the ground state at room temperature. To attain this goal I design a two step cooling process that starts with a parametrical modulation of the optical trapping potential which pre-cools the center of mass motion along the three axis. Then driving the cavity with a red-detuned laser furthers cool the particle motion along the cavity axis via the optomechanical interaction. To monitor the particle motion in the optical trap, I implement a highly robust and sensitive detection scheme that collects the trap forward scattered field and sends it to a set of three balanced photodiodes. According to a semiclassical model I present, this approach can resolve the nanoparticle motion down to a single phonon excitation provided a shot noise limited balance detector. I also study the use of plasmonic nanoapertures as a novel optomechanical system that increases by 10^8 the single photon optomechanical coupling strength between the trapped nanoparticle and the cavity. These experiments are performed in the overdamped regime and result into a large optomechanical interaction that allows direct measurement of dynamical modulation of the trapping potential due to the motion of the trapped object. Different detuning regimes are studied aiming to improve the optical trapping performances at low laser intensities. These findings are supported by finite element simulations. Finally I have also made use of optical traps to perform non-equilibrium thermodynamic processes with an optically trapped microparticle in a virtual thermal bath. The virtual bath consists of an electrical white noise force. The agreement between the temperatures obtained from equilibrium and non-equilibrium measurements demonstrates the accuracy of this method. Supported by theory and simulations, our experiments highlight the importance of properly choosing the sampling rate and noise bandwidth for the validity of the method. We apply this technique to study non-equilibrium isothermal compression-expansion cycles at different temperatures ranging from room temperature to 3000K. We calculate some thermodynamic functionals for these processes such as work, heat and entropy. We show that work distributions verify the Crooks fluctuation theorem, and that they fit well to a generalized Gamma Function.
L'atrapament i manipulació òptiques han esdevingut tècniques importants en la investigació d'objectes microscòpics en condicions controlades. Gràcies al moment lineal de la llum, es poden exercir forces per confinar i manipular aquests objectes en un ampli ventall de condicions que van des de líquids a alt buit. En aquesta tesi he implementat diferents tècniques de manipulació òptica per atrapar i acoblar nanopartícules a cavitats òptiques, donant lloc a una interacció optomecànica a traves de la pressió de radiació de la llum. En un primer experiment he implementat una pinça òptica mòbil amb precisió nanométrica per tal de posicionar una nanoesfera de SiO2 a l'ona estacionaria de una cavitat òptica Fabry-Perot d'alta finesa amb l'objectiu de refredar el seu centre de massa fins a l'estat fonamental. Per aconseguir aquest objectiu he dissenyat un procés de refradament en dos passos. Primer aconseguim un pre-refredament de centre de massa en les tres direccions modulant paramètricament el potencial òptic. Després, fent us de la cavitat il·luminada amb un làser desplaçat cap al vermell, aconseguim un refredament addicional en la direcció de l'eix òptic de la cavitat gràcies a la interacció optomecànica. Per registrar el moviment de la partícula a la trampa òptica, implemento un sistema de detecció interferomètrica robust i sensible que recull els fotons dispersats per la nanopartícula i els envia a tres fotodíodes balancejats. D`'acord amb un model semiclàssic que presento, aquest mètode es capaç de resoldre el moviment de la nanopartícula fins al nivell de un sol fonó sempre i quan es disposi de detectors amb soroll electrònic inferior al soroll quàntic de la trampa òptica. També estudio l'ús de nano-apertures plasmòniques com a nou sistema optomecànic que incrementa en un factor 10^8 la força d'acoblament optomecànic d'un sol fotó entre la partícula i la cavitat. Aquests experiments són realitzats en condicions sobre-esmorteïdes i aconsegueixen una interacció optomecánica prou gran com per resoldre la modulació dinàmica del potencial òptic causada pel desplaçament de la partícula atrapada. En aquest sistema estudiem diferents condicions de de-sintonització per tal de millorar el rendiment d'aquestes trampes amb potències de làser baixes. Aquests resultats els contrastem amb simulacions d'elements finits. Finalment també he fet servir trampes òptiques per estudiar processos termodinàmics fora de l'equilibri amb una micropartícula en un bany tèrmic virtual. Aquest bany tèrmic consisteix en una força electrònica amb un espectre blanc. La concordança entre les temperatures obtingudes a través de mesures en processos d'equilibri i de no-equilibri demostra precisió d'aquest mètode. Amb l'ajuda d'un model analític i de simulacions, els nostres experiments remarquen la importància d'escollir adequadament la freqüència de mostreig i del soroll per tal de garantir la validesa d'aquest mètode. Fent us d'aquesta tècnica estudiem cicles de compressió i expansió isotèrmics en el no-equilibri a temperatures que van des dels 300K als 3000K. Calculant diferents funcionals termodinàmics com el treball i el calor demostrem que les distribucions de no-equilibri satisfan el teorema de fluctuació de Crooks i que s'ajusten a adequadament a una funció Gamma generalitzada.
APA, Harvard, Vancouver, ISO, and other styles
8

Robinson, I. M. "Optomechanics of polymer fibres and composites." Thesis, Queen Mary, University of London, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aranas, Erika B. "Levitated optomechanics with periodically driven fields." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10057000/.

Full text
Abstract:
Levitated optomechanics offers a route to high-Q, low frequency oscillators by all-optical trapping in high vacuum, although progress has been hampered by particle loss at ∼ 1 mbar. Combining an optical cavity with a Paul trap yielded promising results, showing stable trapping and strong cavity cooling of 200 nm silica nanoparticles up to ∼ 10−5−10−6 mbar, in addition to interesting nonlinear effects. However, the time-periodic fields of the Paul trap gave rise to atypical “split-sideband” spectra which we found to be correlated with the cooling dynamics of the nanoparticle: twin peaks around the mechanical frequency plus a dominant signal at the second harmonic indicated weak cooling, while a complete suppression of one of the split-sidebands showed strong cooling. Presented first in this thesis are the analytical and numerical models used to describe the dynamics of a nanoparticle in a hybrid electro-optical trap. The split-sideband spectra is a result of simultaneous, outof-phase oscillations in g and ωM, and is, in fact, a generic feature of any optically trapped particle where an auxiliary field causes a harmonic excursion in the equilibrium position. Split-sideband asymmetry and thermometry are further discussed for a generic, doublymodulated optomechanical system. A suitably normalised cavity output probing a splitdisplacement spectra still gives the correct steady-state temperature. Analytical formulas are also derived for the complete split-sideband suppression, which may offer additional diagnostic of the quantum regime. Finally, a matrix algorithm to accurately calculate the measured quantum spectra of linear optomechanical systems with arbitrary periodicity is devised to verify the results obtained thus far. In addition, the algorithm allows a systematic calculation of the non-stationary components of the spectra, which are usually averaged out, but are shown to be experimentally accessible via heterodyne detection. In summary, this thesis aims to contribute to the analysis of levitated optomechanics with periodically driven fields, motivated in part by modelling the hybrid electro-optical experiments in UCL.
APA, Harvard, Vancouver, ISO, and other styles
10

Kelly, Stephen C. "EXPLORATION OF QUBIT ASSISTED CAVITY OPTOMECHANICS." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1408097717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Optomechanics"

1

Aspelmeyer, Markus, Tobias J. Kippenberg, and Florian Marquardt, eds. Cavity Optomechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monsel, Juliette. Quantum Thermodynamics and Optomechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Zhen. Experimental Research of Cavity Optomechanics. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4458-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Zhujing. Optomechanics with Quantum Vacuum Fluctuations. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-43052-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sachkou, Yauhen. Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52766-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andersen, Torben, and Anita Enmark. Integrated modeling of complex optomechanical systems: 15-17 August 2011, Kiruna, Sweden. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

E, Hatheway Alson, and Society of Photo-optical Instrumentation Engineers., eds. Optomechanics 2003: 7-8 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hatheway, Alson E. Advances in optomechanics: 5-6 August 2009, San Diego, California, United States. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hatheway, Alson E. Advances in optomechanics: 5-6 August 2009, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Daniel, Vukobratovich, Society of Photo-optical Instrumentation Engineers., and New Mexico State University. Applied Optics Laboratory., eds. Precision engineering and optomechanics: 10-11 August 1989, San Diego, California. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Optomechanics"

1

Kubala, B., M. Ludwig, and F. Marquardt. "Optomechanics." In NATO Science for Peace and Security Series B: Physics and Biophysics, 153–64. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3120-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gawad, Shady, Ana Valero, Thomas Braschler, David Holmes, Philippe Renaud, Vanni Lughi, Tomasz Stapinski, et al. "Optomechanics." In Encyclopedia of Nanotechnology, 2005. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bahl, Gaurav. "Microfluidic Optomechanics." In Encyclopedia of Nanotechnology, 1–5. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100963-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bahl, Gaurav. "Microfluidic Optomechanics." In Encyclopedia of Nanotechnology, 2178–82. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peroulis, Dimitrios, Prashant R. Waghmare, Sushanta K. Mitra, Supone Manakasettharn, J. Ashley Taylor, Tom N. Krupenkin, Wenguang Zhu, et al. "Cavity Optomechanics." In Encyclopedia of Nanotechnology, 403. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bahl, Gaurav, and Tal Carmon. "Brillouin Optomechanics." In Cavity Optomechanics, 157–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pérez, J., H. Dekker, R. J. García López, J. M. Herreros, R. López, F. Pepe, J. L. Rasilla, P. Spanò, and M. R. Zapatero Osorio. "ESPRESSO Optomechanics." In Astrophysics and Space Science Proceedings, 405–7. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9190-2_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meystre, Pierre. "Quantum Optomechanics." In Quantum Optics, 325–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aspelmeyer, Markus, Tobias J. Kippenberg, and Florian Marquardt. "Introduction." In Cavity Optomechanics, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Safavi-Naeini, Amir H., and Oskar Painter. "Optomechanical Crystal Devices." In Cavity Optomechanics, 195–231. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optomechanics"

1

Jung, Alexander, Anastasiia Ciers, André Strittmatter, and Witlef Wieczorek. "Optomechanical Microcavity With a Tensile-strained InGaP Membrane." In Quantum 2.0, QTu3A.13. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qtu3a.13.

