Academic literature on the topic 'Ordered Abelian groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ordered Abelian groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ordered Abelian groups"

1

Jakubík, Ján. "Retracts of abelian lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 3 (1989): 477–85. http://dx.doi.org/10.21136/cmj.1989.102319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glass, A. M. W. "Weakly abelian lattice-ordered groups." Proceedings of the American Mathematical Society 129, no. 3 (2000): 677–84. http://dx.doi.org/10.1090/s0002-9939-00-05706-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conrad, Paul, and J. Roger Teller. "Abelian pseudo lattice ordered groups." Publicationes Mathematicae Debrecen 17, no. 1-4 (2022): 223–41. http://dx.doi.org/10.5486/pmd.1970.17.1-4.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Glass, A. M. W., Angus Macintyre, and Françoise Point. "Free abelian lattice-ordered groups." Annals of Pure and Applied Logic 134, no. 2-3 (2005): 265–83. http://dx.doi.org/10.1016/j.apal.2004.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glass, A. M. W. "Finitely presented ordered groups." Proceedings of the Edinburgh Mathematical Society 33, no. 2 (1990): 299–301. http://dx.doi.org/10.1017/s0013091500018204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Di Nola, Antonio, Giacomo Lenzi, Gaetano Vitale, and Roberto Giuntini. "Expanding Lattice Ordered Abelian Groups to Riesz Spaces." Mathematica Slovaca 72, no. 1 (2022): 1–10. http://dx.doi.org/10.1515/ms-2022-0001.

Full text
Abstract:
Abstract First we give a necessary and sufficient condition for an abelian lattice ordered group to admit an expansion to a Riesz space (or vector lattice). Then we construct a totally ordered abelian group with two non-isomorphic Riesz space structures, thus improving a previous paper where the example was a non-totally ordered lattice ordered abelian group. This answers a question raised by Conrad in 1975. We give also a partial solution to another problem considered in the same paper. Finally, we apply our results to MV-algebras and Riesz MV-algebras.
APA, Harvard, Vancouver, ISO, and other styles
7

GÖBEL, RÜDIGER, and SAHARON SHELAH. "CHARACTERIZING AUTOMORPHISM GROUPS OF ORDERED ABELIAN GROUPS." Bulletin of the London Mathematical Society 35, no. 03 (2003): 289–92. http://dx.doi.org/10.1112/s0024609302001881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goffman. "COMPLETENESS IN TOTALLY ORDERED ABELIAN GROUPS." Real Analysis Exchange 20, no. 1 (1994): 58. http://dx.doi.org/10.2307/44152461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dolich, Alfred, and John Goodrick. "Strong theories of ordered Abelian groups." Fundamenta Mathematicae 236, no. 3 (2017): 269–96. http://dx.doi.org/10.4064/fm256-5-2016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

CLUCKERS, RAF, and IMMANUEL HALUPCZOK. "QUANTIFIER ELIMINATION IN ORDERED ABELIAN GROUPS." Confluentes Mathematici 03, no. 04 (2011): 587–615. http://dx.doi.org/10.1142/s1793744211000473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography