To see the other types of publications on this topic, follow the link: Ordre maximal.

Journal articles on the topic 'Ordre maximal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ordre maximal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bapoungué, Lionel. "Factorisation dans un Ordre Non Maximal d'un Corps Quadratique." Expositiones Mathematicae 20, no. 1 (2002): 43–57. http://dx.doi.org/10.1016/s0723-0869(02)80028-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hauer, Daniel, Yuhan He, and Dehui Liu. "Fractional Powers of Monotone Operators in Hilbert Spaces." Advanced Nonlinear Studies 19, no. 4 (November 1, 2019): 717–55. http://dx.doi.org/10.1515/ans-2019-2053.

Full text
Abstract:
AbstractThe aim of this article is to provide a functional analytical framework for defining the fractional powers{A^{s}} for {-1<s<1} of maximal monotone (possibly multivalued and nonlinear) operators A in Hilbert spaces. We investigate the semigroup {\{e^{-A^{s}t}\}_{t\geq 0}} generated by {-A^{s}}, prove comparison principles and interpolations properties of {\{e^{-A^{s}t}\}_{t\geq 0}} in Lebesgue and Orlicz spaces. We give sufficient conditions implying that {A^{s}} has a sub-differential structure. These results extend earlier ones obtained in the case {s=1/2} for maximal monotone operators [H. Brézis, Équations d’évolution du second ordre associées à des opérateurs monotones, Israel J. Math. 12 1972, 51–60], [V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 1972, 295–319], [V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International, Leiden, 1976], [E. I. Poffald and S. Reich, An incomplete Cauchy problem, J. Math. Anal. Appl. 113 1986, 2, 514–543], and the recent advances for linear operators A obtained in [L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 2007, 7–9, 1245–1260], [P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations 35 2010, 11, 2092–2122].
APA, Harvard, Vancouver, ISO, and other styles
3

Merabet, Smail, Abdelkrim Bouzaza, Mohamed Bouhelassa, and Dominique Wolbert. "Modélisation et optimisation de la photodégradation du 4-méthylphénol dans un réacteur à recirculation en présence d’UV/ZnO." Revue des sciences de l'eau 22, no. 4 (October 22, 2009): 565–73. http://dx.doi.org/10.7202/038331ar.

Full text
Abstract:
Résumé L’étude de la photodégradation du 4-méthylphénol a été menée sur un pilote à recirculation. Cette molécule a été prise comme composé modèle pour le traitement des effluents de l’industrie avicole. Ce travail a consisté en l’optimisation et la modélisation de l’élimination du 4-méthylphénol par photocatalyse en présence de ZnO. L’utilisation des plans d’expériences, et en particulier de la méthodologie de surface de réponse (RSM) et un plan central composite (CCD), a permis la détermination de l’influence des effets simultanés et de l’interaction des paramètres opératoires sur le rendement de la photodégradation. Les paramètres étudiés sont la concentration initiale en 4-méthylphénol, la concentration en catalyseur et le débit de recirculation de la solution. Les résultats montrent que l’application de la RSM permet de décrire d’une manière correcte l’influence de ces trois paramètres expérimentaux sur l’efficacité du traitement. Les valeurs optimales des paramètres donnant un rendement maximal (100 %) ont pu être déterminées. Les modèles de second ordre obtenus, pour le rendement de dégradation et pour l’abattement de DCO, ont été validés en utilisant différentes approches statistiques. L’utilisation de la méthode ANOVA a montré que les modèles sont hautement significatifs et en bonne adéquation avec les résultats expérimentaux.
APA, Harvard, Vancouver, ISO, and other styles
4

Ospanov, K. N., Zh B. Yeskabylova, and D. R. Beisenova. "MAXIMAL REGULARITY ESTIMATES FOR HIGHER ORDER DIFFERENTIAL EQUATIONS WITH FLUCTUATING COEFFICIENTS." Eurasian Mathematical Journal 10, no. 2 (2019): 65–74. http://dx.doi.org/10.32523/2077-9879-2019-10-2-65-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nasyrova, Maria, and Vladimir Stepanov. "On maximal overdetermined Hardy's inequality of second order on a finite interval." Mathematica Bohemica 124, no. 2 (1999): 293–302. http://dx.doi.org/10.21136/mb.1999.126245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chacón-Tirado, Mauricio. "Hyperspaces of maximal order arcs." Topology and its Applications 221 (April 2017): 412–24. http://dx.doi.org/10.1016/j.topol.2017.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Buechler, Steven. "Maximal Chains in the Fundamental Order." Journal of Symbolic Logic 51, no. 2 (June 1986): 323. http://dx.doi.org/10.2307/2274054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buechler, Steven. "Maximal chains in the fundamental order." Journal of Symbolic Logic 51, no. 2 (June 1986): 323–26. http://dx.doi.org/10.1017/s0022481200031170.

Full text
Abstract:
AbstractSuppose T is superstable. Let ≤ denote the fundamental order on complete types, [p] the class of the bound of p, and U(—) Lascar's foundation rank (see [LP]). We proveTheorem 1. If q < p and there is no r such that q < r < p, then U(q) + 1 = U(p).Theorem 2. Suppose U(p) < ω and ξ1 < … < ξk is a maximal descending chain in the fundamental order with ξk = [p]. Then k = U(p).That the finiteness of U(p) in Theorem 2 is necessary follows fromTheorem 3. There is an ω-stable theory with a type p ϵ S1(ϕ) such that(1) U(p) = ω + 1, and(2) there is a maximal descending chain of proper extensions of [p] which has order type ω.
APA, Harvard, Vancouver, ISO, and other styles
9

Maire, Christian, and Frédérique Oggier. "Maximal order codes over number fields." Journal of Pure and Applied Algebra 222, no. 7 (July 2018): 1827–58. http://dx.doi.org/10.1016/j.jpaa.2017.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pott, Alexander. "Maximal difference matrices of order q." Journal of Combinatorial Designs 1, no. 2 (1993): 171–76. http://dx.doi.org/10.1002/jcd.3180010205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Milson, R., and L. Wylleman. "Three-dimensional spacetimes of maximal order." Classical and Quantum Gravity 30, no. 9 (April 11, 2013): 095004. http://dx.doi.org/10.1088/0264-9381/30/9/095004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jungnickel, Dieter, and Gerhard Grams. "Maximal difference matrices of order ⩽10." Discrete Mathematics 58, no. 2 (February 1986): 199–203. http://dx.doi.org/10.1016/0012-365x(86)90163-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hamilton, Nicholas, Stoicho D. Stoichev, and Vladimir D. Tonchev. "Maximal arcs and disjoint maximal arcs in projective planes of order 16." Journal of Geometry 67, no. 1-2 (March 2000): 117–26. http://dx.doi.org/10.1007/bf01220304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lan, Heng-you. "Generalized Yosida Approximations Based on RelativelyA-Maximalm-Relaxed Monotonicity Frameworks." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/157190.

Full text
Abstract:
We introduce and study a new notion of relativelyA-maximalm-relaxed monotonicity framework and discuss some properties of a new class of generalized relatively resolvent operator associated with the relativelyA-maximalm-relaxed monotone operator and the new generalized Yosida approximations based on relativelyA-maximalm-relaxed monotonicity framework. Furthermore, we give some remarks to show that the theory of the new generalized relatively resolvent operator and Yosida approximations associated with relativelyA-maximalm-relaxed monotone operators generalizes most of the existing notions on (relatively) maximal monotone mappings in Hilbert as well as Banach space and can be applied to study variational inclusion problems and first-order evolution equations as well as evolution inclusions.
APA, Harvard, Vancouver, ISO, and other styles
15

Milson, Robert, and Francis Valiquette. "Point equivalence of second-order ODEs: Maximal invariant classification order." Journal of Symbolic Computation 67 (March 2015): 16–41. http://dx.doi.org/10.1016/j.jsc.2014.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ford, David, and Pascal Letard. "Implementing the Round Four maximal order algorithm." Journal de Théorie des Nombres de Bordeaux 6, no. 1 (1994): 39–80. http://dx.doi.org/10.5802/jtnb.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rao, A. Prabhakar. "Mathematical instantons with maximal order jumping lines." Pacific Journal of Mathematics 178, no. 2 (April 1, 1997): 331–44. http://dx.doi.org/10.2140/pjm.1997.178.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

KING, DEBORAH M. "Maximal entropy of permutations of even order." Ergodic Theory and Dynamical Systems 17, no. 6 (December 1997): 1409–17. http://dx.doi.org/10.1017/s0143385797086367.

Full text
Abstract:
A finite invariant set of a continuous map of an interval induces a permutation called its type. If this permutation is a cycle, it is called its orbit type. It has been shown by Geller and Tolosa that Misiurewicz–Nitecki orbit types of period $n$ congruent to $1$ (mod 4) and their generalizations to orbit types of period $n$ congruent to $3$ (mod 4) have maximal entropy among all orbit types of odd period $n$, and indeed among all permutations of period $n$. We further generalize this family to permutations of even period $n$ and show that they again attain maximal entropy amongst $n$-permutations.
APA, Harvard, Vancouver, ISO, and other styles
19

Burns, J. M., and B. Goldsmith. "Maximal order Abelian Subgroups of Symmetric Groups." Bulletin of the London Mathematical Society 21, no. 1 (January 1989): 70–72. http://dx.doi.org/10.1112/blms/21.1.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

LI, Fan, and Mei LU. "Total domination critical graphs with maximal order." SCIENTIA SINICA Mathematica 41, no. 12 (December 1, 2011): 1089–94. http://dx.doi.org/10.1360/012010-482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Blu, T., P. Thcvenaz, and M. Unser. "MOMS: maximal-order interpolation of minimal support." IEEE Transactions on Image Processing 10, no. 7 (July 2001): 1069–80. http://dx.doi.org/10.1109/83.931101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Elsholtz, Christian, Marc Technau, and Niclas Technau. "THE MAXIMAL ORDER OF ITERATED MULTIPLICATIVE FUNCTIONS." Mathematika 65, no. 4 (January 2019): 990–1009. http://dx.doi.org/10.1112/s0025579319000214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Aràndiga, F., M. C. Martí, and P. Mulet. "Weights Design For Maximal Order WENO Schemes." Journal of Scientific Computing 60, no. 3 (December 12, 2013): 641–59. http://dx.doi.org/10.1007/s10915-013-9810-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Orrick, William P. "The maximal {-1,1}-determinant of order 15." Metrika 62, no. 2-3 (November 2005): 195–219. http://dx.doi.org/10.1007/s00184-005-0410-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rychlik, Tomasz. "Maximal dispersion of order statistics in dependent samples." Statistics 49, no. 2 (November 24, 2014): 386–95. http://dx.doi.org/10.1080/02331888.2014.976646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lai, Xudong. "Maximal Operator for the Higher Order Calderón Commutator." Canadian Journal of Mathematics 72, no. 5 (September 3, 2019): 1386–422. http://dx.doi.org/10.4153/s0008414x19000476.

Full text
Abstract:
AbstractIn this paper, we investigate the weighted multilinear boundedness properties of the maximal higher order Calderón commutator for the dimensions larger than two. We establish all weighted multilinear estimates on the product of the $L^{p}(\mathbb{R}^{d},w)$ space, including some peculiar endpoint estimates of the higher dimensional Calderón commutator.
APA, Harvard, Vancouver, ISO, and other styles
27

Pavlović, Ljiljana. "Maximal value of the zeroth-order Randić index." Discrete Applied Mathematics 127, no. 3 (May 2003): 615–26. http://dx.doi.org/10.1016/s0166-218x(02)00392-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Qiu, Jiahao, and Jianjie Zhao. "Maximal factors of order d of dynamical cubespaces." Discrete & Continuous Dynamical Systems - A 41, no. 2 (2021): 601–20. http://dx.doi.org/10.3934/dcds.2020278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Foniok, Jan, Jaroslav Nešetřil, and Claude Tardif. "On Finite Maximal Antichains in the Homomorphism Order." Electronic Notes in Discrete Mathematics 29 (August 2007): 389–96. http://dx.doi.org/10.1016/j.endm.2007.07.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lenagan, T. H., and L. Rigal. "THE MAXIMAL ORDER PROPERTY FOR QUANTUM DETERMINANTAL RINGS." Proceedings of the Edinburgh Mathematical Society 46, no. 3 (October 2003): 513–29. http://dx.doi.org/10.1017/s0013091502000809.

Full text
Abstract:
AbstractWe develop a method of reducing the size of quantum minors in the algebra of quantum matrices $\mathcal{O}_q(M_n)$. We use the method to show that the quantum determinantal factor rings of $\mathcal{O}_q(M_n)c$ are maximal orders, for $q$ an element of $\mathbb{C}$ transcendental over $\mathbb{Q}$.AMS 2000 Mathematics subject classification: Primary 16P40; 16W35; 20G42
APA, Harvard, Vancouver, ISO, and other styles
31

Aivazidis, Stefanos, and Robert Guralnick. "A note on abelian subgroups of maximal order." Rendiconti Lincei - Matematica e Applicazioni 31, no. 2 (June 30, 2020): 319–34. http://dx.doi.org/10.4171/rlm/893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nicaise, Johannes, and Chenyang Xu. "Poles of maximal order of motivic zeta functions." Duke Mathematical Journal 165, no. 2 (February 2016): 217–43. http://dx.doi.org/10.1215/00127094-3165648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vainio, R. "A maximal chain approach to topology and order." International Journal of Mathematics and Mathematical Sciences 11, no. 3 (1988): 465–72. http://dx.doi.org/10.1155/s0161171288000547.

Full text
Abstract:
On ordered sets (posets, lattices) we regard topologies (or, more general convergence structures) which on any maximal chain of the ordered set induce its own interval topology. This construction generalizes several well-known intrinsic structures, and still contains enough to produce interesting results on for instance compactness and connectedness. The “maximal chain compatibility” between topology (convergence structure) and order is preserved by formation of arbitrary products, at least in case the involved order structures are conditionally complete lattices.
APA, Harvard, Vancouver, ISO, and other styles
34

Poblete, Verónica. "Maximal regularity of second-order equations with delay." Journal of Differential Equations 246, no. 1 (January 2009): 261–76. http://dx.doi.org/10.1016/j.jde.2008.03.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Longobardi, P., M. Maj, P. Shumyatsky, and G. Traustason. "Groups with boundedly many commutators of maximal order." Journal of Algebra 567 (February 2021): 269–83. http://dx.doi.org/10.1016/j.jalgebra.2020.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jiang, Qinhui, and Changguo Shao. "Finite groups with 24 elements of maximal order." Frontiers of Mathematics in China 5, no. 4 (August 31, 2010): 665–78. http://dx.doi.org/10.1007/s11464-010-0074-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Höllig, K., and J. Koch. "Geometric Hermite interpolation with maximal order and smoothness." Computer Aided Geometric Design 13, no. 8 (November 1996): 681–95. http://dx.doi.org/10.1016/0167-8396(96)00004-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Costa, Antonio F., and Milagros Izquierdo. "Maximal order of automorphisms of trigonal Riemann surfaces." Journal of Algebra 323, no. 1 (January 2010): 27–31. http://dx.doi.org/10.1016/j.jalgebra.2009.09.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Guiyun, and Wujie Shi. "Finite Groups with 30 Elements of Maximal Order." Applied Categorical Structures 16, no. 1-2 (March 29, 2007): 239–47. http://dx.doi.org/10.1007/s10485-007-9067-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chill, Ralph, and Sachi Srivastava. "Lp-maximal regularity for second order Cauchy problems." Mathematische Zeitschrift 251, no. 4 (October 4, 2005): 751–81. http://dx.doi.org/10.1007/s00209-005-0815-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kauta, John S. "Integral Semihereditary Orders inside a Bézout Maximal Order." Journal of Algebra 189, no. 2 (March 1997): 253–72. http://dx.doi.org/10.1006/jabr.1996.6843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Han, Zhangjia, and Chao Yang. "Finite Groups Having Exactly 34 Elements of Maximal Order." JOURNAL OF ADVANCES IN MATHEMATICS 11, no. 5 (October 2, 2015): 5195–97. http://dx.doi.org/10.24297/jam.v11i5.1246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Batty, Charles J. K., Ralph Chill, and Sachi Srivastava. "Maximal regularity for second order non-autonomous Cauchy problems." Studia Mathematica 189, no. 3 (2008): 205–23. http://dx.doi.org/10.4064/sm189-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Platoni, Irene, Massimo Giulietti, and Stefania Fanali. "On maximal curves over finite fields of small order." Advances in Mathematics of Communications 6, no. 1 (January 2012): 107–20. http://dx.doi.org/10.3934/amc.2012.6.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baker, R. D., G. L. Ebert, J. Hemmeter, and A. Woldar. "Maximal cliques in the Paley graph of square order." Journal of Statistical Planning and Inference 56, no. 1 (December 1996): 33–38. http://dx.doi.org/10.1016/s0378-3758(96)00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KING, DEBORAH M. "Non-uniqueness of even order permutations with maximal entropy." Ergodic Theory and Dynamical Systems 20, no. 3 (June 2000): 801–7. http://dx.doi.org/10.1017/s0143385700000420.

Full text
Abstract:
In this paper we prove that permutations of even length with maximal entropy are not unique. There are in fact two distinct permutations, $\theta_n$ and $\widetilde{\theta_n}$, with maximal entropy, both of which are self-dual and $\widetilde{\theta_n}$ is the reverse of $\theta_n$.
APA, Harvard, Vancouver, ISO, and other styles
47

Huang, Yongzhong, and Yan Feng. "Lp‐maximal regularity for incomplete second‐order Cauchy problems." Kybernetes 39, no. 6 (June 15, 2010): 954–60. http://dx.doi.org/10.1108/03684921011046726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

SERTBAŞ, Meltem, and Fatih YILMAZ. "Degenerate maximal hyponormal differential operators for the first order." TURKISH JOURNAL OF MATHEMATICS 43, no. 1 (January 18, 2019): 126–31. http://dx.doi.org/10.3906/mat-1805-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Song, Ren, and Zhangjia Han. "Finite groups having exactly 22 elements of maximal order." International Journal of Algebra 8 (2014): 353–55. http://dx.doi.org/10.12988/ija.2014.4327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Han, Zhangjia, and Ren Song. "Finite groups having exactly 28 elements of maximal order." International Journal of Algebra 8 (2014): 563–68. http://dx.doi.org/10.12988/ija.2014.4668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography