Academic literature on the topic 'Orbital Feshbach resonance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orbital Feshbach resonance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Orbital Feshbach resonance"

1

Zhang, Haiyang, Fazal Badshah, Abdul Basit, and Guo-Qin Ge. "Orbital Feshbach resonance of Fermi gases in an optical lattice." Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 18 (2018): 185301. http://dx.doi.org/10.1088/1361-6455/aad83b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Yue-Ran, Zhuo-Cheng Lu, Jing-Kun Wang, and Wei Zhang. "Impurity problem of alkaline-earth-like atoms near an orbital Feshbach resonance." Acta Physica Sinica 68, no. 4 (2019): 040305. http://dx.doi.org/10.7498/aps.68.20181937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Haiyang, Fazal Badshah, Abdul Basit, and Guo-Qin Ge. "Fermi gas of orbital Feshbach resonance in synthetic 1D+1 dimensional optical lattice." Laser Physics Letters 15, no. 11 (2018): 115501. http://dx.doi.org/10.1088/1612-202x/aadab0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mondal, Soumita, Daisuke Inotani, and Yoji Ohashi. "Photoemission Spectrum in the BCS–BEC Crossover Regime of a Rare-Earth Fermi Gas with an Orbital Feshbach Resonance." Journal of the Physical Society of Japan 87, no. 9 (2018): 094301. http://dx.doi.org/10.7566/jpsj.87.094301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mondal, S., D. Inotani, and Y. Ohashi. "Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance." Journal of Physics: Conference Series 969 (March 2018): 012017. http://dx.doi.org/10.1088/1742-6596/969/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mondal, Soumita, Daisuke Inotani, and Yoji Ohashi. "Single-particle Excitations and Strong Coupling Effects in the BCS–BEC Crossover Regime of a Rare-Earth Fermi Gas with an Orbital Feshbach Resonance." Journal of the Physical Society of Japan 87, no. 8 (2018): 084302. http://dx.doi.org/10.7566/jpsj.87.084302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhatia, Anand K. "Photoejection from Various Systems and Radiative-Rate Coefficients." Atoms 10, no. 1 (2022): 9. http://dx.doi.org/10.3390/atoms10010009.

Full text
Abstract:
Photoionization or photodetachment is an important process. It has applications in solar- and astrophysics. In addition to accurate wave function of the target, accurate continuum functions are required. There are various approaches, like exchange approximation, method of polarized orbitals, close-coupling approximation, R-matrix formulation, exterior complex scaling, the recent hybrid theory, etc., to calculate scattering functions. We describe some of them used in calculations of photodetachment or photoabsorption cross sections of ions and atoms. Comparisons of cross sections obtained using
APA, Harvard, Vancouver, ISO, and other styles
8

Žďánská, Petra R., and Nimrod Moiseyev. "Hartree-Fock orbitals for complex-scaled configuration interaction calculation of highly excited Feshbach resonances." Journal of Chemical Physics 123, no. 19 (2005): 194105. http://dx.doi.org/10.1063/1.2110169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gil, T. J., C. L. Winstead, J. A. Sheehy, R. E. Farren, and P. W. Langhoff. "New Theoretical Perspectives on Molecular Shape Resonances: Feshbach–Fano Methods for Mulliken Orbital Analysis of Photoionization Continua." Physica Scripta T31 (January 1, 1990): 179–88. http://dx.doi.org/10.1088/0031-8949/1990/t31/025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Чернышова, И. В., Е. Э. Контрош та О. Б. Шпеник. "Соударения медленных электронов с молекулами тимина". Журнал технической физики 126, № 2 (2019): 109. http://dx.doi.org/10.21883/os.2019.02.47190.162-18.

Full text
Abstract:
AbstractUsing a hypocycloidal electron spectrometer, the total scattering cross section of slow (0–9 eV) electrons and the dissociative electron attachment cross section for thymine molecules in the gas phase were measured. The ionization cross section for a thymine molecule was studied in the energy range of 9–32 eV. Some features were found in the scattering cross section, caused by the formation and decay of short-lived states of the molecular negative ion. Three of them ( E = 0.32, 1.71, and 4.03 eV) relate to shape resonances; the others, which are observed for the first time, refer to th
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Orbital Feshbach resonance"

1

Livi, Lorenzo Francesco. "New quantum simulations with ultracold Ytterbium gases." Doctoral thesis, 2018. http://hdl.handle.net/2158/1126238.

Full text
Abstract:
In this thesis I report on the experimental results obtained during the years of my PhD in the laboratory of the University of Florence devoted to the investigation of quantum degenerate gases of Ytterbium. I discuss the main results that we achieved, focusing the attention on the experiments concerning two main research lines, the first related to the quantum simulation of synthetic gauge fields with ultracold Yb atoms and the second one to the investigation of two-orbital quantum physics exploiting the 1S0->3P0 clock
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Orbital Feshbach resonance"

1

K. Bhatia, Anand. "Interactions of Positrons and Electrons with Hydrogenic Systems, Excitation, Resonances, and Photoabsorption in Two-Electron Systems." In Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91763.

Full text
Abstract:
There are a number of approaches to study interactions of positrons and electrons with hydrogenic targets. Among the most commonly used are the method of polarized orbital, the close-coupling approximation, and the R-matrix formulation. The last two approaches take into account the short-range and long-range correlations. The method of polarized orbital takes into account only long-range correlations but is not variationally correct. This method has recently been modified to take into account both types of correlations and is variationally correct. It has been applied to calculate phase shifts of scattering from hydrogenic systems like H, He+, and Li2+. The phase shifts obtained using this method have lower bounds to the exact phase shifts and agree with those obtained using other approaches. This approach has also been applied to calculate resonance parameters in two-electron systems obtaining results which agree with those obtained using the Feshbach projection-operator formalism. Furthermore this method has been employed to calculate photodetachment and photoionization of two-electron systems, obtaining very accurate cross sections which agree with the experimental results. Photodetachment cross sections are particularly useful in the study of the opacity of the sun. Recently, excitation of the atomic hydrogen by electron impact and also by positron impact has been studied by this method.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!