Full text
Abstract:
We characterize a chip-based optomechanical microcavity that confines light between a crystalline DBR and a suspended InGaP photonic crystal high-Q membrane. In the future this approach could enable nonlinear quantum optomechanics.
APA, Harvard, Vancouver, ISO, and other styles
2

Barker, Peter F., Jonthan Gosling, and M. Rademacher. "Optomechanics of levitated nanorotors." In Optical Trapping and Optical Micromanipulation XXI, edited by Halina Rubinsztein-Dunlop, Kishan Dholakia, and Giovanni Volpe, 32. SPIE, 2024. http://dx.doi.org/10.1117/12.3029794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schilder, N. J., R. O. Zurita, P. Pinho, C. M. Kersul, G. Wiederhecker, and T. P. M. Alegre. "Towards SiNx High Frequency Optomechanics." In CLEO: Applications and Technology, JTh2A.218. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.218.

Full text
Abstract:
SiNx is key for integrated photonic circuits [1]. Understanding its photoelasticity is crucial for optomechanical device design. We determine its photoelasticity via simulations/experiments on a 1.48 GHz mode driven by TE- and TM-polarized optical modes.
APA, Harvard, Vancouver, ISO, and other styles
4

Safavi-Naeini, Amir H., Thiago P. Mayer Alegre, and Oskar Painter. "Cavity optomechanics and optomechanical crystals." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/iprsn.2010.imf2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pfeifer, Hannes, Hengjiang Ren, Greg MacCabe, and Oskar Painter. "Two dimensional optomechanical crystals for quantum optomechanics." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tian, Feng, Yasutomo Ota, and Satoshi Iwamoto. "Exceptional-point encirclement in an integrated non-Hermitian optomechanical system." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3a.64.

Full text
Abstract:
We propose and numerically demonstrate an integrated non-Hermitian optomechanical system capable of exceptional-point encirclement in a deterministic manner. The proposed scheme opens a way for investigating non-Hermitian optomechanics on chip.
APA, Harvard, Vancouver, ISO, and other styles
7

Ren, Hengjiang, Gregory S. MacCabe, Jie Luo, Hannes Pfeifer, Andrew J. Keller, and Oskar Painter. "Quasi-2D Optomechanical Crystal Cavity for Quantum Optomechanics." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_si.2019.sth4g.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burgwal, Roel, and Ewold Verhagen. "Coupled nano-optomechanical cavities for enhancing nonlinear optomechanics." In Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.fth4e.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Engelsen, Nils J., Mohammad J. Bereyhi, Amirali Arabmoheghi, Sergey A. Fedorov, Alberto Beccari, Guanhao Huang, and Tobias J. Kippenberg. "Optomechanical integration of ultralow dissipation nanomechanical resonators." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am3c.4.

Full text
Abstract:
We demonstrate compact nanomechanical resonators with quality factors up to Q = 3.6 × 109 at room temperature and integrate these resonators with photonic-crystal-based Fabry-Pérot cavities to form an optomechanical transducer for room temperature quantum optomechanics.
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Hong X. "Silicon Optomechanics." In Laser Science. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lstuh4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Optomechanics"

1

Lettieri, Thomas R., Victor R. McCrary, and Jack C. Bourdreaux. Optoelectronics and optomechanics manufacturing:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Hong, and Chee-Wei Wong. (DARPA) Optical Radiation Cooling and Heating In Integrated Devices: Circuit cavity optomechanics for cooling and amplification on a silicon chip. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada626747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Douglas, James Kenneth, and Matt Eichenfield. Piezoelectric Nano-Optomechanical Systems. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1505466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Winrow, Edward G., Jeffery P. Hunt, Jeffrey A. Mercier, Zachary Kreiner, Victor H. Chavez, Eric Couphos, and Joshua Nowlin. Deployable Ground Based Discrete Zoom Telescope (Abridged - Optomechanical). Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1602137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hailin, and Lin Tian. Optomechanical Light-Matter Interface with Optical Wavelength Conversion. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada626746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Talghader, Joseph J. Optomechanical Coatings for High-Power Mirrors and Adaptive Optics. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada589665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, Jack G. Suppression of Laser Shot Noise Using Laser-Cooled OptoMechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada546917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Painter, Oskar, Kerry Vahala, Jeff Kimble, and Tobias Kippenberg. Micro-and Nano-Optomechanical Devices for Sensors, Oscillators, and Photonics. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ada622998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography