Academic literature on the topic 'Ordre maximal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ordre maximal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ordre maximal"
Bapoungué, Lionel. "Factorisation dans un Ordre Non Maximal d'un Corps Quadratique." Expositiones Mathematicae 20, no. 1 (2002): 43–57. http://dx.doi.org/10.1016/s0723-0869(02)80028-7.
Full textHauer, Daniel, Yuhan He, and Dehui Liu. "Fractional Powers of Monotone Operators in Hilbert Spaces." Advanced Nonlinear Studies 19, no. 4 (November 1, 2019): 717–55. http://dx.doi.org/10.1515/ans-2019-2053.
Full textMerabet, Smail, Abdelkrim Bouzaza, Mohamed Bouhelassa, and Dominique Wolbert. "Modélisation et optimisation de la photodégradation du 4-méthylphénol dans un réacteur à recirculation en présence d’UV/ZnO." Revue des sciences de l'eau 22, no. 4 (October 22, 2009): 565–73. http://dx.doi.org/10.7202/038331ar.
Full textOspanov, K. N., Zh B. Yeskabylova, and D. R. Beisenova. "MAXIMAL REGULARITY ESTIMATES FOR HIGHER ORDER DIFFERENTIAL EQUATIONS WITH FLUCTUATING COEFFICIENTS." Eurasian Mathematical Journal 10, no. 2 (2019): 65–74. http://dx.doi.org/10.32523/2077-9879-2019-10-2-65-74.
Full textNasyrova, Maria, and Vladimir Stepanov. "On maximal overdetermined Hardy's inequality of second order on a finite interval." Mathematica Bohemica 124, no. 2 (1999): 293–302. http://dx.doi.org/10.21136/mb.1999.126245.
Full textChacón-Tirado, Mauricio. "Hyperspaces of maximal order arcs." Topology and its Applications 221 (April 2017): 412–24. http://dx.doi.org/10.1016/j.topol.2017.02.024.
Full textBuechler, Steven. "Maximal Chains in the Fundamental Order." Journal of Symbolic Logic 51, no. 2 (June 1986): 323. http://dx.doi.org/10.2307/2274054.
Full textBuechler, Steven. "Maximal chains in the fundamental order." Journal of Symbolic Logic 51, no. 2 (June 1986): 323–26. http://dx.doi.org/10.1017/s0022481200031170.
Full textMaire, Christian, and Frédérique Oggier. "Maximal order codes over number fields." Journal of Pure and Applied Algebra 222, no. 7 (July 2018): 1827–58. http://dx.doi.org/10.1016/j.jpaa.2017.08.009.
Full textPott, Alexander. "Maximal difference matrices of order q." Journal of Combinatorial Designs 1, no. 2 (1993): 171–76. http://dx.doi.org/10.1002/jcd.3180010205.
Full textDissertations / Theses on the topic "Ordre maximal"
Godin, Marjory. "Structure galoisienne d'anneaux entiers." Valenciennes, 2002. https://ged.uphf.fr/nuxeo/site/esupversions/60ddf114-2ffe-40f8-856b-eec83b7256bb.
Full textLet k be a number field, O its ring of integers and Γ the alternating group A₄. Assume that k and Q(j) are linearly disjoint over Q. Let M be a maximal O-order in k[ Γ ] containing O[ Γ ] and C1(M) its classgroup. We denote by R(M) the set of realizable classes, that is, the set of classes c ∈ C1(M) such that there exists a Galois extension N/k with Galois group isomorphic to Γ and the class of M⊗₀Γ equal to c, where O is the ring of integers of N. In this thesis, we determine effectively the elements of R(M) and we prove that R(M) is a subgroup of C1(M). When we try to study R(M), we are confronted with an embedding problem connected with the Steinitz classes, another part of this thesis is the study of Steinitz classes of tetrahedrals extensions and we have study too the case when is the symetric group S₄
Huang, Yi. "Théorie des opérateurs sur les espaces de tentes." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS100/document.
Full textWe give a Calderón-Zygmund type machinery concerning the extrapolation theory for thesingular integral operators on tent spaces. For maximal regularity operators on tent space, wegive some optimal results by exploiting the structure of convolution integral operators and byusing the off-diagonal decay estimates of the underlying semigroup or resolvent family.We apply the previous harmonic and functional analysis techniques to estimate on tentspaces certain evolutionary integral operators arisen from the study of boundary value ellipticproblems and first order non-autonomous systems
Bruche, Clément. "Structure galoisienne relative d'anneaux d'entiers d'extensions non abéliennes." Valenciennes, 2007. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/aa3c8ae9-3fc8-41e3-bfac-dd5f7159a586.
Full textLet k be a number field, Ok its ring of integers and Cl(k) its classgroup. Let G be a finite group, N/k a Galois extension with Galois group isomorphic to G, and ON the ring of integers of N. Let M be a maximal Ok -order in the semi-simple algebra k[G] containing Ok[G], and Cl(M) its classgroup (i. E. The classgroup of locally free M-modules). When N/k is tame (i. E. , at most tamely ramified), extension of scalars allows us to assign to ON the class of M*ON , denoted [M*ON ], in Cl(M). We define the set R(M) of realizable classes to be the set of classes c of Cl(M) such that there exists a Galois extension N/k which is tame, with Galois group isomorphic to G, and for which [M*ON ] = c. It is well known that R(M) is included in Cl◦(M), where Cl◦(M) is the kernel of the morphism from Cl(M) to Cl(k) induced by the augmentation from M to Ok. The results of McCulloh lead one to the following conjecture : R(M) is a subgroup of Cl◦(M). If G is abelian and k is any number field, it follows from the works of McCulloh that this conjecture is true. Let p be a prime number and x a primitive p-th root of unity. In this thesis, assuming x in k, we prove the conjecture when G = V*\rhoC, where V is an Fp -vector space of dimension r ≥ 1, C a cyclic group of order p^r −1, and \rho a faithful representation of C in V ; an example is the symmetric group S3. When we attempt to study this conjecture, we are faced with the embedding problem connected with the Steinitz classes. Another part of this thesis is the study of Steinitz classes of extensions with Galois group isomorphic to V*\rhoC, or to a nonabelian group of order p^3. Keywords : Rings of integers, Galois module structure, Realizable classes, Steinitz classes, Maximal order, Fröhlich’s Hom-description of locally free class groups, Fröhlich-Lagrange resolvent, Embedding problem, Cyclic codes, Primitive polynomials
McGrath, J. D. "Maximal-#rho#-extensions and irreducibility." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235015.
Full textKhalil, Maya. "Classes de Steinitz, codes cycliques de Hamming et classes galoisiennes réalisables d'extensions non abéliennes de degré p³." Thesis, Valenciennes, 2016. http://www.theses.fr/2016VALE0012/document.
Full textJohnston, Michael John. "The physiological response to maximal speed training : influence of session number and order." Thesis, Swansea University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678611.
Full textRigal, Laurent. "Analogues quantiques de l'algebre de weyl et ordres maximaux quantiques." Paris 6, 1996. http://www.theses.fr/1996PA066680.
Full textChaubert, Jérôme. "Minimum euclidien des ordres maximaux dans les algèbres centrales à division /." [S.l.] : [s.n.], 2007. http://library.epfl.ch/theses/?nr=3717.
Full textFontana, Eleonora. "Maximum Principle for Elliptic and Parabolic Equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12061/.
Full textVoisei, Mircea Dan. "First-order necessary optimality conditions for nonlinar optimal control problems." Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1091111473.
Full textBooks on the topic "Ordre maximal"
van, Doel Deborah, and O'Brien Maureen M, eds. Maxims. Kalamazoo, Mich: Cistercian Publications, 2002.
Find full textKamenskaya, Valentina, and Leonid Tomanov. The fractal-chaotic properties of cognitive processes: age. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1053569.
Full text1943-, Gossez J. P., and Bonheure Denis, eds. Nonlinear elliptic partial differential equations: Workshop in celebration of Jean-Pierre Gossez's 65th birthday, September 2-4, 2009, Université libre de Bruxelles, Belgium. Providence, R.I: American Mathematical Society, 2011.
Find full textRatel, Sébastien, and Craig A. Williams. Neuromuscular fatigue. Edited by Neil Armstrong and Willem van Mechelen. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198757672.003.0009.
Full textGerard, McMeel. Part I The General Part, 8 Maxims. Oxford University Press, 2017. http://dx.doi.org/10.1093/law/9780198755166.003.0008.
Full textTonn, Joerg-Christian, and Douglas Kondziolka. Tumours of the cranial nerves. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199651870.003.0010.
Full textLee, Christoph I. Rule Out Subarachnoid Hemorrhage for Headache. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190223700.003.0003.
Full textCaso, Antonio. Existence as Economy and as Charity. Translated by Alexander V. Stehn and Jose G. Rodriguez. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190601294.003.0003.
Full textStruwig, Dillon. Coleridge’s Two-Level Theory of Metaphysical Knowledge and the Order of the Mental Powers in the Logic. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198799511.003.0012.
Full textMahon, Anthony D. Aerobic training. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199232482.003.0039.
Full textBook chapters on the topic "Ordre maximal"
Kawski, Matthias. "High-Order Maximal Principles." In New Trends in Nonlinear Dynamics and Control and their Applications, 313–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_20.
Full textLee, Gyesik. "Binary Trees and (Maximal) Order Types." In Lecture Notes in Computer Science, 465–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73001-9_48.
Full textSimanjuntak, Rinovia, and Mirka Miller. "Maximum Order of Planar Digraphs." In Combinatorial Geometry and Graph Theory, 159–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30540-8_18.
Full textDiana Schmidt. "Well-Partial Orderings and their Maximal Order Types." In Trends in Logic, 351–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30229-0_13.
Full textHafner, David, Christopher Schroers, and Joachim Weickert. "Introducing Maximal Anisotropy into Second Order Coupling Models." In Lecture Notes in Computer Science, 79–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24947-6_7.
Full textOwens, Thomas John. "Maximal order reduction of proper transfer function matrices." In Robust Control of Linear Systems and Nonlinear Control, 159–76. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-4484-4_14.
Full textGilbarg, David, and Neil S. Trudinger. "Maximum and Comparison Principles." In Elliptic Partial Differential Equations of Second Order, 259–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-61798-0_10.
Full textGilbarg, David, and Neil S. Trudinger. "The Classical Maximum Principle." In Elliptic Partial Differential Equations of Second Order, 31–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-61798-0_3.
Full textBreitung, K. "Higher Order Approximations For Maxima Of Random Fields." In IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, 79–88. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0321-0_9.
Full textDesrochers, Maryse. "Self-duality over the maximal order and torsion galois modules." In Orders and their Applications, 105–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074795.
Full textConference papers on the topic "Ordre maximal"
Friberg, Ari T., Tero Setälä, and Philippe Réfrégier. "Maximal Polarization Order of Random Electromagnetic Light Beams." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/laop.2012.lm3b.2.
Full textNataraj, R. V., and S. Selvan. "Efficient Mining of Maximal Patterns using Order Preserving Generators." In 2008 16th International Conference on Advanced Computing and Communications. IEEE, 2008. http://dx.doi.org/10.1109/adcom.2008.4760481.
Full textBataineh, Mohammad, Mohammed Jaradat, and Izdehar Al-Shboul. "Edge-Maximal Graphs Without Theta Graphs of Order Seven: Part II." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs66.
Full textKnuth, Kevin H., Newshaw Bahrenyi, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "The Order-Theoretic Origin of Special Relativity." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573607.
Full textSutcu, Muhammed, and Ali E. Abbas. "First-order dependence trees with cumulative residual entropy." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4906017.
Full textAl, Pembe Ipek, and Zameddin I. Ismailov. "First order maximally dissipative singular differential operators." In THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136124.
Full textKlymash, M. M., V. O. Pelishok, I. V. Demydov, and N. Kryvinska. "Comparative analysis of maximal signal output for adaptive filters of different order." In 2009 Wireless Telecommunications Symposium. IEEE, 2009. http://dx.doi.org/10.1109/wts.2009.5069001.
Full textGzyl, Henryk. "Maxentropic reconstruction by first order splines." In The 19th international workshop on bayesium inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381856.
Full textWang, Yi, Zhuan Wang, and Shan Mi. "An order batching clustering algorithm of fixed maximum order number based on order picking system." In 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS). IEEE, 2017. http://dx.doi.org/10.1109/ieis.2017.8078640.
Full textKaiser, Eurika, Bernd R. Noack, Laurent Cordier, Andreas Spohn, Marc Segond, Markus Abel, Guillaume Daviller, et al. "Cluster-based reduced-order modelling of shear flows." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903725.
Full textReports on the topic "Ordre maximal"
Anderson, T. W., and R. P. Mentz. Iterative Procedures for Exact Maximum Likelihood Estimation in the First-Order Gaussian Moving Average Model. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230812.
Full textBrophy, Kenny, and Alison Sheridan, eds. Neolithic Scotland: ScARF Panel Report. Society of Antiquaries of Scotland, June 2012. http://dx.doi.org/10.9750/scarf.06.2012.196.
Full textStall, Nathan M., Kevin A. Brown, Antonina Maltsev, Aaron Jones, Andrew P. Costa, Vanessa Allen, Adalsteinn D. Brown, et al. COVID-19 and Ontario’s Long-Term Care Homes. Ontario COVID-19 Science Advisory Table, January 2021. http://dx.doi.org/10.47326/ocsat.2021.02.07.1.0.
Full text