To see the other types of publications on this topic, follow the link: Optomechanics.

Dissertations / Theses on the topic 'Optomechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Optomechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Latmiral, Ludovico. "Quantumness in optomechanics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/60655.

Full text
Abstract:
Cavity optomechanics has become an established and equally promising branch in quantum optics. Thanks to the interaction between matter and electromagnetic radiation, it has proved to be an optimal platform for a range of scopes, from weak force sensing to the study of non-classicality of mechanical motion. Besides, the capability to isolate genuine quantum features of the interaction represents a test ground to address many important questions regarding decoherence, quantum-to-classical transitions and the interface between quantum mechanics and gravity. The first part of the research embedded in this thesis is addressed towards the clear identification and characterisation of quantum features in optomechanics. The main model we will refer to is a deformable Fabry-P\'erot cavity where one of the two mirrors moves under the radiation pressure of light. After having properly assessed the quantum peculiarities of the system, and also having revised some intakes from past literature, we will focus on the study of mechanical non-linearities, as they have been proved to be a key resource to bring out and enhance quantum properties. These investigations provide the basis to eventually propose a method to deterministically prepare and measure macroscopic quantum superposition states of the movable mirror. Such massive quantum states play a key role to inspect the foundations of physics, e.g. to test the collapse of the wave function and phenomenological models of quantum gravity, as well as to develop new enhanced quantum technologies.
APA, Harvard, Vancouver, ISO, and other styles
2

Frangeskou, Angelo. "Nanodiamonds in levitated optomechanics." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/103509/.

Full text
Abstract:
This thesis reports on research undertaken to explore the viability of using nanodiamonds containing nitrogen vacancy (NV) centres in optical dipole traps. The impact of illuminating single NV centres with 1550 nm, a common dipole trap wavelength, is investigated. A reduction of 7% in the fluorescence intensity is observed using 20-30 mW of illumination, whilst the NV centre’s optically detected magnetic resonance (ODMR) signal contrast and electron spin T2 time remain unaffected. These results are better than those of similar experiments with 1064 nm. A method for creating and characterising pure type IIa nanodiamonds containing NV centres is presented. Bulk chemical vapour deposition (CVD) diamonds are electron irradiated and annealed, before being ball milled into nanodiamonds. The bulk purity is determined by quantitative electron paramagnetic resonance. The nanodiamonds are characterised by Raman spectroscopy, electron microscopy and energy dispersive X-ray spectroscopy (EDX). Small quantities of contamination by the silicon nitride milling material could be found using EDX. A confocal microscope was constructed and single NV centres inside the nanodiamonds were found to be photostable and ODMR shows an average ODMR contrast of 9%. An optical dipole trap was constructed and CVD derived nanodiamonds were levitated. Measurements of the centre-of-mass motion show that unlike commercial type 1b nanodiamonds, they mostly remain at or close to thermal equilibrium in moderate vacuum where commercial material was previously reported to burn and/or graphitise, even when the optical intensity is raised above 700 GW/m2. Nanodiamonds are observed to be suddenly ejected from the trap at ~1 mbar.
APA, Harvard, Vancouver, ISO, and other styles
3

Neumeier, Lukas. "Novel regimes of quantum optomechanics." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620785.

Full text
Abstract:
In everyday life the impact of light on the motion of mechanical objects is negligible. However, modern experiments making use of high quality optical resonators are able to observe significant effects originating from the forces associated with photons on small mechanical systems. The common feature of these systems is the dependence of the optical resonance frequency on the position of the mechanical object, laying the framework of optomechanics. Many interesting regimes have been explored which allow for photon-light entanglement, laser cooling of motion, generation of squeezed states of light, and even the detection of gravitational waves. Interestingly, the optomechanical interaction is so generic that its underlying concepts and derived insights can be generally applied to a large variety of systems, as we will see in this thesis. In Chapter 1, we provide a brief overview of key concepts and results from the field of optomechanics, before going on to discuss the novel regimes and applications that we have identified and proposed. In Chapter 2, we theoretically investigate results from a couple of experiments, that were previously not well-understood. These experiments trap dielectric nano-particles through an optical resonator mode and observe that the intensities experienced by the particles are strongly reduced compared to a conventional optical tweezer trap. We find that these systems can be fully described by a simple optomechanical toy model and derive that the optical potential inside resonators can approach a nearly perfect square well. This potential can be dynamically reshaped by changing the driving laser frequency and we find a dramatic reduction of intensities seen by the trapped particle, which could significantly increase the range of systems to which optical trapping can be applied. These results are quite remarkable and should have important implications for future trapping technologies. In Chapter 3, we recognize that a major trend within the field of cavity QED is to attain the strong coupling regime. Additional rich dynamics can occur by considering the atomic motional degree of freedom. In particular, we show that such a system is a natural candidate to explore the single-photon optomechanical strong coupling regime of quantum optomechanics, but where the motional frequency cannot be resolved by the cavity. We show that this regime can result in a number of remarkable phenomena, such as strong entanglement between the atomic wave-function and the scattering properties of single incident photons, or an anomalous heating mechanism of atomic motion. In Chapter 4 we show that an atom trapped in and coupled to a cavity constitutes an attractive platform for realizing the optomechanical single-photon strong coupling regime with resolved mechanical sidebands. Realizing this regime is a major goal within the field of optomechanics, as it would enable the deterministic generation of non-classical states of light. However, this regime is difficult to achieve with conventional mechanical systems due to their small zero-point motions. As an example, we show that optomechanically-induced photon blockade can be realized in realistic setups, wherein non-classical light is generated due to the interaction of photons with the atomic motion alone.
En la vida cotidiana, el impacto de la luz sobre el movimiento de los objetos mecánicos es insignificante. Sin embargo, los experimentos modernos que usan resonadores ópticos de alta calidad son capaces de observar efectos significativos que se originan de las fuerzas asociadas con los fotones en pequeños sistemas mecánicos. La característica común de estos sistemas es la dependencia de la frecuencia de resonancia óptica en la posición del objeto mecánico, que establece el campo de la optomecánica. Se han explorado muchos regímenes interesantes que permiten el entrelazamiento de fotones, el enfriamiento del movimiento por láser, la generación de estados de luz comprimidos e incluso la detección de ondas gravitacionales. Curiosamente, la interacción optomecánica es tan genérica que sus conceptos subyacentes y sus profundas consecuencias pueden aplicarse generalmente a una gran variedad de sistemas, como veremos en esta tesis. En el Capítulo 1, proporcionamos una breve descripción de los principales conceptos y resultados del campo de la optomecánica, antes de pasar a analizar los nuevos regímenes y aplicaciones que hemos identificado y propuesto. En el Capítulo 2, investigamos teóricamente los resultados de un par de experimentos que antes no se entendían bien. Estos experimentos atrapan nanopartículas dieléctricas a través de un modo de un resonador óptico y observan que las intensidades experimentadas por las partículas se reducen considerablemente en comparación con una trampa de pinzas ópticas convencional. Encontramos que estos sistemas se pueden describir completamente mediante un modelo optomecánico de juguete simple y demostramos que el potencial óptico dentro de los resonadores puede aproximarse a un pozo cuadrado casi perfecto. Este potencial se puede modificar dinámicamente cambiando la frecuencia de entrada del láser y encontramos una reducción drástica de las intensidades vistas por la partícula atrapada, lo que podría aumentar significativamente el rango de sistemas a los que se puede aplicar el atrapamiento óptico. Estos resultados son bastante notables y deberían tener implicaciones importantes para las futuras tecnologías de atrapamiento. En el Capítulo 3, reconocemos que una tendencia importante en el campo de la electrodinámica cuántica de cavidades (del inglés, "cavity QED") es lograr un régimen de acoplamiento fuerte. Se pueden producir dinámicas adicionales al considerar el grado de libertad de movimiento atómico. En particular, mostramos que dicho sistema es un candidato natural para explorar el régimen de acoplamiento fuerte optomecánico de un único fotón en optomecánica cuántica, pero donde la frecuencia de movimiento no puede ser resuelta por la cavidad. Mostramos que este régimen puede dar lugar a una serie de fenómenos notables, como un fuerte entrelazamiento entre la función de onda atómica y las propiedades de dispersión de los fotones incidentes individuales, o un mecanismo de calentamiento anómalo del movimiento atómico. En el Capítulo 4 mostramos que un átomo atrapado y acoplado a una cavidad constituye una plataforma atractiva para obtener el régimen de acoplamiento fuerte optomecánico con un único fotón y con bandas laterales mecánicas resueltas. La obtención de este régimen es un objetivo principal en el campo de la optomecánica, ya que permitiría la generación determinista de estados de luz no clásicos. Sin embargo, este régimen es difícil de lograr con los sistemas mecánicos convencionales debido a sus pequeños movimientos de punto cero. Como ejemplo, mostramos que el bloqueo de fotones inducido de forma mecánica puede realizarse en configuraciones realistas, donde la luz no clásica se genera solamente debido a la interacción de fotones con el movimiento atómico.
APA, Harvard, Vancouver, ISO, and other styles
4

Hempston, David William. "Force detection in levitated optomechanics." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/418004/.

Full text
Abstract:
The use of levitated optomechanical systems as force sensors is a growing field with great potential. This thesis presents a system that achieves a sensitivity of ≈ 10⁻²² N/√Hz by using on-resonance forces and an optically levitated nanoparticle in a gradient force trap. It is possible to reach pressures of 10⁻⁶ mbar and trap particles with diameters of 50 nm to 300 nm. The particle's motion is detected with a homodyne-like detection system that measures the phase difference in the scattered and un-scattered, divergent, light. With this system it was possible to detect the changes in the particle's motion due to the application of an external AC and DC electric fields. DC electric fields showed a shift in the average position of up to 100 nm and also a shift of the relevant oscillator frequency of up to 1500 Hz. Applying an AC electric field resulted in the particle's motion being driven at the AC frequency. On resonance the detected signal increased by a factor of 200 which helps to measure smaller changes in the particle's motion compared to the undriven signal. Using the AC driving it was possible to detect a particle with a charge of just 4 3 electrons. In addition to this, two vacuum sources were investigated, the first being an ablating source that generated particles directly in the chamber, and the second being a sonicating source that releases pre-made particles from a surface. The ablated source used a high power nano-second Neodymium-doped Yttrium aluminium garnet (Nd:YAG) laser that was able to remove material from a silicon wafer with a 200 nm layer of silicon dioxide. It was possible to trap a nanoparticle with a radius of 353 nm at atmosphere but there was a large thermal distribution in the particle sizes. The sonicating source had the advantage that the particle's size range could be known before hand and also the source could be very close to the trap site. An acoustic horn was developed that focused the energy down to a 3 mm radius surface. It was possible to see a large release of 100 nm particles, however, none of them were trapped. It was assumed that the particles were still too large to trap so steps were taken towards a MHz source. This resulted in the first detection of a particle from an ultrasonic source at the trap site. The signal didn't last long but this still holds promise as a source once a transducer or even a horn have been designed.
APA, Harvard, Vancouver, ISO, and other styles
5

Seok, HyoJun. "Aspects Of Multimode Quantum Optomechanics." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332877.

Full text
Abstract:
This dissertation aims to investigate systems in which several optical and mechanical degrees of freedom are coupled through optomechanical interactions. Multimode optomechanics creates the prospect of integrated functional devices and it allows us to explore new types of optomechanical interactions which account for collective dynamics and optically mediated mechanical interactions. Owing to the development of fabrication techniques for micro- and nano-sized mechanical elements, macroscopic mechanical oscillators can be cooled to the deep quantum regime via optomechanical interaction. Based on the possibility to control the motion of mechanical oscillators at the quantum level, we design several schemes involving mechanical systems of macroscopic length and mass scales and we explore the nonlinear dynamics of mechanical oscillators. The first scheme includes a quantum cantilever coupled to a classical tuning fork via magnetic dipole-dipole interaction and also coupled to a single optical field mode via optomechanical interaction. We investigate the generation of nonclassical squeezed states in the quantum cantilever and their detection by transferring them to the optical field. The second scheme involves a quantum membrane coupled to two optical modes via optomechanical interaction. We explore dynamic stabilization of an unstable position of a quantum mechanical oscillator via modulation of the optical fields. We then develop a general formalism to fully describe cavity mediated mechanical interactions. We explore a rather general configuration in which multiple mechanical oscillators interact with a single cavity field mode. We specifically consider the situation in which the cavity dissipation is the dominant source of damping so that the cavity field follows the dynamics of the mechanical modes. In particular, we study two limiting regimes with specific applications: the weak-coupling regime and single-photon strong-coupling regime. In the weak-coupling regime, we build a protocol for quantum state transfer between mechanical modes. In the single-photon coupling regime, we investigate the nonlinear nature of the mechanical system which generates bistability and bifurcation in the classical analysis and we also explore how these features manifest themselves in interference, entanglement, and correlation in the quantum theory.
APA, Harvard, Vancouver, ISO, and other styles
6

Moghadas, Nia Ramon [Verfasser]. "Multimode optomechanics in the strong cooperativity regime : towards optomechanical entanglement with micromechanical membranes / Ramon Moghadas Nia." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1173321829/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mestres, Junqué Pau. "Cavity optomechanics with optically trapped particles." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/460885.

Full text
Abstract:
Optical trapping and manipulation have emerged as powerful tools to investigate single microscopic objects in a controlled environment. Using the momentum carried by light, forces can be exerted to confine and manipulate objects in a wide range of conditions ranging from liquid environments to high vacuum. In this thesis I implement different optical manipulation schemes to trap nano-objects and coupled them to optical cavities, giving rise to a cavity optomechanical interaction between the trapped object and the cavity mediated by the light¿s radiation-pressure. In a first experiment I implement a mobile optical tweezer (MobOT) with nanometer precision to place a levitated silica nanosphere at the standing wave of a high Finesse Fabry-Perot cavity aiming to cool its center of mass motion to the ground state at room temperature. To attain this goal I design a two step cooling process that starts with a parametrical modulation of the optical trapping potential which pre-cools the center of mass motion along the three axis. Then driving the cavity with a red-detuned laser furthers cool the particle motion along the cavity axis via the optomechanical interaction. To monitor the particle motion in the optical trap, I implement a highly robust and sensitive detection scheme that collects the trap forward scattered field and sends it to a set of three balanced photodiodes. According to a semiclassical model I present, this approach can resolve the nanoparticle motion down to a single phonon excitation provided a shot noise limited balance detector. I also study the use of plasmonic nanoapertures as a novel optomechanical system that increases by 10^8 the single photon optomechanical coupling strength between the trapped nanoparticle and the cavity. These experiments are performed in the overdamped regime and result into a large optomechanical interaction that allows direct measurement of dynamical modulation of the trapping potential due to the motion of the trapped object. Different detuning regimes are studied aiming to improve the optical trapping performances at low laser intensities. These findings are supported by finite element simulations. Finally I have also made use of optical traps to perform non-equilibrium thermodynamic processes with an optically trapped microparticle in a virtual thermal bath. The virtual bath consists of an electrical white noise force. The agreement between the temperatures obtained from equilibrium and non-equilibrium measurements demonstrates the accuracy of this method. Supported by theory and simulations, our experiments highlight the importance of properly choosing the sampling rate and noise bandwidth for the validity of the method. We apply this technique to study non-equilibrium isothermal compression-expansion cycles at different temperatures ranging from room temperature to 3000K. We calculate some thermodynamic functionals for these processes such as work, heat and entropy. We show that work distributions verify the Crooks fluctuation theorem, and that they fit well to a generalized Gamma Function.
L'atrapament i manipulació òptiques han esdevingut tècniques importants en la investigació d'objectes microscòpics en condicions controlades. Gràcies al moment lineal de la llum, es poden exercir forces per confinar i manipular aquests objectes en un ampli ventall de condicions que van des de líquids a alt buit. En aquesta tesi he implementat diferents tècniques de manipulació òptica per atrapar i acoblar nanopartícules a cavitats òptiques, donant lloc a una interacció optomecànica a traves de la pressió de radiació de la llum. En un primer experiment he implementat una pinça òptica mòbil amb precisió nanométrica per tal de posicionar una nanoesfera de SiO2 a l'ona estacionaria de una cavitat òptica Fabry-Perot d'alta finesa amb l'objectiu de refredar el seu centre de massa fins a l'estat fonamental. Per aconseguir aquest objectiu he dissenyat un procés de refradament en dos passos. Primer aconseguim un pre-refredament de centre de massa en les tres direccions modulant paramètricament el potencial òptic. Després, fent us de la cavitat il·luminada amb un làser desplaçat cap al vermell, aconseguim un refredament addicional en la direcció de l'eix òptic de la cavitat gràcies a la interacció optomecànica. Per registrar el moviment de la partícula a la trampa òptica, implemento un sistema de detecció interferomètrica robust i sensible que recull els fotons dispersats per la nanopartícula i els envia a tres fotodíodes balancejats. D`'acord amb un model semiclàssic que presento, aquest mètode es capaç de resoldre el moviment de la nanopartícula fins al nivell de un sol fonó sempre i quan es disposi de detectors amb soroll electrònic inferior al soroll quàntic de la trampa òptica. També estudio l'ús de nano-apertures plasmòniques com a nou sistema optomecànic que incrementa en un factor 10^8 la força d'acoblament optomecànic d'un sol fotó entre la partícula i la cavitat. Aquests experiments són realitzats en condicions sobre-esmorteïdes i aconsegueixen una interacció optomecánica prou gran com per resoldre la modulació dinàmica del potencial òptic causada pel desplaçament de la partícula atrapada. En aquest sistema estudiem diferents condicions de de-sintonització per tal de millorar el rendiment d'aquestes trampes amb potències de làser baixes. Aquests resultats els contrastem amb simulacions d'elements finits. Finalment també he fet servir trampes òptiques per estudiar processos termodinàmics fora de l'equilibri amb una micropartícula en un bany tèrmic virtual. Aquest bany tèrmic consisteix en una força electrònica amb un espectre blanc. La concordança entre les temperatures obtingudes a través de mesures en processos d'equilibri i de no-equilibri demostra precisió d'aquest mètode. Amb l'ajuda d'un model analític i de simulacions, els nostres experiments remarquen la importància d'escollir adequadament la freqüència de mostreig i del soroll per tal de garantir la validesa d'aquest mètode. Fent us d'aquesta tècnica estudiem cicles de compressió i expansió isotèrmics en el no-equilibri a temperatures que van des dels 300K als 3000K. Calculant diferents funcionals termodinàmics com el treball i el calor demostrem que les distribucions de no-equilibri satisfan el teorema de fluctuació de Crooks i que s'ajusten a adequadament a una funció Gamma generalitzada.
APA, Harvard, Vancouver, ISO, and other styles
8

Robinson, I. M. "Optomechanics of polymer fibres and composites." Thesis, Queen Mary, University of London, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aranas, Erika B. "Levitated optomechanics with periodically driven fields." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10057000/.

Full text
Abstract:
Levitated optomechanics offers a route to high-Q, low frequency oscillators by all-optical trapping in high vacuum, although progress has been hampered by particle loss at ∼ 1 mbar. Combining an optical cavity with a Paul trap yielded promising results, showing stable trapping and strong cavity cooling of 200 nm silica nanoparticles up to ∼ 10−5−10−6 mbar, in addition to interesting nonlinear effects. However, the time-periodic fields of the Paul trap gave rise to atypical “split-sideband” spectra which we found to be correlated with the cooling dynamics of the nanoparticle: twin peaks around the mechanical frequency plus a dominant signal at the second harmonic indicated weak cooling, while a complete suppression of one of the split-sidebands showed strong cooling. Presented first in this thesis are the analytical and numerical models used to describe the dynamics of a nanoparticle in a hybrid electro-optical trap. The split-sideband spectra is a result of simultaneous, outof-phase oscillations in g and ωM, and is, in fact, a generic feature of any optically trapped particle where an auxiliary field causes a harmonic excursion in the equilibrium position. Split-sideband asymmetry and thermometry are further discussed for a generic, doublymodulated optomechanical system. A suitably normalised cavity output probing a splitdisplacement spectra still gives the correct steady-state temperature. Analytical formulas are also derived for the complete split-sideband suppression, which may offer additional diagnostic of the quantum regime. Finally, a matrix algorithm to accurately calculate the measured quantum spectra of linear optomechanical systems with arbitrary periodicity is devised to verify the results obtained thus far. In addition, the algorithm allows a systematic calculation of the non-stationary components of the spectra, which are usually averaged out, but are shown to be experimentally accessible via heterodyne detection. In summary, this thesis aims to contribute to the analysis of levitated optomechanics with periodically driven fields, motivated in part by modelling the hybrid electro-optical experiments in UCL.
APA, Harvard, Vancouver, ISO, and other styles
10

Kelly, Stephen C. "EXPLORATION OF QUBIT ASSISTED CAVITY OPTOMECHANICS." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1408097717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhu, Rui. "Integrated nano-optomechanics in photonic crystal." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS258/document.

Full text
Abstract:
Les oscillateurs de référence de haute pureté sont actuellement utilisés dans un grand nombre d’applications allant du contrôle de fréquence aux horloges pour les radars, les GPS et l’espace... Les tendances actuelles dans ce domaine requièrent des architectures miniaturisées avec la génération de signaux directement dans la gamme de fréquences d’intérêt, autour de quelques GHz. Récemment, de nouvelles architectures basées sur les principes de l’optomécanique ont vu le jour dans ce but. De tels oscillateurs optomécanique génèrent non seulement des signaux hyperfréquences directement dans la gamme de fréquences GHz avec éventuellement un faible bruit de phase, mais permettent également un degré élevé d'intégration sur puce. Ce travail de thèse s'inscrit dans cette démarche. L’oscillateur optomécanique étudié se compose de cavités à cristaux photoniques suspendues couplées à des guides d’ondes silicium sur isolant intégrés dans une architecture tridimensionnelle. Ces cavités abritent des modes optiques fortement confinés autour de 1550nm et des modes mécaniques dans le GHz. De plus, ces structures présentent un recouvrement spatial entre phonon et photon élevé. Il en résulte un couplage optomécanique amélioré. Cette force de couplage optomécanique améliorée est ici sondée optiquement sur des structures à cristaux photoniques de conception optimisée. Ces cavités sont réalisées dans des matériaux semi-conducteurs III-V dont la piézoélectricité nous permet d'intégrer des outils supplémentaires pour sonder et contrôler les vibrations mécaniques via un pilotage capacitif, piézoélectrique ou acoustique. Ce contrôle total des modes mécaniques et de l’interaction optomécanique ouvre la voie à la mise en œuvre de circuits intégrés pour le verrouillage par injection et des boucles de rétroaction permettant de réduire le bruit de phase de l’oscillateur
High purity reference oscillators are currently used in a wide variety of frequency control and timing applications including radar, GPS, space... Current trends in such fields call for miniaturized architectures with direct signal generation in the frequency range of interest, around few GHz. Recently, novel optomechanically-enhanced architectures have emerged with this purpose. Such optomechanically-driven oscillators not only generate microwave signals directly in the GHz frequency range with possibly low phase noise but also are amenable to a high degree of integration on single chip settings. This PhD work falls within this scope. The optomechanically-driven oscillator under study consists of suspended photonic crystal cavities coupled to integrated silicon-on-insulator waveguides in a three-dimensional architecture. These cavities harbor highly-confined optical modes around 1,55 µm and mechanical modes in the GHz and most importantly, feature a high phonon-photon spatial overlap, all resulting in an enhanced optomechanical coupling. This enhanced optomechanical coupling strength is here probed optically on photonic crystal structures with optimized design. These cavities are hosted in III-V semiconductor materials whose piezoelectricity enable us to integrate additional tools for probing and controlling mechanical vibrations via capacitive, piezoelectric or acoustic driving. This full control over the mechanical modes and optomechanical interaction, paves the way towards the implementation of integrated injection locking circuits of feedback loops for reducing the phase noise of the oscillator
APA, Harvard, Vancouver, ISO, and other styles
12

Lörch, Niels [Verfasser]. "Laser theory for quantum optomechanics / Niels Lörch." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1080269193/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Malz, Daniel Hendrik. "Periodic driving and nonreciprocity in cavity optomechanics." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/283253.

Full text
Abstract:
Part I of this thesis is concerned with cavity optomechanical systems subject to periodic driving. We develop a Floquet approach to solve time-periodic quantum Langevin equations in the steady state, show that two-time correlation functions of system operators can be expanded in a Fourier series, and derive a generalized Wiener-Khinchin theorem that relates the Fourier transform of the autocorrelator to the noise spectrum. Weapply our framework to optomechanical systems driven with two tones. In a setting used to prepare mechanical resonators in quantum squeezed states, we nd and study the general solution in the rotating-wave approximation. In the following chapter, we show that our technique reveals an exact analytical solution of the explicitly time-periodic quantum Langevin equation describing the dual-tone backaction-evading measurement of a single mechanical oscillator quadrature due to Braginsky, Vorontsov, and Thorne [Science 209, 547 (1980)] beyond the commonly used rotating-wave approximation and show that our solution can be generalized to a wide class of systems, including to dissipatively or parametrically squeezed oscillators, as well as recent two-mode backaction-evading measurements. In Part II, we study nonreciprocal optomechanical systems with several optical and mechanical modes. We show that an optomechanical plaquette with two cavity modes coupled to two mechanical modes is a versatile system in which isolators, quantum-limited phase-preserving, and phase-sensitive directional ampliers for microwave signals can be realized. We discuss the noise added by such devices, and derive isolation bandwidth, gain bandwidth, and gain-bandwidth product, paving the way toward exible, integrated nonreciprocal microwave ampliers. Finally, we show that similar techniques can be exploited for current rectication in double quantum dots, thereby introducing fermionic reservoir engineering. We verify our prediction with a weak-coupling quantum master equation and the exact solution. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic eld, such that directionality can be reversed, as well as turned on and off dynamically.
APA, Harvard, Vancouver, ISO, and other styles
14

McCutcheon, Robert A. "Hybrid Optomechanics and the Dynamical Casimir Effect." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501191323617929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

BIANCOFIORE, CIRO. "Cavity Optomechanics with Membranes in Optical Resonators." Doctoral thesis, Università degli Studi di Camerino, 2014. http://hdl.handle.net/11581/401813.

Full text
Abstract:
In this thesis we study (theoretically and experimentally) various aspects of the classical and quantum dynamics of the non-isolated cavity-optomechanical system formed by a high-finesse Fabry-Pa'©rot (FP) cavity with a thin semitransparent highmechanical-quality vibrating membrane at its center. This optomechanical setup is called the Membrane-In-the-Middle (MIM) setup. In particular we show the subsequent five main results. 1. We determine to what extent optical absorption by the membrane hinders reaching a quantum regime for the cavity-membrane system. We show that even though membrane absorption may significantly lower the cavity finesse and also heat the membrane, one can still simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses. 2. We show that the coupling between the optical cavity modes and the vibrational modes of the membrane can be tuned by varying the membrane position and orientation. In particular, we demonstrate a large quadratic dispersive optomechanical coupling in correspondence with avoided crossings between optical cavity modes weakly coupled by scattering at the membrane surface. The experimental results are well explained by a first order perturbation treatment of the cavity eigenmodes. 3. We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of the membrane. We study how the radiation-pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor of 350. We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices. 4. We demonstrate the analog of electromagnetically induced transparency in our setup at room temperature. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband. 5. We show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally, in collaboration with the University of Florence and the University of Trento, in an optomechanical system formed by a Fabry-Pa'©rot cavity with a micro-mechanical mirror.
APA, Harvard, Vancouver, ISO, and other styles
16

Mercadé, Morales Laura. "Phonons Manipulation in Silicon Chips Using Cavity Optomechanics." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/171461.

Full text
Abstract:
[ES] La optomecánica de cavidades se ocupa de la interacción entre la luz y la materia a través del efecto de presión de radiación cuando las ondas ópticas y mecánicas implicadas están confinadas en una cavidad. En estos sistemas optomecánicos, la interacción entre fotones y fonones da lugar a multitud de fenómenos en función de las condiciones en las que se excita el sistema. En particular, se pueden obtener dos regímenes distintos en los que se puede, o bien absorber fonones (denominado como enfriamiento de la cavidad), o bien éstos se pueden amplificar (régimen conocido como calentamiento de la cavidad). El primer régimen puede usarse, por ejemplo, para reducir la ocupación térmica del sistema y se usa comúnmente para aplicaciones relativas al procesado de información cuántica. Sin embargo, la amplificación de fonones, que puede ser desarrollada a temperatura ambiente, ha permitido conseguir alcanzar incluso las condiciones necesarias para obtener láseres de fonones, lo cual permite poder usar esta característica como elemento de referencia en aplicaciones relativas al procesado de señales de radiofrecuencia (RF). En esta tesis se aborda el confinamiento simultáneo y la interacción de fotones y fonones en estructuras periódicas y en guías no suspendidas desarrolladas en sistemas CMOS compatibles basados en tecnología de silicio. A través del estudio experimental de estas estructuras periódicas, hemos demostrado que las cavidades optomecánicas pueden actuar como elementos clave en el dominio de la fotónica de microondas, donde todo el procesado de la información puede ser realizado en el dominio óptico a través de la manipulación de fonones en este sistema. En particular, mostramos que un solo oscilador optomecánico puede actuar tanto como un oscilador local y un mezclador de RF, y éste puede operar como un conversor de frecuencias de señales de cadenas de datos reales. Para mejorar esta funcionalidad, también se demuestra que es posible obtener tanto peines de frecuencias ópticos así como múltiples modos mecánicos confinados, aumentando así su rendimiento. Por otro lado, con el objetivo de poder solventar las posibles limitaciones de estos sistemas, en esta tesis también se exploran diferentes configuraciones que permiten la interacción acusto-óptica simultánea en la misma estructura. Específicamente, se analiza la interacción optomecánica en discos de alto índice que soportan estados cuasi-ligados en el continuo así como una propuesta de guías no suspendidas que soportan altas ganancias de Brillouin. Este último estudio debería permitir el desarrollo de sistemas optomecánicos no suspendidos donde el problema de la pérdida de fonones hacia el sustrato se resuelva, hecho que permitiría enormemente simplificar la fabricación de estos sistemas optomecánicos en chips de silicio así como su uso en múltiples aplicaciones.
[CA] L'optomecànica de cavitats s'ocupa de la interacció entre la llum i la matèria a través de l'efecte de pressió de radiació quan les ones òptiques i mecàniques implicades estan confinades en una cavitat. En aquests sistemes optomecànics, la interacció entre fotons i fonons dona lloc a multitud de fenòmens en funció de les condicions de les condicions en les quals s'excita el sistema. En particular, es poden obtindre dos règims diferents en els quals es pot, o bé, absorbir fonons (denominat com a refredament de la cavitat), o bé, es poden amplificar (règim conegut com a calfament de la cavitat). El primer règim pot usar-se, per exemple, per a reduir l'ocupació tèrmica del sistema i s'usa comunament per a aplicacions relatives al processament d'informació quàntica. No obstant això, l'amplificació de fonons, que pot ser desenvolupada a temperatura ambient, ha permés aconseguir fins i tot les condicions necessàries per a obtindre làsers de fonons, la qual cosa permet poder usar aquesta característica com a element de referència en aplicacions relatives al processament de senyals de radiofreqüència (RF). En aquesta tesi s'aborda el confinament simultani i la interacció de fotons i fonons en estructures periòdiques i en guies no suspeses en sistemes CMOS compatibles basats en tecnologia de silici. A través de l'estudi experimental d'aquestes estructures periòdiques, hem demostrat que les cavitats optomecàniques poden actuar com a elements clau en el domini de la fotònica de microones, on tot el processament de la informació pot ser realitzat en el domini òptic a través de la manipulació de fonons en aquest sistema. En particular, vam mostrar que només un oscil·lador optomecànic pot actuar tant com un oscil·lador local i un mesclador de RF, i aquest pot operar com un convertidor de freqüències de senyals de cadenes de dades reals. Per a millorar aquesta funcionalitat, també es demostra que és possible obtindre tant tren de freqüències òptics així com múltiples modes mecànics confinats, augmentant així el seu rendiment. D'altra banda, amb l'objectiu de poder solucionar les possibles limitacions d'aquests sistemes, en aquesta tesi també s'exploren diferents configuracions que permeten la interacció acusto-òptica simultània en la mateixa estructura. Específicament, s'analitza la interacció optomecànica en discos d'alt índex que suporten estats quasi-lligats en el continu així com una proposta de guies no suspeses que suporten altes ganancies de Brillouin. Aquest últim estudi hauria de permetre el desenvolupament de sistemes optomecànics no suspesos on el problema de la pèrdua de fonons cap al substrat es resolga, fet que permetria enormement simplificar la fabricació d'aquests sistema optomecànics en xips de silici així com el seu ús en diverses aplicacions.
[EN] Cavity optomechanics deals with the interaction of light and matter through the radiation pressure effect, when the involved optical and mechanical waves are confined in a cavity. In optomechanical systems, photon and phonon interaction give rise to a plethora of phenomena as a function of the driving conditions of the system. Relative to that, two distinctive regimes can be obtained which enable either the absorption of phonons (cavity cooling) or their amplification (cavity heating). The first regime can be used to reduce the thermal occupancy of the system and it is commonly used for quantum processing information applications. However, the amplification of phonons, which can be performed at room temperature, has enabled to even reach phonon lasing conditions, a feature that could be used as a reference element for RF processing applications. In this thesis, we address the simultaneous confinement and interaction of photons and phonons in periodic structures and unreleased waveguides on CMOS-compatible silicon-based technology. Throughout the experimental study of those periodic structures, we demonstrate that optomechanical cavities can perform as key blocks in the microwave photonics domain where all the information processing can be performed in the optical domain through phonon manipulation. In particular, we show that a single optomechanical oscillator can perform as both a local oscillator and an RF mixer, and it can operate as a frequency-converted of real data stream signals. To improve its performance, it is also demonstrated that optical frequency combs can be obtained by means of this system and multiple mechanical mode confinement can also be achieved, thus improving the functionality of the system. On the other hand, in order to fulfill the possible limitations of those systems, we explore different configurations enabling the simultaneous acousto-optic interaction together into the same structure. Especially, optomechanical interaction in high-index disks supporting quasi-bound states in the continuum is addressed, as well as a proposal of unreleased waveguides supporting strong Brillouin gains is also reported. The last one should lead to unreleased optomechanical interacting systems where the issue of phonon leakage into the substrate is solved, which could enormously simplify the fabrication of optomechanical systems in silicon chips as well as their practical use in multiple applications.
This work has been carried out under the framework of the H2020 FET-Open EU project PHENOMEN. This Thesis was also supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) de la Universitat Politècnica de València
Mercadé Morales, L. (2021). Phonons Manipulation in Silicon Chips Using Cavity Optomechanics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171461
TESIS
APA, Harvard, Vancouver, ISO, and other styles
17

Hakobyan, Davit. "Spin-orbit optomechanics of space-variant birefringent media." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0081/document.

Full text
Abstract:
Ce travail consiste en l'étude de phénomènes optomécaniques en d'interaction spin-orbite de la lumière, en utilisant des milieux inhomogènes et anisotropes comme systèmes modèles, différents types de systèmes matériels étant considérés en pratique. En particulier,nous avons utilisé des défauts de cristaux liquides nématiques pour lesquels nous avons identifié expérimentalement d'un couple optique de nature spin-orbite conduisant à des modifications de champ d'orientation moléculaire du cristal liquide. Aussi, grâce à l'utilisation de verres nanostructurés artificiellement permettant un contrôle de l'interaction spin-orbite à la demande,nous mettons en évidence un phénomène de couple optique inverse qui est l'analogue angulaire des forces optiques dites négatives. Cet effet optomécanique contre-intuitif est démontré expérimentalement, d'une manière indirecte, grâce à la mise en place de diverses expériences de décalage en fréquence Doppler associées aux degrés de liberté de rotation. Enfin, nous présentons nos tentatives en vue de réaliser expérimentalement l'observation directe d'un couple optique inverse. Plusieurs options sont envisagées, qui comprennent à la fois des approches à base de matériaux métalliques ou diélectriques. De manière générale, cela implique la miniaturisation des systèmes considérés, ce qui est effectué à la fois à l'échelle millimétrique et micrométrique
This work focuses on angular optomechanics driven by the spin-orbit interaction of light, using inhomogeneous and anisotropic media as model systems and different kinds of such material systems are considered in practice. In particular, we use nematic liquid crystal defects and report on the direct experimental observation of spin-orbit optical radiation torque that leads to distortion of molecular orientation pattern of the defects. Then, by using solid-state spin-orbit couplers of arbitrary order made of artificially nanostructured glasses, we unveil an optical torque reversal phenomenon that is the angular counterpart of so-called optical negative forces. This counterintuitive optomechanical effect is experimentally retrieved, in an indirect manner, via rotational Doppler frequency shift experiments. Finally, we report on our attempts to build up an experimental framework allowing the direct observation of optical torque reversal. Several options are considered, which include both metallic and dielectric approaches and involve sample miniaturization that has been explored at the millimeter and micrometer scale
APA, Harvard, Vancouver, ISO, and other styles
18

Zucconi, Galli Fonseca P. "Levitated optomechanics in a hybrid electro-optical trap." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1567776/.

Full text
Abstract:
This thesis describes the progress made in trapping and cooling silica nanoscale particles, in a hybrid electro-optical trap. The light field of a high finesse Fabry-Perot cavity and the quadrupole field generated by an rf Paul trap are used for the first time to both trap and cool naturally charged 209 nm dielectric nanospheres in high vacuum. Particles are first loaded into the Paul trap at pressures of 10^-1 mbar, after which their centre-of-mass motion is damped via optomechanical cooling, as the pressure is lowered to 10^-6 mbar. The combined ion trap-optical cavity set-up exposes an interesting interplay between the ion trap dynamics and the cavity mode which lead to a novel optomechanical cooling mechanism of a cyclic nature. This eliminates the need for a second, dedicated cooling mode from the cavity, or feedback cooling in order to cool the levitated particles to the ground state. At the same time, we identify a previously unobserved shift of the Paul trap secular frequencies due to the optical cavity, which enables readout of key parameters, such as the nanoparticles charge and the mean number of photons in the cavity. The dynamical features of the levitated particle, driven by linear and nonlinear optomechanical coupling, are observed through the cavity output, as well as the light scattered by the particle. As the background pressure is lowered, we observe greater than 1000 fold reduction in the centre-of-mass temperature of particles, before temperatures fall below the read-out sensitivity of the set-up.
APA, Harvard, Vancouver, ISO, and other styles
19

Boisset, Guillaume Charles Louis. "Optomechanics and optical packaging for free-space optical interconnects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ44366.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dobrindt, Jens. "Bio-sensing using toroidal microresonators & theoretical cavity optomechanics." Diss., Ludwig-Maximilians-Universität München, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-156427.

Full text
Abstract:
In this thesis we report on two matters, (i) time-resolved single particle bio-sensing using a cavity enhanced refractive index sensor with unmatched sensitivity, and (ii) the theoretical analysis of parametric normal mode splitting in cavity optomechanics, as well as the quantum limit of a displacement transducer that relies on multiple cavity modes. It is the unifying element of these studies that they rely on a high-Q optical cavity transducer and amount to a precision measurement of an optical frequency. In the first part, we describe an experiment where a high-Q toroidal microcavity is used as a refractive index sensor for single particle studies. The resonator supports whispering gallery modes (WGM) that feature an evanescent fraction, probing the environment close to the toroid's surface. When a particle with a refractive index, different from its environment, enters the evanescent field of the WGM, the resonance frequency shifts. Here, we monitor the shift with a frequency resolution of df/f=7.7e-11 at a time resolution of 100µs , which constitutes a x10 improvement of the sensitivity and a x100 improvement in time resolution, compared to the state of the art. This unprecedented sensitivity is the key to real-time resolution of single lipid vesicles with 25nm radius adsorbing onto the surface. Moreover -- for the first time within one distinct measurement -- a record number of up to 200 identifiable events was recorded, which provides the foundation for a meaningful statistical analysis. Strikingly, the large number of recorded events and the high precision revealed a disagreement with the theoretical model for the single particle frequency shift. A correction factor that fully accounts for the polarizability of the particle, and thus corrects the deviation, was introduced and establishes a quantitative understanding of the binding events. Directed towards biological application, we introduce an elegant method to cover the resonator surface with a single lipid bilayer, which creates a universal, biomimetic interface for specific functionalization with lipid bound receptors or membrane proteins. Quantitative binding of streptavidin to biotinylated lipids is demonstrated. Moving beyond the detection limit, we provide evidence that the presence of single IgG proteins (that cannot be resolved individually) manifests in the frequency noise spectrum. The theoretical analysis of the thermo-refractive noise floor yields a fundamental limit of the sensors resolution. The second part of the thesis deals with the theoretical analysis of the coupling between an optical cavity mode and a mechanical mode of much lower frequency. Despite the vastly different resonance frequencies, a regime of strong coupling between the mechanics and the light field can be achieved, which manifests as a hybridization of the modes and as a mode splitting in the spectrum of the quadrature fluctuations. The regime is a precondition for coherent energy exchange between the mechanical oscillator and the light field. Experimental observation of optomechanical mode splitting was reported shortly after publication of our results [cf. Gröblacher et al., Nature 460, 724--727]. Dynamical backaction cooling of the mechanical mode can be achieved, when the optical mode is driven red-detuned from resonance. We use a perturbation and a covariance approach to calculate both, the power dependence of the mechanical occupation number and the influence of excess noise in the optical drive that is used for cooling. The result was one to one applied for data analysis in a seminal article on ground state cooling of a mechanical oscillator [cf. Teufel et al., Nature 475, 359--363]. In addition we investigate a setting, where multiple optical cavity modes are coupled to a single mechanical degree of freedom. Resonant build-up of the motional sidebands amplifies the mechanical displacement signal, such that the standard quantum limit for linear position detection can be reached at significantly lower input power.
In dieser Dissertation werden zwei Themen behandelt. Im ersten Teil widmen wir uns experimentell der zeitaufgelösten Messung von Liposomen mit Hilfe eines Nahfeld-Brechungsindex-Sensors. Der zweite Teil handelt von der theoretischen Beschreibung des Regimes der starken Kopplung zwischen einem mechanischen Oszillator und dem Feld eines optischen Resonators. Des Weiteren erörtern wir ein Messschema, das es erlaubt eine mechanische Bewegung, mit Hilfe von mehreren optischen Resonatormoden genauer auszulesen. Die Gemeinsamkeit beider Arbeiten besteht darin, dass es sich jeweils um eine Präzisionsmessung einer optischen Frequenz handelt. Im experimentellen Teil benutzen wir Toroid-Mikroresonatoren mit extrem hoher optischer Güte als Biosensoren. Dabei handelt es sich um eine ringförmige Glasstruktur, entlang welcher Licht im Kreis geleitet wird. Dazu muss eine Resonanzbedingung erfüllt sein, die besagt, dass der (effektive) Umfang des Rings einem ganzzahligen Vielfachen der optischen Wellenlänge entspricht. Ein Teil des zirkulierenden Lichts ist als evaneszente Welle empfänglich für Brechungsindexänderungen nahe der Oberfläche des Resonators. Ein Partikel, dessen Brechungsindex sich von dem der Umgebung unterscheidet, induziert beim Eintritt in das evaneszente Feld eine Frequenzverschiebung der optischen Resonanz. Im Rahmen dieser Arbeit lösen wir relative Frequenzverschiebungen mit einer Genauigkeit von df/f=7.7e-11 und einer Zeitkonstante von 100µs auf. Dies stellt eine Verbesserung des derzeitigen Stands der Technik um einen Faktor x10 in der Frequenz und einen Faktor x100 in der Zeit dar. Diese bisher unerreichte Empfindlichkeit der Messmethode ist der Schlüssel zur Echtzeitdetektion einzelner Lipidvesikel mit einem Radius von 25nm . Zudem gelingt es uns innerhalb einer Messung, bis zu 200 Einzelteilchenereignisse aufzunehmen, welche die Basis für eine aussagekräftige Statistik liefern. Bemerkenswerterweise konnten wir Dank der außerordentlichen Präzision und der Vielzahl der Ereignisse eine Abweichung zur bis dato akzeptierten und angewandten Theorie feststellen. Wir ergänzen das Model um einen Korrekturfaktor, der die Polarisierbarkeit des Teilchens vollständig berücksichtigt und erlangen dadurch ein umfassendes und quantitatives Verständnis der Messergebnisse. Im Hinblick auf biologisch relevante Fragestellungen zeigen wir eine elegante Methode auf, die es erlaubt, den Resonator mit einer einzelnen Lipidmembran zu beschichten. Wir kreieren somit eine biomimetische Schnittstelle, welche das Grundgerüst für eine spezifische Funktionalisierung mit lipidgebundenen Rezeptoren, Antikörpern oder Membranproteinen darstellt. Des Weiteren zeigen wir, dass der Empfindlichkeit eine fundamentale Grenze durch thermische Brechungsindexfluktuationen gesetzt ist. Hierzu wird ein theoretisches Modell speziell für den relevanten niederfrequenten Bereich errechnet. Im zweiten Teil der Arbeit beschäftigen wir uns mit der theoretischen Beschreibung eines optischen Resonators, dessen Lichtfeld an eine mechanische Schwingung gekoppelt ist. Obwohl sich die Resonanzfrequenzen der Optik und der Mechanik typischerweise um mehrere Größenordnungen unterscheiden, existiert ein Regime der starken Kopplung, in dem die Fluktuationen des Lichts und die mechanischen Vibrationen hybridisieren. Dies offenbart sich zum Beispiel im Phasenspektrum, wo sich das ursprüngliche Maximum der Resonanz in zwei Maxima aufspaltet. Die starke Kopplung stellt die Grundlage für kohärenten Energie- und Informationsaustausch zwischen Licht und Mechanik dar und ist daher von besonderem technischen und wissenschaftlichen Interesse. Es ist anzumerken, dass die starke Kopplung und die einhergehende Aufspaltung der Resonanz bereits kurz nach Veröffentlichung unserer theoretischen Beschreibung im Experiment beobachtet wurde [vgl. Gröblacher et al., Nature 460, 724--727]. Wenn der optische Resonator (zur längeren Wellenlänge hin) verstimmt von der Resonanz angeregt wird, kann über dynamische Rückkopplung eine effektive Kühlung der mechanischen Schwingung erreicht werden. Wir berechnen die thermische Besetzungszahl der mechanischen Mode (und somit die Temperatur) mit Hilfe eines störungstheoretischen und eines Kovarianzansatzes. Dabei berücksichtigen wir sowohl ein klassisches Rauschen des optischen Feldes als auch den Einfluss der optomechanischen Kopplung auf die Grenztemperatur. Der hergeleitete Ausdruck für die finale Besetzungszahl wurde eins zu eins für die Datenanalyse in dem wegweisenden Artikel über das Kühlen eines mechanischen Oszillators in den Quantengrundzustand verwendet [vgl. Teufel et al., Nature 475, 359--363]. Abschließend betrachten wir ein Schema, bei dem die Lichtfelder mehrerer optischer Resonanzen an eine mechanischen Schwingung gekoppelt sind. Die resonante Verstärkung der Information über die mechanische Bewegung in den optischen Seitenbändern ermöglicht es, eine durch das Standard Quantenlimit begrenzte Empfindlichkeit bei signifikant niedriger Eingangsleistung zu erreichen.
APA, Harvard, Vancouver, ISO, and other styles
21

Boisset, Guillaume C. "Optomechanics and optical packaging for free-space optical interconnects." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=34916.

Full text
Abstract:
Free-space optical interconnects (FSOIs) promise to deliver tremendous gains in connectivity and architectural freedom in future computing systems, especially at the backplane level. However, a critical hurdle that must be overcome for FSOIs to deliver on their promise is that of optical packaging. The objective of optical packaging in FSOIs is to implement an optical design within the specified alignment budget and support the associated optoelectronics. It is a multidisciplinary field combining aspects of mechanical, optical and electrical engineering. This thesis explores optical packaging issues for FSOIs such as: type of optical interconnect, impact of device technology, environmental effects, and fabrication issues. Approaches taken to address these issues in previous optical systems described in the literature are then studied; key points are the importance of improving diagnostic techniques and the benefits of microoptic/optoelectronic device integration. To further study these aspects, the optical packaging for a four-stage hybrid macrolens/lenslet FSOI backplane is designed, built, and characterized. A non-obtrusive, in-situ alignment diagnostic system which uses dedicated alignment beams running parallel to the main link is also designed, implemented and characterized. An analysis of optical crosstalk and signal-to-crosstalk ratio considerations due to misalignment is then presented and it is shown that crosstalk can be exploited to yield alignment diagnostic information at the expense of few additional components. A novel approach for simplifying prealignment of microoptics and optoelectronics during fabrication is then presented. This consists of using on-die reflective diffractive structures to generate reference marks for use during alignment and fabrication of integrated microoptic/optoelectronic packages. Future avenues of research are then discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Hui, Pui Chuen. "Optomechanics and nonlinear mechanics of suspended photonic crystal membranes." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13068536.

Full text
Abstract:
The recent demonstration of strong interactions between optical force and mechanical motion of an optomechanical structure has led to the triumphant result of mechanical ground-state cooling, where the quantum nature of a macroscopic object is revealed. Another intriguing demonstration of quantum physics on a macroscopic level is the measurement of the Casimir force which is a manifestation of the zero- point energy. An interesting aspect of the Casimir effect is that the anharmonicity of the Casimir potential becomes significant when the separation of microscale objects is in the sub-100nm regime. This regime is readily accessible by many of the realized gradient-force-based optomechanical structures. Hence, a new avenue of probing the Casimir effect on-chip all-optically has become available. We propose an integrated optomechanical platform, consisting of a suspended photonic crystal membrane evanescently coupled with a silicon-on-insulator substrate, for (i) measuring the Casimir force gradient and (ii) counteracting the attractive force by exerting a resonantly enhanced repulsive optical gradient force. This thesis first presents the full characterization of the optomechanical properties of the system in vacuo. The interplay of the optical gradient force (optomechanical coupling strength \(g_{om}/2\pi=- 66GHz/nm\)) and the photothermal force manifested in the optical spring effect and dynamic backaction is elucidated. Static displacement by the repulsive force of 1nm/mW is also demonstrated. In the second part of the thesis, the nonlinear mechanical signatures upon a strong coherent drive are reported. By resonantly driving the photonic crystal membrane with a piezo-actuator and an optical gradient force, we observed mechanical frequency mixing, mechanical bistability and non-trivial interactions of the Brownian peak with the driving signal. Finally we present our recent progress in establishing electro- static control of individual photonic crystal membranes to reduce and calibrate the electrostatic artifact which plagues Casimir measurements. The results discussed in this thesis point towards an auspicious future of a complete realization of a Casimir optomechanical structure and novel applications with nonlinearity afforded by the Casimir force and the optical gradient force.
Engineering and Applied Sciences
APA, Harvard, Vancouver, ISO, and other styles
23

Restrepo, Juan Sebastián. "Theory of quantum optomechanics with unconventional nonlinear coupling schemes." Paris 7, 2014. http://www.theses.fr/2014PA077228.

Full text
Abstract:
Ces dernières années la zoologie de systèmes quantiques apprivoisés a vu l'entrée d'un nouveau membre. Dans le domaine des cavités optomécaniques on a démontré qu'il est possible d'amener des résonateurs micro et nanométriques vers leur état quantique fondamental. Ce fait est rendu possible par la capacité de ces cavités à refroidir optiquement les fluctuations browniennes des degrés de liberté mécaniques. Nous étudions des mécanismes non conventionnels de refroidissement optique dans des cavités optomécaniques. En particulier nous discutons comment les forces photothermiques (ou bolométriques) pourraient permettre d'atteindre l'état quantique fondamental d'un résonateur mécanique, et ce dans des régimes de paramètres où le refroidissement usuel par pression de radiation est limité. D'autre part la maturité expérimentale des cavités optomécaniques •Permet aujourd'hui d'explorer des régimes de couplage fort où un seul photon est suffisant pour perturber le résonateur mécanique au delà de ses fluctuations de point zéro. Suivant cette tendance nous présentons nos prédictions théoriques concernant un système qui combine l'électrodynamique quantique de cavité et l'optomécanique quantique. Nous démontrons que l'introduction d'un atome artificiel à deux niveaux dans la cavité optomécanique mène à des régimes de refroidissement et d'amplification inédits. Par ailleurs nous montrons comment la non-linéarité intrinsèque du système à deux niveaux permet d'atteindre des états non-classiques du résonateur mécanique
In recent years the zoology of tamed quantum systems has witnessed the arrival of a new member. In the field of optomechanical cavities it has been proven that it is possible to lead micro and nano mechanical resonators to their vibrational quantum ground state. This feat is made possible by the ability of optomechanical resonators to optically cool down the brownian motion of the mechanical degrees of freedom. We study the cooling mechanisms in optomechanical cavities subject to unconventional coupling schemes. In particular we discuss how pfiotothermal cooling leads the mechanical resonator to its ground state in regimes of parameters for which the more usual radiation pressure based cooling is unable to quench effectively enough the thermal brownian motion. On the other hand the maturity of experimental optomechanics has opened the path for the exploration of strong coupling regimes where a single photon is enough to modify the mechanical properties beyond the zero point fluctuations. Following this trend we present as well our predictions for a system combining quantum electrodynamics and quantum optomechanics. We show that by introducing an artificial two level atom inside the optomechanical cavity the cooling and amplification of mechanical motion are greatly modified. We also show how the intrinsic non-linearity of the artificial atom leads to non-classical states of the mechanical resonator
APA, Harvard, Vancouver, ISO, and other styles
24

GALASSI, MARCO. "Cavity Optomechanics Radiation pressure cooling of a micromechanical resonator." Doctoral thesis, Università degli Studi di Camerino, 2014. http://hdl.handle.net/11581/401812.

Full text
Abstract:
At the beginning of last century Einstein derived the statistics of the radiation pressure force fluctuactions acting on a moveable mirror. Later, pioneering experiments about the role of radiation pressure and its ability to provide cooling for large objects were carried on by Braginsky in the context of interferometers during the 60s. The dynamical influence of radiation pressure on a harmonically suspended end-mirror of a cavity was investigated, revealing that the retarded nature of the force provides either damping or anti-damping of mechanical motion. The first cavity optomechanical experiment in the optical domain demonstrated bistability of the radiation pressure force acting on a macroscopic end-mirror. The fundamental consquences of the quantum fluctuations of radiation pressure impose a limit on how accurately the position of a test mass can be measured and the standard quantum limit for continuous position detection was then established. The original task concerning my PhD Thesis is the observation of radiation pressure acting on a mechanical object due to light circulating inside a Fabry-Perot cavity. This evidence would trace the path to observe the standard quantum limit through optical methods allowing to perform quantum measurements, and the realization of coherent superposition of the states of macroscopic objects. A plethora of different systems was introduced starting from the last decades of the 20th century in order to explore both theoretically and experimentally the behaviour of optomechanical systems. On the experimental side the most part of the approaches were to miniaturize the investigated structure. Optomechanical effects of retarded radiation forces were observed in microscale setups. However, the task of producing high quality optical cavities below mm-scale remains quite challeging. The route that was followed is the membrane-in-the-middle setup. Previous theoretical proposals and experimental implementations have analysed the possibility of setting up this kind of research using a movable mirror as end mirror of the FP cavity. Later the research focused on a new interpretation of the problem, placing a SiN membrane (a few tens of nanometers of thickness) between the two mirrors. We performed a detailed study of dynamical back-action cooling and of radiation pressure induced modifications of the mechanical properties of the membrane. In particular we have studied how the mechanical susceptibility is modified by such interaction between radiation pressure and a driven cavity mode. We finally observed that the increase of mechanical damping is equivalent to cooling of the vibrational mode and we measured its effective temperature in three different ways, obtaining consistent results, in agreement with theoretical expectations.
APA, Harvard, Vancouver, ISO, and other styles
25

Tsvirkun, Viktor. "Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112176/document.

Full text
Abstract:
Les systèmes optomécaniques, dans lesquels les vibrations d'un résonateur mécanique sont couplées à un rayonnement électromagnétique, ont permis l'examen de multiples nouveaux effets physiques. Afin d'exploiter pleinement ces phénomènes dans des circuits réalistes et d'obtenir différentes fonctionnalités sur une seule puce, l'intégration des résonateurs optomécaniques est obligatoire. Ici nous proposons une nouvelle approche pour la réalisation de systèmes intégrés et hétérogènes comportant des cavités à cristaux photoniques bidimensionnels au-dessus de guides d'ondes en silicium-sur-isolant. La réponse optomécanique de ces dispositifs est étudiée et atteste d'un couplage optomécanique impliquant à la fois les mécanismes dispersifs et dissipatifs. En contrôlant le couplage optique entre le guide d'onde intégré et le cristal photonique, nous avons pu varier et comprendre la contribution relative de ces couplages. Cette plateforme évolutive permet un contrôle sans précédent sur les mécanismes de couplage optomécanique, avec un avantage potentiel dans des expériences de refroidissement et pour le développement de circuits optomécaniques multi-éléments pour des applications tels que le traitement du signal par effets optomécaniques
Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrated arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the frame of optomechanically-driven signal-processing applications
APA, Harvard, Vancouver, ISO, and other styles
26

Yeo, Inah. "A quantum dot in a photonic wire : spectroscopy and optomechanics." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY076/document.

Full text
Abstract:
Dans cette thèse, nous avons étudié les propriétés optiques de boîtes quantiques InAs/GaAs contenues dans un fil photonique. Des résultats antérieurs à cette thèse ont montré que ces fils photoniques permettent d’extraire les photons avec une efficacité très élevée.Le premier résultat original de ce travail est l’observation de la dérive temporelle de la raie d’émission de la photoluminescence d’une boîte quantique. Cet effet a été attribué à la lente modification de la charge de surface du fil due à l’absorption des molécules d’oxygène présentes dans le vide résiduel du cryostat. Nous avons montré qu’une fine couche de Si3N4 permettait de supprimer cette dérive. La dérive temporelle pouvant être différente pour différentes boites quantiques, nous avons pu tirer partie de cet effet pour mettre en résonance deux boites quantiques contenues dans le même fil.Le deuxième résultat original est la mise en évidence de la modification de l’énergie d’émission d’une boîte quantique soumise à une contrainte mécanique induite par la vibration du fil. Nous avons observé que le spectre de la raie d’émission d’une boîte quantique s’élargit considérablement lorsque le fil est mécaniquement excité à sa fréquence de résonance. A l’aide d’une illumination stroboscopique synchronisée avec l’excitation mécanique, nous avons pu reconstruire l’évolution du spectre d’une boîte quantique au cours d’une période de la vibration mécanique. L’amplitude de l’oscillation spectrale de la raie de luminescence dépend de la position de la boîte dans le fil à cause d’un très fort gradient de contrainte. En utilisant deux modes d’oscillation mécanique de polarisations linéaires et orthogonales, nous pouvons extraire une cartographie complète de la position des boîtes quantiques à l’intérieur du fil. Enfin, grâce à ce gradient, on peut, dans certains cas, trouver une position du fil pour laquelle deux boites quantiques peuvent être amenées en résonance
In the framework of this thesis, single InAs/GaAs quantum dot devices were studied by optical means. Starting with a general description of self-assembled InAs QDs, two types of single QD devices were presented. The first approach was a tapered GaAs photonic wire embedding single InAs QDs whose efficiency as a single photon source was previously shown to be 90%. We investigated several optical properties of the single QDs. The charged and neutral states of the QD were identified and selectively excited using quasi-resonant excitation.The first original result of this thesis is the observation of a continuous temporal blue-drift of the QD emission energy. We attributed this blue drift to oxygen adsorption onto the sidewall of the wire, which modified the surface charge and hence the electric field seen by the QD. Moreover, we demonstrated that a proper coating of the GaAs photonic nanowire surface suppressed the drift. The temperature effect on this phenomenon revealed an adsorption peak around 20K, which corresponds to the adsorption of oxygen on GaAs. This observation is in good agreement with previous temperature studies with a tapered photonic wire. This was the first study of the spectral stability of photonic wires embedding QDs, crucial for resonant quantum optics experiments. As an alternative, we took advantage of this temporal drift to tune QD emission energies. In a controlled way, we tuned into resonance two different QDs which were embedded in the same photonic nanowire. In the last part of this work, we studied the influence of the stress on single QDs contained in a trumpet-like GaAs photonic wire. The main effect of stress is to shift the luminescence lines of a QD. We applied the stress by exciting mechanical vibration modes of the wire. When the wire is driven at its the mechanical resonance the time-integrated photoluminescence spectrum is broaden up to 1 meV owing to the oscillating stress, The measured spectral modulation is a first signature of strain-mediated coupling between a mechanical resonator and embedded QD single light emitter. With a stroboscopic technique, we isolated a certain phase of the oscillating wire and thereby selected a value of QD emission energies. As a highlight of our study, we managed to bring two different QDs contained in the same wire into resonance by controlling their relative phase. In addition, we could extract the 2D spatial positioning of embedded QDs from the spectral shifts observed for two orthogonal mechanical polarizations.. The investigation of the strain-mediated tuning of QDs can, therefore, be an effective tool to explore the QD positions without destroying the sample
APA, Harvard, Vancouver, ISO, and other styles
27

Rivière, Rémi. "Cavity optomechanics with silica toroidal microresonators down to low phonon occupancy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Benevides, Rodrigo da Silva 1989. "Optomechanics in photonic crystal cavities = Optomecânica em cavidades de cristal fotônico." [s.n.], 2016. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305732.

Full text
Abstract:
Orientador: Thiago Pedro Mayer Alegre
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-31T00:04:36Z (GMT). No. of bitstreams: 1 Benevides_RodrigodaSilva_M.pdf: 12114965 bytes, checksum: 9db892fbca5fe67d883b58515f6e1dc7 (MD5) Previous issue date: 2016
Resumo: A área de optomecânica de cavidades passou por um grande desenvolvimento na última década. O crescente interesse nesta área foi impulsionado principalmente pela interessante conexão entre movimentos mecânicos e campos ópticos. Tal acoplamento é amplamente explorado em diversos experimentos, com escalas variando de interferômetros quilométricos a cavidades ópticas microestruturadas. O principal desafio em todos estes experimentos é criar um dispositivo optomecânico com um longo tempo de vida óptico e mecânico, ao mesmo tempo em que mantém um grande acoplamento. Neste contexto, as cavidades de cristal fotônico surgiram como fortes candidatas já que elas são capazes de confinar campo óptico em um volume modal muito reduzido e por um longo tempo de vida. No regime clássico, estes pequenos dispositivos, que podem oscilar mecanicamente com frequências de alguns poucos MHz até dezenas de GHz, permitem detectar forças, massas e deslocamentos muito pequenos. Elas também são usadas para produzir osciladores mecânicos de alta qualidade, que podem ser sincronizados por intermédio do campo óptico. No regime quântico, a optomecânica quântica de cavidades tem sido usada para ajudar na compreensão do fenômeno de decoerência em uma escala mesoscópica, criando estados não-clássicos fortemente acoplados entre campo óptico e movimento mecânico, intermediado pela interação optomecânica. Entretanto, até agora, foram realizados poucos estudos sobre a possibilidade de produção destes dispositivos em larga escala, um passo necessário para massivas aplicações tecnológicas e científicas destes dispositivos. Neste trabalho, descrevemos um estudo detalhado de cavidades optomecânicas baseadas em cristais fotônicos produzidos numa fábrica de dispositivos compatíveis com indústria CMOS. Nós demonstramos a viabilidade desta plataforma explorando três geometrias distintas de cristais fotônicos. Primeiramente, nós mostramos como atingir fatores de qualidade muito elevados usando uma geometria consistente com as limitações de fabricação. Nossos fatores de qualidade são os maiores já reportados usando cavidades de cristal fotônico fabricadas com litografia óptica. Em seguida, investigamos uma cavidade do tipo fenda, possibilitando a produção de alto acoplamento optomecânico usando um movimento mecânico planar. Por fim, desenhamos um escudo acústico, com dimensões variadas, para restringir o modo mecânico para dentro da região óptica. Essa estratégia foi usada de forma bem sucedida para produzir altos fatores de qualidade mecânicos e acoplamentos optomecânicos, permitindo a observação de resfriamento e amplificação de modos mecânicos à baixa temperatura
Abstract: The field of cavity optomechanics has experienced a rapid growth in last decade. The increasing interest in this area was mostly driven by the intricate interface between mechanical motion and the optical field. Such coupling is widely explored in a variety of experiments scaling from kilometer long interferometers to micrometer optical cavities. The challenge on all these experiments is to create an optomechanical device with long-living optical and mechanical resonances while keeping a large coupling rate. In this context photonic crystal cavities have emerged as a strong candidate since they are able to produce very small optical mode volume and long optical lifetime. In the classical regime, these tiny devices, which can mechanically oscillate from frequencies ranging from couple MHz up to tens of GHz, allows for highly sensitive small forces, masses, displacements and acceleration detectors. They are also used to produce high quality optically driven mechanical oscillators which can be synchronized via an optical field. In the quantum regime, cavity quantum optomechanics is being used to understand decoherence phenomena in a mesoscopic scale by creating nonclassical states between light and mechanical modes intermediated by optomechanical interaction. However up to now, few studies have been done concerning the possibility of large scale production of these devices, a necessary step towards massive technological and scientific application of these devices. In this work, we describe a detailed study of optomechanical cavities based upon photonic crystal cavities fabricated in a CMOS-compatible commercial foundry. We prove the feasibility of this platform exploring three photonic crystal designs. First, we show how to achieve ultra-high optical quality factors using a design resilient to the fabrication constrains. Our demonstrated quality factors are the largest ever reported using photonic crystal cavities manufactured by optical lithography. Secondly, we investigate a slot type optical cavity, able to produce very large optomechanical coupling using a simple in-plane motion. Finally, we design a trimmable acoustic shield to restrict the mechanical motion inside the optical region. Such strategy was successfully used to produce high mechanical quality factor and optomechanical coupling which enabled the observation of cooling and amplification of mechanical modes at low temperature
Mestrado
Física
Mestre em Física
2014/12875-4
132737/2014-0
FAPESP
CNPQ
APA, Harvard, Vancouver, ISO, and other styles
29

Elouard, Cyril. "Thermodynamics of quantum open systems : applications in quantum optics and optomechanics." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY046/document.

Full text
Abstract:
La thermodynamique a été développée au XIXe siècle pour décrire la physique des moteurs et autres machines thermiques macroscopiques. Depuis lors, le progrès des nanotechnologies a rendu nécessaire d'étendre ces lois, initialement pensées pour des systèmes classiques, aux systèmes obéissant à la mécanique quantique. Durant cette thèse, j'ai mis en place un formalisme pour étudier la thermodynamique stochastique des systèmes quantiques, dans lequel la mesure quantique occupe une place centrale: à l'instar du bain thermique de la thermodynamique statistique classique, la mesure est ici la source première d'aléatoire dans la dynamique. Dans un premier temps, j'ai étudié la mesure projective comme une transformation thermodynamique à part entière. J'ai montré que la mesure cause un changement incontrôlé de l'énergie du système quantique étudié, que j'ai appelé chaleur quantique, ainsi qu'une production d'entropie. Comme application de ces concepts, j'ai proposé un moteur qui extrait du travail à partir des fluctuations quantiques induites par la mesure. Ensuite, j'ai étudié les mesures généralisées, ce qui a permis de décrire des systèmes quantiques ouverts. J'ai défini les notions de travail, de chaleur, et de production d'entropie pour une réalisation unique d'une transformation thermodynamique, et retrouvé que ces quantités obéissent à des théorèmes de fluctuation. Ce formalisme m'a permis d'analyser le comportement thermodynamique de la situation canonique de l'optique quantique : un atome à deux niveaux en couplé à un laser et au vide électromagnétique. Enfin, j'ai étudié une plate-forme prometteuse pour tester la thermodynamique d'un Qubit : un système hybride optomécanique.Le formalisme développé dans cette thèse peut être d'un grand intérêt pour la communauté de thermodynamique quantique car il permet de caractériser les performances des machines thermiques quantiques et de les comparer à leurs analogues classiques. En outre, en caractérisant la mesure quantique comme un processus thermodynamique, il ouvre la voie à de nouveaux types de machines thermiques, exploitant d'une manière inédite les spécificités du monde quantique
Thermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way
APA, Harvard, Vancouver, ISO, and other styles
30

Fiore, Victor. "Optomechanical Light Storage and Related Transient Optomechanical Phenomena." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19254.

Full text
Abstract:
An optomechanical system consists of an optical cavity coupled to a mechanical oscillator. The system used for this work was a silica microsphere. In a silica microsphere, the optical cavity is formed by light that is confined by total internal reflection while circulating around the equator of the sphere. The mechanical oscillator is the mechanical breathing motion of the sphere itself. The optical cavity and mechanical oscillator are coupled by radiation pressure and by the mechanical oscillator physically changing the length of the optical cavity. The optomechanical analog to electromagnetically induced transparency (EIT), known as optomechanically induced transparency (OMIT), has previously been studied in its steady state. One topic of this dissertation is an experimental study of OMIT in the time domain. The results of these experimental demonstrations continue comparisons between EIT and OMIT, while also building a foundation for optomechanical light storage. In OMIT, an off-resonance control laser controls the interaction between on-resonance light and the mechanical oscillator. Optomechanical light storage makes use of this arrangement to store an optical signal as a mechanical excitation, which is then retrieved at a later time as an optical signal. This is done by using two temporally separated off-resonance control laser pulses. This technique is extremely flexible in frequency and displays a storage lifetime on the order of microseconds. Use of optomechanical systems for quantum mechanical applications is hindered by the thermal background noise of the mechanical oscillator. Addressing this issue by first cooling the mechanical oscillator is costly and fraught with difficulties. The final topic presented in this dissertation deals with this issue through the use of an optomechanical dark mode. Two optical modes can interact with the same mechanical mode. The dark mode is a state that couples the two optical modes but is decoupled from the mechanical oscillator. While our specific optomechanical system is limited by its somewhat modest optomechanical cooperativity, this conversion process can, in principle, preserve the quantum state of the signal, even at room temperature, opening the possibility for this technique to be applied in quantum information processing.
APA, Harvard, Vancouver, ISO, and other styles
31

Kuzyk, Mark. "Multimode Optomechanical Systems and Phononic Networks." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24186.

Full text
Abstract:
An optomechanical system consists of an optical cavity mode coupled to a mode of a mechanical oscillator. Depending on the configuration of the system, the optomechanical interaction can be used to drive or cool the mechanical mode, coherently swap the optical and mechanical states, or create entanglement. A multimode optomechanical system consists of many optical (mechanical) modes coupled to a mechanical (optical) mode. With the tools of the optomechanical interaction, multimode optomechanical systems provide a rich platform to study new physics and technologies. A central challenge in optomechanical systems is to mitigate the effects of the thermal environment, which remains significant even at cryogenic temperatures, for mechanical oscillators typically used in optomechanical systems. The central theme of this thesis is to study how the properties of multimode optomechanical systems can be used for such mitigation of thermal noise. The most straightforward extension of an optomechanical system to a multimode system is to have a single optical mode couple to two mechanical modes, or a single mechanical mode couple to two optical modes. In this thesis, we study both types of multimode system. In each case, we study the formation of a dark mode, an eigenstate of the three-mode system that is of particular interest. When the system is in a dark state, the two modes of similar character (optical or mechanical) interact with each other through the mode of dissimilar character, but due to interference, the interaction becomes decoupled from the properties of the dissimilar mode. Another interesting application of the three-mode system is two-mode optical entanglement, generated through mechanical motion. Such entanglement tends to be sensitive to thermal noise. We propose a new method for generating two-mode optical entanglement in the three-mode system that is robust against the thermal environment of the mechanical mode. Finally, we propose a novel, scalable architecture for a quantum computer. The architecture makes use of the concepts developed earlier in the thesis, and applies them to a system that on the surface looks quite different from the standard optomechanical system, but is formally equivalent. This dissertation includes previously published and unpublished coauthored material.
APA, Harvard, Vancouver, ISO, and other styles
32

Singh, S., L. A. De Lorenzo, I. Pikovski, and K. C. Schwab. "Detecting continuous gravitational waves with superfluid 4He." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625336.

Full text
Abstract:
Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very highQ-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h similar to 10(-23)/root Hz are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. Weshow that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.
APA, Harvard, Vancouver, ISO, and other styles
33

Farace, Alessandro. "Quantum correlations and novel quantum effects in coupled optomechanical cavities." Doctoral thesis, Scuola Normale Superiore, 2015. http://hdl.handle.net/11384/85859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schließer, Albert. "Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators." Diss., München Hut, 2009. http://edoc.ub.uni-muenchen.de/10940/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Herrmann, Maximilian. "Precision spectroscopy and optomechanics of single trapped ions in the weak-binding limit." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-101547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kronwald, Andreas [Verfasser], and Florian [Akademischer Betreuer] Marquardt. "Nonlinear quantum effects and squeezing in cavity optomechanics / Andreas Kronwald. Gutachter: Florian Marquardt." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2015. http://d-nb.info/107583984X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Weiß, Matthias [Verfasser], and Hubert J. [Akademischer Betreuer] Krenner. "Quantum Dot Optomechanics with Surface Acoustic Waves / Matthias Weiß ; Betreuer: Hubert J. Krenner." Augsburg : Universität Augsburg, 2021. http://d-nb.info/1228787921/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Epstein, Stephen David. "The Stochastic Dynamics of Optomechanical Sensors for Atomic Force Microscopy." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23730.

Full text
Abstract:
This work explores the stochastic dynamics and important diagnostics of a mechanical resonator (nanobeam) used in cavity optomechanical sensors for atomic force microscopy. Atomic force microscopy (AFM) is a tool to image surface topology down to the level of individual atoms. Conventional AFM has been an essential tool for micro and nanoscale studies in physics, chemistry, and biology. Cavity optomechanical sensors for AFM extend the utility of conventional AFM into a new regime of high sensitivity k is approximately 1 N/m and high frequency f0 is approximately 10 MHz. Cavity optomechanical sensors for AFM are unique because they use near field optics to transduce the position of a nanobeam. The nanobeam is not able to be transduced by more conventional AFM techniques, such as laser interferometry, because the nanobeam is smaller than the spot size of the laser. This work determines the noise spectrum G of a nanobeam in water and in air. Also important diagnostics of the nanobeam are determined in air and in water. These important diagnostics include the quality factor Q and natural frequency in fluid omega_f. It is found that the nanobeam is overdamped in water. However, the nanobeam is underdamped in air and has quality factor of Q is approximately 4. The noise spectrum is determined from deterministic numerical calculations and the Fluctuation-Dissipation Theorem. This is possible because the same molecular processes, Brownian motion, cause both the fluctuations of the nanobeam and the dissipation of the nanobeam.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
39

Girdhar, Parth. "Probing Foundations of Quantum Mechanics: A Study into Nonlocality and Quantum Gravity." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24531.

Full text
Abstract:
This thesis is about probing aspects of the foundations of quantum mechanics. Firstly, two notions of quantum nonlocality are explored: EPR-steering, the ability to control a remote quantum state, and Bell nonlocality, the inconsistency of a theory with local causality. A necessary and sufficient witness of Einstein-Podolsky- Rosen (EPR) steering is derived for a two qubit system employing only correlations between two arbitrary dichotomic measurements on each party. It is demonstrated that all states that are EPR-steerable with such correlations are also Bell nonlocal, a surprising equivalence between these two fundamental concepts of quantum mechanics. Next, testing modifications of the quantum mechanical canonical commutation relations is addressed. These are properties of some quantum gravity theories that involve an effective minimal length. It is shown that optomechanical probes of position noise spectrum of macroscopic oscillators can produce constraints on these theories. A comparison with current and future realistic experiments reveals the potential to beat constraints from direct experiments on elementary particles. Finally, it is studied how such modifications of quantum mechanics manifest in the theory of general continuous quantum position measurements. Several behaviours are found that deviate strongly from that of standard commutation relations.
APA, Harvard, Vancouver, ISO, and other styles
40

Pennetta, Riccardo [Verfasser], Philip St J. [Akademischer Betreuer] Russell, and Gustavo [Gutachter] Wiederhecker. "Tapered Glass-Fibre Nanospike Optomechanics / Riccardo Pennetta ; Gutachter: Gustavo Wiederhecker ; Betreuer: Philip St.J. Russell." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1180028376/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Blien, Stefan [Verfasser], and Andreas K. [Akademischer Betreuer] Hüttel. "Microwave Optomechanics with a Carbon Nanotube Quantum Dot / Stefan Blien ; Betreuer: Andreas K. Hüttel." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1225935776/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Deotare, Parag. "Nanobeam Cavities for Reconfigurable Photonics." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10414.

Full text
Abstract:
We investigate the design, fabrication, and experimental characterization of high quality factor photonic crystal nanobeam cavities, with theoretical quality factors of \(1.4 × 10^7\) in silicon, operating at ~1550 nm. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a quality factor of nearly \(7.5 × 10^5\). We show on-chip integration of the cavities using waveguides and an inverse taper geometry based mode size converters, and also demonstrate tuning of the optical resonance using thermo-optic effect. We also study coupled cavities and show that the single nanobeam cavity modes are coupled into even and odd superposition modes. Using electrostatic force and taking advantage of the highly dispersive nature of the even mode to the nanobeam separation, we demonstrate dynamically reconfigurable optical filters tunable continuously and reversibly over a 9.5 nm wavelength range. The electrostatic force, obtained by applying bias voltages directly to the nanobeams, is used to control the spacing between the nanobeams, which in turn results in tuning of the cavity resonance. The observed tuning trends were confirmed through simulations that modeled the electrostatic actuation as well as the optical resonances in our reconfigurable geometries. Finally we demonstrate reconfiguration of coupled cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over wide wavelength range are used to actuate the structures and in that way control the resonance of a localized cavity mode. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method that we developed, we determined that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cut-off, we show high speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures, by means of optical stiffening, is also demonstrated.
Engineering and Applied Sciences
APA, Harvard, Vancouver, ISO, and other styles
43

Jacobs, Andrew. "Probe Spectra and Photon Statistics in a Weakly-Driven Cavity Optomechanical System." Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1344150680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Leoncino, Luca. "Optomechanical transduction applied to M/NEMS devices." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY067/document.

Full text
Abstract:
Au cours de ces dernières années, les progrès technologiques dans le domaine dumicro-usinage sur silicium ont permis le développement de Micro/Nano SystèmesÉlectro Mécaniques (M/NEMS) pour réaliser des capteurs ou des actionneurs.Dans le domaine des NEMS, dont les dimensions sont par définition submicroniques,les propriétés obtenues permettent de viser des applications en analyse biochimiqueou biomédicale. Il a été démontré que ces nano capteurs de masse (ou de force)atteignent des résolutions de l’ordre du zeptogramme (10−21 g) ou du picoNewtonce qui permet d’envisager des diagnostics précoces de certains cancers.Tous ces systèmes utilisent `a l’heure actuelle des moyens d’actionnement et dedétection électriques: de nombreuses équipes ont néanmoins démontré que la photoniqueactionne et détecte des mouvements de très faibles amplitudes, de l’ordredu femtomètre. Cette technologie hybride, circuit photonique associé au M/NEMS,offre potentiellement un gain de performance important par rapport aux moyens detransduction électromécanique.L’objectif de la thèse est le développement de la transduction optomécanique afinde détecter le déplacement de résonateurs NEMS. Un simple modèle analytique estproposé avec le support d’un simulation numérique. Les performances de transductionoptique sont comparées aux caractéristiques de la transduction électrique. Lacomparaison se base sur des critères objectifs (sensibilité, bruit, encombrement) puisde proposer des structures optomécaniques originales. Un banc de caractérisationoptique et mécanique est développé pour la caractérisation des échantillons dans unenvironnement contrôlé. Des mesures sur des composants fabriqués permettent demieux appréhender les contraintes de dimensionnement et, de façon plus général, latransduction optomécanique appliqué aux dispositifs NEMS
During several last years, technological advances in the field of silicon micromachininghave initiated the industrial growth of Micro/Nano Electro Mechanical Systems(M/NEMS) for fabricating sensors or actuators.In the field of NEMS with sub-micron sizes, the properties allow for targeting applicationsin biomedical or biochemical analyses. It has been demonstrated that thesenano mass (or force) sensors achieve resolutions of the order of zeptogram (10−21 g)or picoNewton, hence allowing early diagnosis of certain cancers.Transduction schemes of these systems are currently based on electrical principles:many teams have nevertheless shown that photonics operates and detects tiny displacementin the order of femtometer. This hybrid technology, photonic circuitassociated with M/NEMS, potentially offers a significant improvement compared toelectrical transduction.The purpose of the thesis consists of developing the optomechanical transductionfor NEMS resonators displacement. A simple analytical model is presented togetherwith a numerical simulation. The performance of optical detection is compared toelectrical detection features. The comparison is based on objective criteria (sensitivity,noise, crowding) for designing original optomechanical structures. A dedicatedbench has been developed for the optical and mechanical characterizations of thesamples placed in a controlled environment. Measurements on fabricated devicesallow a better understanding of the design constrains and, more in general, of theoptomechanical detection applied to NEMS.i
APA, Harvard, Vancouver, ISO, and other styles
45

Dobrindt, Jens [Verfasser], and Theodor W. [Akademischer Betreuer] Hänsch. "Bio-sensing using toroidal microresonators & theoretical cavity optomechanics / Jens Dobrindt. Betreuer: Theodor W. Hänsch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1035066599/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Piccolo, Valentina. "Experimental and Novel Analytic Results for Couplings in Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics." Doctoral thesis, Università degli studi di Trento, 2019. https://hdl.handle.net/11572/367991.

Full text
Abstract:
Theoretical modelling of challenging multiscale problems arising in complex (and sometimes bioinspired) solids are presented. Such activities are supported by analytical, numerical and experimental studies. For instance, this is the case for studying the response of hierarchical and nano-composites, nanostructured solid/semi-fluid membranes, polymeric nanocomposites, to electromagnetic, mechanical, thermal, and sometimes biological, electrical, and chemical agents. Such actions are notoriously important for sensors, polymeric films, artificial muscles, cell membranes, metamaterials, hierarchical composite interfaces and other novel class of materials. The main purpose of this project is to make significant advancements in the study of such composites, with a focus on the electromagnetic and mechanical performances of the mentioned structures, with particular regards to novel concept devices for sensing. These latter ones have been studied with different configuration, from 3D colloidal to 2D quasi-hemispherical micro voids elastomeric grating as strain sensors. Exhibited time-rate dependent behavior and structural phenomena induced by the nano/micro-structure and their adaptation to the applied actions, have been explored. Such, and similar, ordered submicroscopic systems undergoing thermal and mechanical stimuli often exhibit an anomalous response. Indeed, they neither follow Fourier’s law for heat transport nor their mechanical time-dependent behavior exhibiting classical hereditariness. Such features are known both for natural and artificial materials, such as bone, lipid membranes, metallic and polymeric “spongy†composites (like foams) and many others. Strong efforts have been made in the last years to scale-up the thermal, mechanical and micro-fluidic properties of such solids, to the extent of understanding their effective bulk and interface features. The analysis of the physical grounds highlighted above has led to findings that allow the describing of those materials’ effective characteristics through their fractional-order response. Fractional-order frameworks have also been employed in analyzing heat transfer to the extent of generalizing the classical Fourier and Cattaneo transport equations and also for studying consolidation phenomenon. Overall, the research outcomes have fulfilled all the research objectives of this thesis thanks to the strong interconnection between several disciplines, ranging from mechanics to physics, from structural health monitoring to chemistry, both from an analytical and numerical point of view to the experimental one.
APA, Harvard, Vancouver, ISO, and other styles
47

Piccolo, Valentina. "Experimental and Novel Analytic Results for Couplings in Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics." Doctoral thesis, University of Trento, 2019. http://eprints-phd.biblio.unitn.it/3583/1/PhDThesis_VPiccolo.pdf.

Full text
Abstract:
Theoretical modelling of challenging multiscale problems arising in complex (and sometimes bioinspired) solids are presented. Such activities are supported by analytical, numerical and experimental studies. For instance, this is the case for studying the response of hierarchical and nano-composites, nanostructured solid/semi-fluid membranes, polymeric nanocomposites, to electromagnetic, mechanical, thermal, and sometimes biological, electrical, and chemical agents. Such actions are notoriously important for sensors, polymeric films, artificial muscles, cell membranes, metamaterials, hierarchical composite interfaces and other novel class of materials. The main purpose of this project is to make significant advancements in the study of such composites, with a focus on the electromagnetic and mechanical performances of the mentioned structures, with particular regards to novel concept devices for sensing. These latter ones have been studied with different configuration, from 3D colloidal to 2D quasi-hemispherical micro voids elastomeric grating as strain sensors. Exhibited time-rate dependent behavior and structural phenomena induced by the nano/micro-structure and their adaptation to the applied actions, have been explored. Such, and similar, ordered submicroscopic systems undergoing thermal and mechanical stimuli often exhibit an anomalous response. Indeed, they neither follow Fourier’s law for heat transport nor their mechanical time-dependent behavior exhibiting classical hereditariness. Such features are known both for natural and artificial materials, such as bone, lipid membranes, metallic and polymeric “spongy” composites (like foams) and many others. Strong efforts have been made in the last years to scale-up the thermal, mechanical and micro-fluidic properties of such solids, to the extent of understanding their effective bulk and interface features. The analysis of the physical grounds highlighted above has led to findings that allow the describing of those materials’ effective characteristics through their fractional-order response. Fractional-order frameworks have also been employed in analyzing heat transfer to the extent of generalizing the classical Fourier and Cattaneo transport equations and also for studying consolidation phenomenon. Overall, the research outcomes have fulfilled all the research objectives of this thesis thanks to the strong interconnection between several disciplines, ranging from mechanics to physics, from structural health monitoring to chemistry, both from an analytical and numerical point of view to the experimental one.
APA, Harvard, Vancouver, ISO, and other styles
48

Mari, Andrea. "Signatures of non-classicality in optomechanical systems." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5981/.

Full text
Abstract:
This thesis contains several theoretical studies on optomechanical systems, i.e. physical devices where mechanical degrees of freedom are coupled with optical cavity modes. This optomechanical interaction, mediated by radiation pressure, can be exploited for cooling and controlling mechanical resonators in a quantum regime. The goal of this thesis is to propose several new ideas for preparing meso- scopic mechanical systems (of the order of 10^15 atoms) into highly non-classical states. In particular we have shown new methods for preparing optomechani-cal pure states, squeezed states and entangled states. At the same time, proce-dures for experimentally detecting these quantum effects have been proposed. In particular, a quantitative measure of non classicality has been defined in terms of the negativity of phase space quasi-distributions. An operational al- gorithm for experimentally estimating the non-classicality of quantum states has been proposed and successfully applied in a quantum optics experiment. The research has been performed with relatively advanced mathematical tools related to differential equations with periodic coefficients, classical and quantum Bochner’s theorems and semidefinite programming. Nevertheless the physics of the problems and the experimental feasibility of the results have been the main priorities.
Die vorliegende Arbeit besteht aus verschiedenen theoretischen Untersuchungen von optomechanischen Systemen, das heißt physikalische Bauteile bei denen mechanische Freiheitsgrade mit Lichtmoden in optischen Kavitäten gekoppelt sind. Diese optimechanischen Wechselwirkungen, die über den Strahlungsdruck vermittelt werden, lassen sich zur Kühlung und Kontrolle von mechanischen Resonatoren im Quantenregime verwenden. Das Ziel dieser Arbeit ist es, verschiedene neue Ideen für Methoden vorzuschlagen, mit denen sich mesoskopische mechanische Systeme (bestehend aus etwa 10^15 Atomen) in sehr nicht-klassischen Zuständen präparieren lassen. Außerdem werden Techniken beschrieben, mit denen sich diese Quateneffekte experimentell beobachten lassen. Insbesondere wird ein quantitatives Maß für Nichtklassizität auf der Basis von Quasiwahrscheinlichkeitsverteilungen im Phasenraum definiert und ein operationeller Algorithmus zu dessen experimenteller Beschrieben, der bereits erfolgreich in einem quantenoptischen Experiment eingesetzt wurde.
APA, Harvard, Vancouver, ISO, and other styles
49

Rath, Patrik [Verfasser], and M. [Akademischer Betreuer] Wegener. "Integrated optomechanics and single-photon detection in diamond photonic integrated circuits / Patrik Rath ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1123146136/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stapfner, Sebastian [Verfasser], and Eva [Akademischer Betreuer] Weig. "Investigation of nanomechanical resonators in a micro cavity for optomechanics experiments / Sebastian Stapfner ; Betreuer: Eva Weig." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1114068071/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography