To see the other types of publications on this topic, follow the link: Ore deposits Intrusions (Geology) Geology Geology.

Dissertations / Theses on the topic 'Ore deposits Intrusions (Geology) Geology Geology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 44 dissertations / theses for your research on the topic 'Ore deposits Intrusions (Geology) Geology Geology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Andrew, Anne. "Lead and strontium isotope study of five volcanic and intrusive rock suites and related mineral deposits, Vancouver Island, British Columbia." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26953.

Full text
Abstract:
Lead isotope compositions have been obtained from five major volcanic and intrusive rock suites and several ore deposits on Vancouver Island. Lead, uranium and thorium concentrations and strontium isotope ratios have been obtained for a subset of these samples. The rock suites examined are the Paleozoic Sicker Group, Triassic Karmutsen Formation, Jurassic Island Intrusions and Bonanza Group volcanic rocks, and the Eocene Catface intrusions. Isotope geochemistry of the Sicker Group is consistent with the interpretation that it formed as an island arc. Relatively high 207pb/204pb ratios indicate sediment involvement in the subduction process, which suggests that the Sicker Group formed close to a continent. Buttle Lake ore deposits display decreasingly radiogenic lead isotope ratios with time, suggesting that the associated magmas become increasingly primitive. This supports the hypothesis that these deposits formed during the establishment of rifting in a back-arc environment. Karmutsen Formation flood basalts display isotopic mixing between an ocean island-type mantle source and average crust. Isotopic evidence is used to support a Northern Hemisphere origin for these basalts. Mixing is apparent in the lead and strontium isotope signatures of the Island Intrusions and Bonanza Group volcanic rocks, between depleted mantle and crustal (possibly trench sediments) components. This is consistent with formation of these rocks in an island arc environment. Eocene Catface intrusions have relatively high 207pb/204pb indicating that crustal material was involved in their formation. There are two groups of plutons corresponding to an east belt and west belt classification. Galena from the Zeballos mining camp related to the Eocene Zeballos pluton indicates that the mineralization was derived from the pluton. Galena lead isotope data from Vancouver Island may be interpreted in a general way by comparison with data from deposits elsewhere of known age and origin. No single growth curve model can be applied. Lead isotope characteristics of Vancouver Island are clearly different from those of the North American craton, reflecting the oceanic affinities of this terrane. A new technique has been developed to compare 207pb/204pb ratios between samples with differing 206pb/204pb ratios. The procedure projects 207pb/204pb ratios along suitable isochrons until they intersect a reference value of 206pb/204pb. This technique can be used for interpreting lead isotope data from old terranes, in which lead and uranium may have undergone loss or gain, and if lead and uranium abundances have not been measured.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
2

Apostolopoulos, D. G. "The manganese oxide ore deposits of the Nevrokopi district, Macedonia, Greece." Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodman, Sally. "The relationship between light hydrocarbons, carbonate diagenesis, and base metal ore deposits." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thomson, Brian. "Geology of silver mineralisation at Candelaria, Nevada, USA." Thesis, University of Aberdeen, 1990. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238078.

Full text
Abstract:
Candelaria, situated in central western Nevada, along the western margin of the Great Basin, is a large and predominantly low grade, epigenetic disseminated- and vein-type Ag deposit, of Early Cretaceous age. It represents the eroded, deeply oxidised and fault-disrupted root of extensive stratiform quartz-dolomite stockworked and sericite-dolomite-altered zones of medium temperature pyrite-dominated Ag(-Pb-Zn-Sb-As±Cu±Au) sulphide-sulphosalt mineralisation, which is hosted by receptive sedimentary and igneous rocks within structurally favourable zones in a district-scale tectonic pinchout, and which is genetically associated with Cordilleran granodiorite porphyry hypabyssal magmatism (diking), of high K calc-alkaline affinity. The mineralisation occurs along and directly beneath the Pickhandle allochthon, a serpentinite-sheathed volcanic-sedimentary tectonic méange which forms a local 'sole' plate to the regionally extensive Golconda allochthon, which was emplaced onto the edge of continental North America during the Early Triassic Sonoma orogeny. Mineralisation occurred where an irregularity in the Pickhandle thrust plane, caused by thickening of the méange, effected locally deeper truncation of the parautochthonous foreland sequence in its footwall - chiefly marine sediments of the Lower Triassic Candelaria Formation - against the deformed cherts of the Ordovician basement (Palmetto complex), to form a structural trap. Within this trap, mineralisation is hosted mainly by carbonaceous, carbonate- and phosphate-rich (and trace metal-rich) black shales at the base of the Candelaria Formation and by dolomite-quartz-altered serpentinites at the base of the Pickhandle allochthon. Stable isotope data (O, H, S) point to a predominantly magmatic source for the hydrothermal fluids and ore sulphur, a source most likely to be the parent pluton to the granodiorite porphyry dikes. More ore metals were also of igneous origin (mass balance calculations rule out Candelaria member 1 as the chief metal source).
APA, Harvard, Vancouver, ISO, and other styles
5

Alldrick, Dani James. "Geology and ore deposits of the Stewart Mining Camp, British Columbia." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30795.

Full text
Abstract:
The Stewart mining camp in northwestern British Columbia is abundantly mineralized with widely distributed, texturally and mineralogically varied, precious and base metal deposits. This report documents the geologic setting of the mining camp and the geologic features of the major mineral deposit types. The Stewart camp is underlain by a 5-kilometre-thick Upper Triassic to Lower Jurassic (Norian? to Toarcian) island arc complex of calc-alkaline basalts, andesites and dacites with interbedded sedimentary rocks. Coeval (211-189 Ma) hornblende granodiorite plutons intruded the arc at two to five kilometres depth. Rocks were deformed during mid-Cretaceous (110 ± 5 Ma) tectonism that produced north-northwest-trending folds, penetrative fabric and lower greenschist facies regional metamorphism (290°±20°C, 4.5 ±1.5 kb). Mid-Eocene (54.8-44.8 Ma) biotite granodiorite of the Coast Plutonic Complex intruded the deformed Mesozoic arc complex. Two mineralizing events formed over 200 mineral occurrences in the district. These two metallogenic epochs were brief (< 5 million years), regional-scale phenomena characterized by different base and precious metal suites. The Early Jurassic ore-forming episode produced Au and Au-Ag-Zn-Pb-Cu deposits. The mid-Eocene episode produced Ag-Pb-Zn ± W ± Mo deposits. Early Jurassic deposits have a characteristic lead isotope signature (²⁰⁶Pb/²⁰⁴Pb = 18.816; ²⁰⁷Pb/²⁰⁴Pb = 15.617) and include gold-pyrrhotite veins, gold-silver-base metal veins, and stratabound pyritic dacites. All Early Jurassic mineral occurrences are late- to post-intrusive deposits that were emplaced in andesitic to dacitic host rocks at the close of volcanic activity, about 190-185 million years ago. Transitional gold-pyrrhotite veins (Scottie Gold mine) formed in en echelon tension gashes developed in country rock around Early Jurassic plutons during late magma movement. Epithermal gold-silver-base metal veins and breccia veins (Big Missouri and Silbak Premier mines) were deposited along shallower sub-volcanic faults and in hydrothermal breccia zones formed along dyke contacts. Stratabound pyritic dacite tuffs (Mount Dilworth and Iron Cap prospects) formed where venting fumarolic fluids and hotspring pools deposited abundant fine pyrite in local areas on a cooling ignimbrite sheet. Eocene deposits also have a characteristic lead isotope signature (²⁰⁶Pb/²⁰⁴Pb = 19.147; ²⁰⁷Pb/²⁰⁴Pd = 15.627) and include silver-rich galena-sphalerite veins, gold-silver skarns and, beyond the study area, porphyry molybdenum deposits. These mineral occurrences are related to Middle Eocene plutons of the Coast Plutonic Complex. All are late- to post-intrusive deposits emplaced about 50-45 million years ago. Mesothermal silver-lead-zinc veins (Prosperity/Porter Idaho and Riverside mines) were deposited in brittle zones along major fault structures. Skarns (Oral M and Red Reef prospects) developed where plutons cut limestone or limy siltstone units within minor turbidite sequences. Major porphyry molybdenum deposits (Kitsault mine and Ajax) developed where mid-Eocene stocks were emplaced in thick turbidite sequences. Diagnostic features such as lead isotope ratios, stratigraphic and plutonic associations, alteration assemblages, sulphide mineralogy and textures, and precious metal ratios allow discrimination amoung these different deposit types. Using these criteria, the most prospective areas for each deposit type have been targetted for exploration.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
6

Gapara, Cornwell Sine. "A review of the deposition of iron-formation and genesis of the related iron ore deposits as a guide to exploration for Precambrian iron ore deposits in southern Africa." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005610.

Full text
Abstract:
Iron-formations are ferruginous sedimentary rocks which have their source from fumarolic activity associated with submarine volcanism, with deposition of iron as oxides, hydroxides, and hydrous oxide-silicate minerals in shallow and/or deep marine sedimentary systems. The Precambrian ironformations of southern Africa have a wide age range, but are more prominently developed before 1.SGa. These iron formations occur in greenstone belts of the Kaapvaal and Zimbabwean cratons, in the Limpopo mobile belt, in cratonic basins and in the Damara mobile belt. The Archaean-Proterozoic sedimentary basins and greenstone belts host iron ore deposits in iron-formation. Iron formations have a lengthy geological history. Most were subjected to intense, and on occasions repeated, tectonic and metamorphic episodes which also included metasomatic processes at times to produce supergene/hypogene high grade iron ores. Iron-formations may be enriched by diagenetic, and metamorphic processes to produce concentrating-grade ironformations. Uplift, weathering and denudation, have influenced the mineral association and composition of the ores, within which magnetite, haematite and goethite constitute the major ore minerals. The iron resources of the southern Africa region include the Sishen deposits, hosting to about 1200 Mt of high grade direct shipping ore, at >63% Fe. Deposits of Zimbabwe have more than 33 000 Mt of beneficiable iron-formation. The evaluation of an iron ore prospect involves many factors which must be individually assessed in order to arrive at an estimate of the probable profitability of the deposit. Many of these are geological and are inherent in the deposit itself. Other factors are inherent aspects of the environment in which the ore is formed. Although the geological character of the ore does not change, technological advances in the processing techniques may have a great effect on the cost of putting the ore into marketable form. Geochemical, geophysical and remote sensing methods would be used for regional exploration. Chip sampling and drilling are useful for detailed exploration. Purely geological exploration techniques are applicable on a prospect scale in the exploration of iron ore deposits. Regional exploration targeting should choose late Archaean greenstone belts containing oxide facies iron-formation or Early Proterozoic basins located at craton margins as they are both known to host high-grade haematite orebodies formed by supergene/hypogene enrichment. Most types of iron ore deposits in southern Africa are described and classified. An attempt is made to emphasize the major controls on mineralisation, in the hope that these may be applicable to exploration both in the southern African region and within analogous settings around the world.
APA, Harvard, Vancouver, ISO, and other styles
7

Unger, Derick Lee Saunders James A. Hames W. "Geochronology and geochemistry of Mid-Miocene Bonanza low-sulfidation epithermal ores of the northern Great Basin, USA." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Geology_and_Geography/Thesis/Unger_Derick_6.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Way, Bryan C. "Geology and Geochemistry of Sedimentary Ferromanganese Ore Deposits, Woodstock, New Brunswick, Canada." Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44600.

Full text
Abstract:
The Early-Silurian Woodstock Fe-Mn Deposits are a series of six, northeasttrending, low grade manganiferous-iron deposits in western New Brunswick that collectively represent the largest Mn resource in North America (194,000,000 tonnes; 13% Fe and 9% Mn). Recent expansion of Route 95 has allowed a more detailed local stratigraphy, mineralogy, and geochemistry of the Fe-Mn deposits within the context of the regional stratigraphy to ascertain the genesis of these deposits. Geological mapping during the field seasons of 2008 and 2009 has revealed six Lithofacies Associations (O, I, II, III, IV, V) within the area, that, generally, are lying conformably on top of each other. However complications due to folding and interbedding have resulting in juxtaposition of the lithofacies associations so they are not always in stratigraphic order. These lithofacies associations are composed of a turbidite-rich section of blue grey calcareous sandstone (O) overlain by black pyritic mudstone (I), associated mineralized and nonmineralized green (II) and red siltstone (III), and laminated to massive grey green calcareous sandstone (IV and V). Na/Mg ratios, chondrite-normalized REE patterns, and mineralogical evidence of rapid changes in ocean redox conditions suggest the Fe-Mn mineralized lithofacies were formed in the offshore zone of a continental shelf on a stable cratonic margin. Al-Fe-Mn ternary and SiO2/Al2O3 binary plots developed from archived drill core data indicate the Fe-Mn mineralization was initially derived from hydrogenous-detrital sources without any indication of a hydrothermal input as a source of Fe and Mn.
APA, Harvard, Vancouver, ISO, and other styles
9

Daltry, V. D. C. "A structural, geochemical and mineralogical appraisal of the stratabound ore deposits in western County Cork, Ireland." Thesis, Cardiff University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strauss, Toby Anthony Lavery. "The geology of the Proterozoic Haveri Au-Cu deposit, Southern Finland." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1015978.

Full text
Abstract:
The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
APA, Harvard, Vancouver, ISO, and other styles
11

Schuh, Wolfram Dieter, and Wolfram Dieter Schuh. "Geology, geochemistry, and ore deposits of the Bau gold mining district, Sarawak, Malaysia." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/187561.

Full text
Abstract:
District-scale zoning of ore deposits and structural-tectonic setting of Bau was investigated. Regional tectonic studies, structural analysis, and field mapping complemented by aeromagnetic interpretation were integrated to a structural model of Bau. Ores were studied with optical and electron microscopy, followed by major and trace element, fluid inclusion, and lead and sulfur isotope analyses. In the Late Triassic, Bau was in an island arc - back-arc basin environment Following Early Jurassic deformation and uplift, an active margin developed. Subduction of the West Pacific oceanic plate under the NW Kalimantan block began. Erosion of the Triassic Serian Volcanics produced extensive turbidite flows of the Pedawan Formation since the Latest Jurassic. Coeval development of rudist patch reefs on an unstable shelf edge of the overriding plate lasted until Cenomanian. Accretion of the turbidites ended in the Latest Cretaceous. Early Tertiary molasse deposition ended with a Mid-Eocene event. A 200-km-Iong, crustal-scale complex fault system involving dextral strike-slip and wrench faulting, termed the Bau Trend, developed during Mid-Miocene post-subduction regional extension. The principal mineralization event at Bau took place at 12-10 m.a., when I-type, calc-alkaline, reduced granodiorites intruded along the Bau Trend and its intersection with seven parallel, ENE fracture zones, providing channel ways to distribute hydrothermal fluids laterally away from the Bau Trend. Deformation preceding mineralization produced high structural permeability of the host rocks. Central Bau is underlain by an ENE trending, 5x12 km broad plutonic body at depth, inferred from aeromagnetic data. Bau displays district-scale zoning, from proximal porphyry-copper and skarn deposits, via intennediate Cordilleran-Vein base metal mineralization, sediment-hosted precious metal deposits, to distal disseminated Au-As and Ba-Hg-TI deposits. The deposits are hosted in, from proximal to distal, porphyritic granodiorites, limestones, and turbiditic shales. Gradual changes in geochemical, mineralogical, and isotopic compositions across the district indicate consanguinity between them. Epithermal gold mineralization at Bau is most similar to disseminated, sediment-hosted gold deposits of Nevada, except for higher grades, visible occurrence of gold, both base and precious metal signatures, purely structural controls, less radiogenic lead, and magmatic sulfur isotope signatures.
APA, Harvard, Vancouver, ISO, and other styles
12

Warlo, Mathis. "Improving trace metal characterisation of ore deposits – a crucial step towards sustainable mining." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73865.

Full text
Abstract:
Sustainable mining, including the utilisation of an ore body to its full potential, is becoming increasingly important for human society as the demand for metals increases. In order to maximise the recovery of useful metals, detailed characterisation of the ore prior to processing is vital. Characterisation should include major and minor ore minerals, gangue minerals, and also trace metals. Trace metals despite their low abundance are often particularly important, either due to their high economic value and criticality for society, or their negative impact on the quality of the main commodity recovered and/or the environment. To properly characterise trace metals in an ore deposit the use of micro-analytical techniques is necessary. Nowadays, a plethora of techniques exist, each with their own strengths and weaknesses. In the mining industry, automated scanning electron microscopy systems are widely used. These systems allow for rapid mineralogical characterisation and quantification of a sample and are commonly used to quantify the mineralogy of the ore feed and subsequent products. Operators of these systems benefit from prior knowledge of the mineralogy of a sample/deposit to fine-tune their processing software to deliver data of highest quality. In this study, a method to improve trace metal characterisation in ore deposits with automated scanning electron microscopy systems is presented. It is implemented as a case study on the Liikavaara Cu-(W-Au) deposit in northern Sweden. The deposit is enriched in several trace metals including Au, Ag, Bi and Sn, and is planned for production in 2023. The mine will produce Cu as the main product and Au and Ag as by-products, and the processing of the ore will be performed in the nearby Aitik plant. For this study, a detailed geological and mineralogical investigation of the deposit was performed prior to analysis with the automated scanning electron microscopy system. A good understanding of the mineralogy is necessary to be able to select a representative sample for the subsequent automated analysis and to guarantee optimal data quality produced by the automated system, and to judge the performance of the automated system, to improve the method of analysis. Manuscript 1 deals with the geological description and genetic aspects of the Liikavaara ore deposit. Results indicate that Liikavaara is an intrusion-related vein-style deposit. Mineralisation is hosted by quartz-tourmaline and calcite veins in a metadiabase that is partly metamorphosed to biotite schist. A 1.87 Ga granodiorite intrudes the footwall. Aplite dikes, genetically related to the intrusion, crosscut the metadiabase host rock. Mineralised veins are concentrated in and around these dikes. Manuscript 2 deals with method development of automated mineralogical analysis. A sample from a mineralised quartz-tourmaline vein at Liikavaara was analysed in great detail with the QEMSCAN® system. Apart from ore minerals in major and minor abundance the sample also contains ore minerals in trace quantities, e.g. Au and Ag minerals. The sample was analysed using two different analytical settings, at two different laboratories, one typical of a production-focused industrial approach and one quality-focused scientific approach. A first analysis using the industrial approach was unable to detect any Au and Ag minerals in the sample. By modification of the QEMSCAN® mineral reference library, through iterative use of the data from both the industrial- and the scientific approach, detection and quantification of Au and Ag minerals was successful. This method can be implemented as an add-on for routine industrial analysis by automated scanning electron microscopy systems to gain information on trace metal occurrence and distribution. This information can then be used for targeted sample selection for further in-depth analysis of the trace metal content and occurrence in the deposit.
APA, Harvard, Vancouver, ISO, and other styles
13

Robison, Lori Carol 1955. "Geology and geochemistry of Proterozoic volcanic rocks bearing massive sulfide ore deposits, Bagdad, Arizona." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/558078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Müller, Stefan G. "The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia /." Connect to this title, 2005. http://theses.library.uwa.edu.au/adt-WU2006.0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Osterholt, Volker. "Simulation of ore deposit geology and an application at the Yandicoogina iron ore deposit, Western Australia / y Volker Osterholt." [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19175.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shellnutt, John Gregory. "A-type granites of the Permian Emeishan large igneous province (SW China): implications for the formation of thegiant magmatic oxide deposits." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39634498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Misiewicz, Julian Edward. "The geology and metallogeny of the Otavi mountain land, Damara orogen, SWA/Namibia, with particular reference to the Berg Aukas Zn-Pb-V deposit a model of ore genesis." Thesis, Rhodes University, 1988. http://hdl.handle.net/10962/d1005571.

Full text
Abstract:
The Olavi Mountain Land is a 10 000 km2 mineral province located at the eastern extremity of the exposed Northern Platform of the Damara Pan African orogenic belt. The Olavi Mountain Land is tbe most important mineral province on the Northern Platform. Exploitation of tbe Cu-Pb-Zn-V province has been on-going since the possession of the territory by the German colonial authority in 1890. Production has been mostly from four mines which in order of importance are Tsumeb, Kombat, Berg Aukas and Abeoab. A second mineral province on the Northern Platform located in the west is centred on Sesfontein where as yet only insignificant mineralization has been noted. Besides these localities, the Northern Platform is conspicuously devoid of notable mineralization. The aim of this thesis has been to document tbe Berg Aukas deposit, an important end-member type of mineralization in the Otavi Mountain Land. The basic premise bas been to show tbat the derivation and localization of the mineralization is a consequence of two broad controls which can be simply summarised as features of the basement and of the carbonate sequences. The geodynamic evolution of the Damara Belt commenced with intra-continental rifting approximately 900 Ma ago. Rift grabens trending north-east were filled by the Nosib Group which comprises mostly clastic lithologies but also some volcanics. The earliest and largest rift is referred to as the Northern Rift. Separation of the Congo, Kalahari, and proto-South American cratons resulted in rifting and rapid downwarping so that an encroaching sea and an Olavi Group carbonate shelf developed along the northern margin of the Northern Rift. Significantly, the carbonates only covered the Northern Rift in the area of the Otavi Mountain Land where a basinal dome, referred to as the Grootfontein Basement High, marked the basin edge. In the west, the carbonates covered the less important Sesfonfein Rift, and it is only in these two areas where Nosib sequences underlie the carbonate platform. Carbonate sedimentation was interrupted by a major period of crustal readjustment and the deposition of an extensive mixtite throughout the geosynclinal Swakop Trough and Northern Platform. This is referred to as the Chuos Formation and subdivides the Olavi Group into a lower Abenab and an upper Tsumeb Subgroup. Reversal of spreading led to plate collision and subduction of tbe Kalahari craton beneath the Congo craton. It was accompanied by orogenesis which resulted in F1 folding of the Northern Platform into a series of north-easterly trending intermontane basins into which a molasse sequence known as the Mulden Group was unconformably deposited. Following this major north-south deformation mild east-west compression initiated F2 folding and the formation of doubly plunging synclines. The Berg Aukas Syncline represents a primary depositional basin which was subsequently folded. The original basin was formed by late Nosib rifting wben spreading caused the Swakop geosynclinal Trough to form. Carbonates of the basal Berg Aukas Formation were deposited in a lagoonal setting typified by reef and fore-reef facies witb peri-platform conditions. Rapid subsidence caused these sediments to be overlain by deep water carbonates of the Gauss Formation. Two styles of mineralization known as the Tsumeb-type and Berg Aukas-type are stratigraphically, isotopically, and mineralogically distinct. The Tsumeb-type is a cupriferous variety of discordant bodies confined to the upper sequences beneath the Mulden unconformity. The Berg Aukas-type is a Zn-Pb variety confined to tbe basal unconformity. The Berg Aukas deposit comprises three ore bodies known as the Northern Ore Horizon, the Central Ore Body, and the Hanging Wall Ore Body. Sphalerite and galena constitute the bypogene ore. Willemite, smithsonite, cerussite, and descloizite are important supergene ores. A review of genetic models concludes that a magmatic origin initially proposed for tbe Tsumeb deposit is entirely rejected and a basin dewatering model in line with Mississippi Valley-type deposits is proposed. The syntectonic nature of mineralization at Berg Aukas and elsewhere in the Otavi Mountain Land indicates that orogenesis encouraged dewatering and leaching of metals from a broad mineralizing front along the margin of the Swakop Trough. These were transported by acidic saline brines which migrated along the clastic aquifers and structural conduits provided by the Northern Rift. Fluid inclusion studies indicate that the hydrothermal fluids at Berg Aukas were very saline (23% TDS) and were transported at temperatures ranging between 92° to 210°C. Hydrothermal fluids which mineralized Berg AukaS-type deposits migrated along the basal unconformity towards the basement high and were responsible for hydrothermally altering the basement granites and gabbros and the Nosib clastic rocks. Tsumeb-type deposits resulted by migration of fluids through the carbonate pile and along north-easterly trending basement geofractures. As a consequence of variation in transport, the Berg Aukas-type and Tsumeb-type fluids leached different sources and therefore derived mineralogically and isotopically seperable characteristics. The localization of the Berg Aukas ores was controlled by the carbonate stratigraphy and structure. Hydrothermal karsting and ore deposition took place on the contact between Massive Grey and Light Grey Dolostones which represents a permeability contrast. The movement of the hydrothermal fluids was controlled by north-south trending vertical fractures caused by F2 folding which resulted in a peric1inal structure. Hydrothermal karsting was accompanied by ca1citic, dolomitic and silicic alteration. The heated acidic fluids initiated solution collapse and a variety of breccia types. Supergene processes resulted in oxidation and upgrading of the ore. Vanadium derived indirectly from gabbros in the basement complex were transported as calcium metavanadate complexes and deposited on contact with the oxidizing base metal sulphides.
APA, Harvard, Vancouver, ISO, and other styles
18

Muller, Stefan G. "The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia." University of Western Australia. School of Earth and Geographical Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0043.

Full text
Abstract:
[Truncated abstract] Banded iron formations of the ~27702405 Ma Hamersley Province of Western Australia were locally upgraded to high-grade hematite ore during the Early Palaeoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between Lower and Upper Wyloo Groups of the Ashburton Province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small spot PbPb dating of in situ baddeleyite by SHRIMP (sensitive highresolution ion-microprobe) has resolved the ages of two key suites of mafic intrusions constraining for the first time the tectonic evolution of the Ashburton Province and the age and setting of iron-ore formation. Mafic sills dated at 2208 ± 10 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dyke swarm that intrudes the Lower Wyloo Group and has close genetic relationship to iron ore is 2008 ± 16 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period <2210 to >2030 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ~2010 Ma dykes present a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ~21002000 Ma period of continental extension similarly recorded by Palaeoproterozoic terrains worldwide well after the initial oxidation of the atmosphere at ~2320 Ma. The Lower Wyloo Group contains, in ascending order, the fluvial to shallow-marine Beasley River Quartzite, the predominantly subaqueously emplaced Cheela Springs flood basalt and the Wooly Dolomite, a shelf-ramp carbonate succession. Field observations point to high subsidence of the sequence, rather than the mainly subaerial to shallow marine depositional environment-interpretation described by earlier workers. Abundant hydro-volcanic breccias, including hyaloclastite, peperite and fluidal-clast breccia all indicate quench-fragmentation processes caused by interaction of lava with water, and support the mainly subaqueous emplacement of the flood basalt which is also indicated by interlayered BIF-like chert/mudstones and below-wave-base turbiditic mass-flows.
APA, Harvard, Vancouver, ISO, and other styles
19

Devlin, Barry David. "Geology and genesis of the Dolly Varden silver camp, Alice Arm area, northwestern British Columbia." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26243.

Full text
Abstract:
The Dolly Varden camp, Alice Arm area, northwestern British Columbia, is characterized by stratiform and volcanogenic silver-lead-zinc-barite deposits in Early to Middle Jurassic calc-alkaline volcanic rocks of the Hazelton Group. These deposits, containing exceptional silver and significant base metal values, are in andesitic tuffaceous rocks, and occur typically as layers of quartz, carbonate, barite and jasper, with lesser amounts of pyrite, sphalerite and galena, and sparse chalcopyrite. Production from three deposits, the Dolly Varden, Northstar and Torbrit mines, totaled 1,284,902 tonnes of ore that averaged 484g silver per tonne, 0.38 percent lead and 0.02 percent zinc. The Hazelton Group is a thick, widespread assemblage of basaltic to rhyolitic volcanic flow rocks, their tuffaceous equivalents, and derived sedimentary rocks. Dolly Varden camp is underlain by more than 3,000m of Hazelton Group rocks comprised of one major volcanic and one major sedimentary formation. Volcanic rocks underlie sedimentary rocks and have been subdivided into footwall and hangingwall units based on stratigraphic position relative to the mineralized stratiform horizon. Footwall volcanic rocks consist of green ± maroon basaltic-andesite tuff, green ± maroon porphyritic andesite and green andesite shard tuff. Stratiform mineralization rests conformably upon the underlying green andesite shard tuff. Hangingwall volcanic rocks above the stratiform layer consist of pale grey basaltic-andesite ash tuff, maroon basaltic-andesite ash-lapilli tuff, grey-green porphyritic andesite, and pale green andesite ash tuff. Hangingwall volcanics are unconformably capped by sedimentary rocks consisting of maroon siltstone, calcareous and fossiliferous wacke, and black siltstone and shale; black siltstone and shale form the youngest rock unit of the Hazelton Group in the Dolly Varden area. Basalt and lamprophyre dykes intrude all rocks of the Hazelton Group. The rocks of the Hazelton group exposed in the Dolly Varden camp are folded into a series of anticlines and synclines with gentle, northwestern plunges. Two major sets of nearly vertical block faults cut all rock units; earlier faults trend northwest and younger faults trend north-northeast. Geological mapping, combined with petrologic, petrographic and isotopic data, indicate that the stratiform deposits probably formed as submarine exhalative deposits associated with andesitic volcanism of the Hazelton Group during the Early to Middle Jurassic. Evidence for a volcanogenic origin is the conformity of layered mineralization with stratigraphy, lateral and vertical mineral zonation patterns, consistent hangingwall versus footwall contact relationships, fragments of stratiform ore within tuffaceous volcanic rocks of the hangingwall, consistent differences in the stable isotopic compositions between the sulfides versus barite, quartz and carbonate gangue, and the Jurassic "fingerprint" for the lead-bearing deposits of the Dolly Varden camp. The Dolly Varden deposits display criteria for classification of a new, previously unrecognized, stratiform and volcanogenic, deposit type, named here, the "Dolly Varden type", and is characterized by silver-rich, low sulfide and high oxide stratiform mineralization within andesitic volcanic rocks.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
20

Fay, Hannah Isabel. "Studies of Copper-Cobalt Mineralization at Tenke-Fungurume, Central African Copperbelt; and Developments in Geology between 1550 and 1750 A.D." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/319897.

Full text
Abstract:
The contents of this dissertation fall into two broad areas: geology and history of geology. Although apparently unrelated, the two categories in fact parallel one another. The development of geological systems finds a mirror, on a shorter timescale, in the development of the human understanding of geological systems. The present state of a science - like the present state of an earth system - represents the concatenation of many subtle or evident processes and influences operating over time. Moreover, the events of the past condition the state of the present in science as well as in objects of scientific study. Thus, for instance, to understand why we now hold certain interpretations about the formation of sediment-hosted copper deposits, we must study not only the deposits themselves but the historical development and the philosophical concerns that guided and shaped modern thought about them. In this dissertation the geological and historical aspects are presented in sequence rather than juxtaposed. The geological section comes first, with three chapters detailing the formation and development of the Tenke-Fungurume Cu-Co district and the Central African Copperbelt, followed by another taking a broad view of the mineralogical, geochemical, and metallurgical implications of some of the geological features there. Then follows the history of geology: first two chapters on the role of Georgius Agricola in founding modern geology, and one on how it developed through the following centuries in tune with simultaneous developments in other sciences.
APA, Harvard, Vancouver, ISO, and other styles
21

Brisson, Harold. "Caractéristiques, chronologie et typologie des minéralisations aurifères de la région du Lac Shortt (Québec), sous-province archéenne de l'Abitibi /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1998. http://theses.uqac.ca.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Land, Jarred. "Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020905.

Full text
Abstract:
The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
APA, Harvard, Vancouver, ISO, and other styles
23

Howarth, Geoffrey Hamilton. "Petrogenesis and metallogenesis of the Panzhihua Fe-Ti oxide ore-bearing mafic layered intrusion, SW China." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1001810.

Full text
Abstract:
The Panzhihua intrusion is one of several large Fe-Ti oxide ore bearing intrusions related to the major flood volcanism of the Emeishan Large Igneous Province (ELIP), SW China. The Panzhihua intrusion in particular has recently become the focus of numerous studies owing to the excellent exposure in large open pit mining operations. The formation of Fe-Ti oxide ore layers has been the focus of these studies and has become a somewhat controversial topic with three separate models currently proposed for ore formation. The gabbroic Panzhihua intrusion extends for ± 19 km along strike, has a maximum thickness of 3000 m and hosts extensive (up to 60 m thick) Fe-Ti oxide ore layers in the lower portions of the intrusion. The intrusion has been divided into five zones: marginal zone (MGZ), lower zone (LZ), middle zone A (MZa), middle zone b (MZb) and the upper zone (UZ). The gabbroic rocks are comprised of plagioclase, clinopyroxene and interstitial Fe-Ti oxides with minor olivine. Apatite is present within the MZb only and shows no correlation with Fe-Ti oxide ore layers. Fe-Ti oxides are present throughout the stratigraphy of the intrusion. This is unlike typical layered intrusions where significant Fe-enrichment through fractionation of Fe-poor silicate phases (i.e. plagioclase) is required before Fe-Ti oxide saturation. There are no oxide-free cumulate rocks at the Panzhihua intrusion, implying either an evolved parent magma or very high Fe content of the source rocks. I present here new mineral composition data, whole-rock major and trace element geochemistry along with whole-rock Sr-Nd isotopes and PGEs in order to constrain the evolution of the Panzhihua parent magma en route from source to chamber and the formation of Fe-Ti oxide ore layers. Furthermore an initial pilot study using O-isotope data is conducted on Ti-magnetite and plagioclase separates from gabbroic vs. ore rocks. Results are coupled with detailed thermodynamic modeling using the software PELE in order to further constrain Fe-Ti oxide ore layer formation. The intrusion is characterised by extreme depletion of PGEs relative to the coeval flood basalts and picrites. High Cu/Pd and Pd/Pt imply two separate stages of S-saturated and S-undersaturated depletion of PGEs. Pd is highly compatible in sulphide and is quickly scavenged by sulphide liquids resulting in an increase in Cu/Pd of the residual liquid. Furthermore decoupling of Pd and Pt can be achieved by either late stage hydrothermal alteration or through S-undersaturated stage of PGE depletion where Pt is scavenged by Pt-rich alloys or oxide minerals. I show that the latter is more likely. Fractionation modeling suggests that the Panzhihua parent magma formed at depth from original picritic magma. This is consistent with several other recent studies on other layered intrusions of the ELIP. Sr-Nd isotopic ratios indicate very little crustal contamination has occurred en route to the current chamber. Sr and Nd concentrations of footwall rocks are too low to produce any significant change in initial Sr and Nd isotopic ratios of the intruding basaltic magmas, indicating that crustal contamination will not be indicated by Sr-Nd isotopic ratios. Gradational change in the Sr-Nd isotope ratios across the MGZ provides strong evidence for formation in an open system by multiple replenishments of progressively less contaminated magmas from depth. Contamination is difficult to constrain but must be occurring prior to emplacement at the current level (low Sr and Nd contents of footwall). A gradational upward decrease in highly incompatible element across the MGZ can then be explained by continuous magma flow, which effectively removes the evolved intercumulus liquids from the growing cumulate pile at the base of the chamber. The initial stages of formation of the Panzhihua intrusion are interpreted to result from prolonged low volume pulses of magma into a slowly opening chamber. The timing of Fe-Ti oxide crystallisation is fundamental in the understanding of the petrogenesis of ore layers. Distinct geochemical variation in whole-rock Fe2O3/TiO2 and Zr/Nb indicates that Timagnetite is the dominant oxide within the lower ± 270 m of the intrusion whereas above this level both Ti-magnetite and ilmenite are present as cumulus phases. This is interpreted to indicate a variation in the fO2 where the lower intrusion crystallises at higher fO2 relative to that above this level. Silicates within the ore layers, in particular plagioclase, are highly embayed and resorped where in contact with Fe-Ti oxides. This characteristic of the silicate grains implies early crystallisation prior to Fe-Ti oxides with subsequent disequilibrium conditions resulting in resorption. Furthermore distinct reaction rims of kaersutite amphibole, Fo-enriched olivine, An-enriched plagioclase and pleonaste are observed. The abundance of amphibole suggests H2O involvement in this reaction and consumption of silicates. A model for parent magma crystallisation at various H2O contents indicates that plagioclase crystallisation temperature is very sensitive to H2O content of the parent magma. Plagioclase crystallises early for “dry” compositions but significantly later for “wet” compositions. Fe-Ti oxide ore layers are generally well layered, contain gabbroic xenoliths and are observed raversing/cross-cutting the cumulate stratigraphy. I present here a new model for ore layer formation in order to account for these distinct features of the ore layers. A model invoking multiple replenishments of magma with variable oxide microphenocryst content, H2O content and volume is proposed. Magma evolving in the plumbing system and fed to the Panzhihua chamber is variably enriched in H2O, which results in significantly different crystallisation paths. High H2O magmas (> 2 wt %) crystallise Fe-Ti oxides early whereas low H2O magmas (< 1 wt %) crystallise oxides late. Early pulses of H2O-poor magma crystallise a sequence of plag+cpx+Fe-Ti oxide (±ol). Later pulses of H2Orich magma subsequently intrude the partially crystallised cumulate sequence incorporating and consuming previously crystallised silicates with subsequent early crystallisation of Ti-magnetite and formation of ore layers. H2O-rich magmas likely have suspended Ti-magnetite microphenocrysts as well, which crystallise at depth in the plumbing system. This model can account for the various characteristic features of the Fe-Ti oxide ore layers at the Panzhihua intrusion as well as other Fe-Ti oxide ore bearing intrusions in the region.
APA, Harvard, Vancouver, ISO, and other styles
24

Tregoning, Trevor Denzil. "The tectono-metallogenesis during the irumide and pan-African events in South West Africa/Namibia." Thesis, Rhodes University, 1987. http://hdl.handle.net/10962/d1004490.

Full text
Abstract:
A large portion of South west Africa/Namibia is underlain by 2 great orogens. They are the Irumide (Sinclair/Rehoboth) and Damara Orogenies. The L-shaped Irumide Province forms part of a belt which extends over the subcontinent from Namaqualand to as far as Zambia. The volcano-sedimentary sequences of the Irumide are believed to have formed in intracratonic rifts and pull-apart basins during the period 1400 to 900 Ma. The evolution of the NW trending Sinclair Group proceeded by means of 3 major cycles each beginning with the emplacement of basic to intermediate magmas followed by felsic ones. The cycle ended off with subsidence, deposition of immature clastic debris and final tilting of the volcano-clastic sequence. It was suggested that the extensive calc-alkaline lavas present, developed within a magmatic arc above a subduction zone, but this proposal has not been generally accepted. The NE trending Klein Aub-Witvlei Basins consist essentially of red bed alluvial fans and lacustrine sediments with minor volcanics near the base. The red beds and aeolian sediments were deposited in an arid climatic condition. The regional greenschist facies metamorphism and deformation is attributed to a major tectono-thermal event at 1100 Ma. The Damara Orogen (900 - 550 Ma) forms part of the Pan-African mobile belt system of global proportions. The NE trending intracontinental branch (aulacogen) and 2 coastal branches constitute a triple junction with its focal point near Swakopmund. The NE extension of the intracontinental belt has been linked with the Lufilian Arc hosting the renown Zambian Copper Belt deposits. In South West Africa/Namibia this belt hosts many different mineral occurrences which can be grouped into rift and collision related deposits. The tectonic history of the Damara Orogen supports a geodynamic-evolution-with-time hypothesis and represents a transitional phase in which limited Wilson Cycle Tectonics was active. The Theory of Mantle Advection is invoked to explain rifting, thinning and subsidence. Extensive ensialic rifting resulted in a relatively stable Northern Carbonate Platform and several deep troughs hosting turbiditic sequences. Crustal rupture in the Khomas Trough allowed for the emplacement of ocean floor tholeiites known as the Matchless Amphibolite Belt. Subsequent ocean closure and collision resulted in deformation, metamorphism and generation of predominantly S-type granites. The southern continental plate was partially overridden by the northern plate during final collision at 550 Ma. These low angle thrust faults allowed for the emplacement of the Naukluft Nappe Complex on top of younger Nama sediments. The break up of Gondwanaland during the Mesozoic with the splitting of the Atlantic Ocean was responsible for the intrusion of anorogenic alkaline ring complexes along the extension of the NE trending transform faults within the intracontinental branch of the Damara Orogen. A close relationship between the tectonic setting and mineral deposits has been recognized in both the Irumide and Damara Orogenies. In the Irumide, stratiform syngenetic copper deposits are hosted by alluvial fan, playa and lacustrine sediments. The uninterrupted sedimentation from the Irumide to Damara Orogen resulted in similar stratiform copper deposits during the early stages of rifting. In the Damara Orogen the rifting (extensional) phase is characterized by 4 main mineralizing systems: diagenetic/syngenetic (Kupferschiefer-type), epigenetic/hydrothermal Cu-Pb-Zn (Mississippi Valley-type), volcanogenic cupriferous pyrite (Besshi-type) and volcano-exhalative Pb-Zn (Red Sea-type). The collision (compressional) phase was accompanied by 4 main mineralizing processes: epigenetic/hydrothermal Cu-Pb-Zn, hydrotheral/metasomatic Sn-W-rare earth, metamorphogenic Au and U-bearing anatectic melts. The key to the selection of viable exploration targets lies in the understanding of the field evidence and the geodynamics modelling to explain the evolution of the orogen and its associated mineral deposits.
APA, Harvard, Vancouver, ISO, and other styles
25

Ferraro, Jaclyn Marie. "Relationships between deformation and mesothermal veins in the Sunshine Mine Area, Coeur d'Alene district, Idaho." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/1454.

Full text
Abstract:
The Coeur d'Alene district in northern Idaho is a world class Pb-Ag mesothermal vein system that has produced about 360 million ounces of silver, lead, and zinc since the 1880s. Despite the long history of exploration and production, the district does not have a predictive model for exploration based on a sound understanding of structural controls on the silver ore deposits; this is certainly the case for the Sunshine Mine and surrounding area. Fault kinematic history in the district shows a regional scale fault system reactivated over time with dextral, sinistral, and dip-slip displacement. The fault system is superimposed on regional deformation fabrics that were examined for this study in the Sunshine Mine area. Cleavage sets observed in the Sunshine mine area, distinguished by orientation and superposition relationships, are consistent with the findings of Smith (2004) which defined cleavage sets referred to as S1, S2, and S3. Two additional deformation fabrics that appear spatially tied to fault zones formed between development of cleavages S2 and S3. The multiple cleavages, fault zones, and their intersections are interpreted to act as pathways for hydrothermal fluids associated with vein formation and silver ore deposition. Thin section kinematic analysis of vein and shear zone samples defined a dip-slip sense of shear associated with the Sterling vein. Electron Backscatter Diffraction (EBSD) analysis of vein and shear zone samples failed to define a lattice preferred crystallographic orientation that defined shear sense. Similarly, cathodoluminescence (CL) analysis of thin section textures failed to define a dominant shear sense and fault kinematics. Nevertheless, additional study using these techniques is warranted. Both field observation and thin section analysis demonstrate a direct relationship between shear zones, veins, and mineralization potential, clarifying the need for detailed fault maps for the Sunshine Mine area and Coeur d'Alene district.
APA, Harvard, Vancouver, ISO, and other styles
26

Daniel, Blakemore. "Insights into the History of Pyrite Mineralization at the Round Mountain Gold Mine, Nevada: A Detailed Microanalytical Study of the Type 2 Ore." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami15962291791253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hammond, Napoleon Quaye. "The geochemistry of ore fluids and control of gold mineralization in banded iron-formation at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1008370.

Full text
Abstract:
The Kalahari Goldridge mine is located within the Archaean Kraaipan Greenstone Belt about 60 km SW of Mafikeng in the Northwestern Province, South Africa. Several gold deposits are located within approximately north - south-striking banded iron-formation (BIF). Current opencast mining operations are focused on the largest of these (D Zone). The orebody is stratabound and hosted primarily in the BIF, which consists of alternating chert and magnetite-chloritestilpnomelane-sulphide-carbonate bands ranging from mm to cm scale. The ore body varies in thickness from 15 to 45 m along a strike length of about 1.5 km. The BlF is sandwiched between a sericite-carbonate-chlorite schist at the immediate footwall and carbonaceous meta-pelites in the hanging-wall. Further west in the footwall, the schists are underlain by mafic meta-volcanic amphibolite. Overlying the hanging-wall carbonaceous metapeiites are schist units and meta-greywackes that become increasingly conglomeratic up the stratigraphy. Stilpnomelane-, chlorite- and minnesotaite-bearing assemblages in the BlFs indicate metamorphic temperatures of 300 - 450°C and pressures of less than 5 kbars. The BIF generally strikes approximately 3400 and dips from 60 to 75°E. Brittle-ductile deformation is evidenced by small-scale isoclinal folds, brecciation, extension fractures and boudinaging of cherty BIF units. Fold axial planes are sub-parallel to the foliation orientation with sub-vertical plunges parallel to prominent rodding and mineral lineation in the footwall. Gold mineralization at the Kalahari Goldridge deposit is associated with two generations of subhorizontal quartz-carbonate veins dips approximately 20 to 40°W. The first generation consists of ladder vein sets (Group lIA) preferentially developed in Fe-rich meso bands, whilst the second generation consists of large quartz-carbonate veins (Group lIB), which crosscut the entire ore body extending into the footwall and hanging-wall in places. Major structures that control the ore body are related to meso-scale isoclinal folds with fold axes subparallel to mineral elongation lineations, which plunge approximately 067°E. These linear structures form orthogonal orientation with the plane of the mineralized shallowdipping veins indicating stretching and development of fluid - focusing conduits. A second-order controlling feature corresponds to the intersection of the mineralized veins and foliation planes of host rock, plunging approximately 008°N and trending 341°. G0ld is closely associated with sulphides, mainly pyrite and pyrrhotite and to a lesser extent with bismuth tellurides, and carbonate gangue. The ore fluid responsible for the gold deposition is in the C-O-H system with increased CH₄ contents attributed to localized hydrolysis reaction between interbedded carbonaceous sediment and ore fluid. The fluid is characterized by significant C0₂ contents and low salinities below 7.0 wt % NaCl equivalent (averages of 3.5 and 3.0 wt % NaCl equivalent for the first and second episodes of the mineralization respectively) . Calculated values of f0₂. ranging from 10⁻²⁹·⁹⁸ to 10⁻³²·⁹⁶ bars, bracket the C0₂-CH₄ and pyrite-pyrrhotite-magnetite buffer boundaries and reveal the reducing nature of the ore fluid at deposition. Calculated total sulphur content in the ore fluid (mΣs), ranges from 0.011 to 0.018M and is consistent with the range (10⁻³·⁵ to 10⁻¹M) reported for subamphibolite facies ore fluids. The close association of sulphides with the Au and nature of the fluid also give credence that the Au was carried in solution by the Au(HS)₂ - complex. Extensive epigenetic replacement of magnetite and chlorite in BIF and other meta-pelitic sediments in the deposit by sulphides and carbonates, both on meso scopic and microscopic scales gives evidence of an interaction by a CO₂- and H₂S-bearing fluid with the Fe-rich host rocks in the deposit. This facilitated Au precipitation due to changes in the physico-chemical conditions of the ore fluid such as a decrease in the mΣs and pH leading to the destabilization of the reduced sulphur complexes. Local gradients in f0₂ may account for gold precipitation in places within carbonaceous sediments. The fineness of the gold grams (1000*Au/(Au + Ag) ranges from 823 to 921. This compares favourably with the fineness reported for some Archaean BIFhosced deposits (851 - 970). Mass balance transfer calculations indicate that major chemical changes associated with the hydrothermal alteration of BIF include enrichment of Au, Ag, Bi, Te, volatiles (S and CO₂), MgO, Ba, K and Rb but significant depletion of SiO₂ and minor losses of Fe₂O₃. In addition, anomalous enrichment of Sc (average, 1247%) suggests its possible use as an exploration tool in the ferruginous sediments in the Kraaipan greenstone terrane. Evidence from light stable isotopes and fluid inclusions suggests that the mineralized veins crystallized from a single homogeneous fluid source during the two episodes of mineralization under the similar physicochemical conditions. Deposition occurred at temperatures rangmg from 350 to 400°C and fluid pressures ranging from 0.7 to 2.0kbars. Stable isotope constraints indicate the following range for the hydrothermal fluid; θ¹⁸H₂O = 6.65 to 10.48%0, 8¹³CΣc = -6.0 to -8.0 %0 and 8³⁴SΣs = + 1.69 to + 4.0%0 . These data do not offer conclusive evidence for the source of fluid associated with the mineralization at the Kalahari Goldridge deposit as they overlap the range prescribed for fluid derived from devolatization of deep-seated volcano-sedimentary piles near the brittle-ductile transition in greenstone belts during prograde metamorphism, and magmatic hydrothermal fluids.
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
28

Seat, Zoran. "Geology, petrology, mineral and whole-rock chemistry, stable and radiogenic isotope systematics and Ni-Cu-PGE mineralisation of the Nebo-Babel intrusion, West Musgrave, Western Australia." University of Western Australia. School of Earth and Geographical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0202.

Full text
Abstract:
The Nebo-Babel Ni-Cu-platinum-group element (PGE) magmatic sulphide deposit, a world-class ore body, is hosted in low-MgO, tube-like (chonolithic) gabbronorite intrusion in the West Musgrave Block, Western Australia. The Nebo-Babel deposit is the first significant discovery of a nickel sulphide deposit associated with the ca. 1078 Ma Giles Complex, which is part of the Warakurna large igneous province (LIP), now making the Musgrave Block a prime target for nickel sulphide exploration. The Musgrave Block is a Mesoproterozoic, east-west trending, orogenic belt in central Australia consisting of amphibolite and granulite facies basement gneisses with predominantly igneous protoliths. The basement lithologies have been intruded by mafic-ultramafic and felsic rocks; multiply deformed and metamorphosed between 1600 Ma and 500 Ma. The Giles Complex, which is part of the Warakurna LIP, was emplaced at ca. 1078 Ma and consists of a suite of layered mafic-ultramafic intrusions, mafic and felsic dykes and temporally associated volcanic rocks and granites. The Giles Complex intrusions are interpreted to have crystallised at crustal depths between 15km and 30km and are generally undeformed and unmetamorphosed.
APA, Harvard, Vancouver, ISO, and other styles
29

Polteau, Stéphane. "The early proterozoic Makganyene glacial event in South Africa : its implication in sequence stratigraphy interpretations, paleoenvironmental conditions and iron and manganese ore deposition." Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1007612.

Full text
Abstract:
The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup in the Griqualand West Basin. It consists of diamictites, sandstones, banded iron-formations (BIFs), shales, siltstones and carbonates. It is generally accepted that the Makganyene Formation rests on an erosive regional unconformity throughout the Northern Cape Province. However this study demonstrates that this stratigraphic relationship is not universal, and conformable contacts have been observed. One of the principal aims of this study is to identify the nature of the Makganyene basal contact throughout the Griqualand West Basin. Intensive fieldwork was carried out from Prieska in the south, to Danielskuil in the north. In the Sishen and Hotazel areas, only borehole material was available to assess the stratigraphy. The Griquatown Fault Zone delimits the boundary between the deep basin and platform facies. The Koegas Subgroup is only present south of the Griquatown Fault Zone, where it pinches out. However, the transition Griquatown BIFs-Koegas Subgroup occurs in lacustrine deposits on the Ghaap platform (Beukes, 1983). The Griquatown Fault Zone represents the edge of the basin, which corresponds to a hinge rather than a fault zone. The Makganyene Formation rests with a conformable contact on the Koegas Subgroup south of the Griquatown Hinge Zone, and north of it the Makganyene Formation lies unconformably on the Asbestos Hills Subgroup. The Makganyene Formation displays lateral facies changes that reflect the paleogeography of the Griqualand West Basin, and the development of ice sheets/shelves. The Ghaap platform is characterised by coarse immature sand interbedded with the diamictites. The clasts in this area contain local Asbestos Hills material and no dropstones are present. Such settings are typical of sediments that are being deposited below a grounded ice mass. At the Griquatown Hinge Zone, the sandstone lenses are smaller, and the clasts consist of chert, of which a great number are striated and faceted. In the Matsap area, the presence of dropstones is strong evidence for the presence of a floating ice shelf that released its material by basal melting. Further south, the Makganyene Formation contains stromatolitic bioherms that only form if clastic contamination is minimal and therefore the ice that transported the detritus to the basin did not extend far into open sea conditions. The base of the Hotazel Formation also contains diamictite levels. Dropstones have been identified, implying a glacial origin. The Hotazel diamictites are interbedded with hyaloclastites and BIFs. The Makganyene glacial event, therefore, was not restricted to the Makganyene Formation, but also included the Ongeluk Formation, through to the base of the Hotazel Formation. Petrographic studies of the Makganyene Formation and the base of the Hotazel Formation reveal mineral assemblages that are diagnostic of early to late diagenetic crystallisation and of low-grade metamorphism not exceeding the very low green-schist facies. The facies identified display the same sense of basin deepening, from shallow high-energy Hotazel area on the Ghaap platform, to the deep basin in the Matsap area. Whole-rock geochemical analyses reveal that the elemental composition of the Makganyene Formation is very similar to that of the Asbestos Hills BIFs, which were the most important source of clastic detritus for the Makganyene Formation. However, minor amounts of carbonates of the Campbellrand Subgroup, as well as a felsic crustal input from the Archean granitoid basement, made contributions. On the Ghaap platform, the Makganyene diamictite is enriched in iron, calcium, and magnesium, while in the deeper parts of the basin the diamictites are enriched in detrital elements, such as titanium and aluminium, which occur in the fine clay component. The Hotazel diamictite displays a distinct mafic volcanic input, related to the extrusion of the Ongeluk basaltic andesites, which was incorporated in the glacial sediments. Sequence stratigraphy is based on the recognition of contacts separating the different systems tracts that compose a depositional sequence. However, because the basal contact of the Makganyene Formation has not been properly identified in previous work, no correct model has been proposed so far. Therefore correlations between the Griqualand West and the Transvaal basins, based on lithostratigraphic similarities and extrapolations of unconformities, have to be reviewed, especially since the publication of new radiometric ages contradict all previously proposed correlations. It is proposed here that the Transvaal Supergroup in the Griqualand West Basin represents a continuous depositional event that lasted about 200 Ma. The Makganyene glacial event occurred during changing conditions in the chemistries of the atmosphere and ocean, and in the continental configuration. A Snowball Earth event has been proposed as the causative process of such paleoenvironmental changes. However, evidence presented here of less dramatic glacial conditions, with areas of ice-free waters, implies an alternative to the Snowball Earth event. The paleoenvironmental changes are thought to represent a transition from an anaerobic to aerobic atmosphere, that was responsible for the global cooling of the surface of the Earth, Such a glacial event may have aided in the large-scale precipitation of iron and manganese in areas of intense upwellings.
APA, Harvard, Vancouver, ISO, and other styles
30

Pflug, Norbert. "Der historische Eisenerzbergbau im Osterzgebirge und Elbtalschiefergebirge – eine geographisch-geologische Landschaftsanalyse." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-126893.

Full text
Abstract:
Im Osterzgebirge sowie im nordöstlich daran angrenzenden Elbtalschiefergebirge wurde mit Unterbrechungen über mehrere Jahrhunderte Bergbau auf Eisen betrieben. Für die Besiedlung, den Bergbau auf andere Metalle, die Landwirtschaft und das Handwerk in der Region hatte der Eisenerzbergbau eine gewisse Bedeutung. Im Gegensatz zum Silber- und Buntmetallbergbau ist über den Eisenerzbergbau allerdings nur relativ wenig bekannt. Das Ziel dieser Diplomarbeit bestand deshalb darin, eine zusammenfassende geologisch-geographische Darstellung, die sowohl den historischen Eisenerzbergbau im Osterzgebirge als auch den historischen Eisenerzbergbau im Elbtalschiefergebirge beinhaltet, zu erarbeiten. Um ein hohes Maß an Vollständigkeit zu gewährleisten, wurden die Erkenntnisse aus Archiven, Bibliotheken und Sammlungen zusammengetragen. Überdies wurde auch auf das Fachwissen von Heimatvereinen, Bergbaumuseen und Hobbyhistorikern zurückgegriffen. Ferner wird im Rahmen dieser Arbeit untersucht, welche Typen von Eisenerzlagerstätten es im Osterzgebirge und im Elbtalschiefergebirge gab, wie diese entstanden sind, um welche Mineralisation und um welche Art von Eisenerztypen es sich dabei handelt. Mit den gegenwärtig zur Verfügung stehenden Methoden der Analytik (REM-EDX) werden zudem die Mineralparagenese und die chemische Zusammensetzung von historischen und neuen Eisenerzproben aus dem Osterz- und Elbtalschiefergebirge untersucht. Ferner wird den Fragestellungen nachgegangen, wann diese Eisenerzlagerstätten erschlossen wurden, über welchen Zeitraum sie unter Abbau standen und wie viel Eisenerz aus den jeweiligen Gruben gefördert wurde. Hierfür erfolgte eine detaillierte Dokumentation der wichtigsten ehemaligen Eisenerzlagerstätten mit den dazugehörigen Zeugnissen des historischen Eisenerzbergbaus. Darauf aufbauend werden die Bedeutung des Eisenerzbergbaus und des daran angeschlossenen Eisenhüttenwesens für die wirtschaftliche und kulturelle Entwicklung des Gebietes untersucht. Des Weiteren werden die regionalen Beziehungen zu anderen Bergbau- und Wirtschaftszweigen aufgezeigt. Der Prozess des Aufbrechens der regionalen Wirtschaftsstrukturen im Zuge der Industrialisierung wird eingehend erläutert. Und die Gründe für den Niedergang des Eisenerzbergbaus und Eisenhüttenwesens werden ebenfalls genannt. Danach erfolgt eine Betrachtung darüber, welche bergbauhistorischen Zeugnisse heute im Gelände noch auffindbar bzw. welche Nachfolgenutzungen an den Standorten des historischen Eisenerzbergbaus und des Eisenhüttenwesens gegenwärtig vorhanden sind. Abschließend wird erläutert welche Schlussfolgerungen für die Nutzung des geotouristischen Potenzials sich daraus ergeben.
APA, Harvard, Vancouver, ISO, and other styles
31

Pflug, Norbert. "Der historische Eisenerzbergbau im Osterzgebirge und Elbtalschiefergebirge – eine geographisch-geologische Landschaftsanalyse." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131472.

Full text
Abstract:
Im Osterzgebirge sowie im nordöstlich daran angrenzenden Elbtalschiefergebirge wurde mit Unterbrechungen über mehrere Jahrhunderte Bergbau auf Eisen betrieben. Für die Besiedlung, den Bergbau auf andere Metalle, die Landwirtschaft und das Handwerk in der Region hatte der Eisenerzbergbau eine gewisse Bedeutung. Im Gegensatz zum Silber- und Buntmetallbergbau ist über den Eisenerzbergbau allerdings nur relativ wenig bekannt. Das Ziel dieser Diplomarbeit bestand deshalb darin, eine zusammenfassende geologisch-geographische Darstellung, die sowohl den historischen Eisenerzbergbau im Osterzgebirge als auch den historischen Eisenerzbergbau im Elbtalschiefergebirge beinhaltet, zu erarbeiten. Um ein hohes Maß an Vollständigkeit zu gewährleisten, wurden die Erkenntnisse aus Archiven, Bibliotheken und Sammlungen zusammengetragen. Überdies wurde auch auf das Fachwissen von Heimatvereinen, Bergbaumuseen und Hobbyhistorikern zurückgegriffen. Ferner wird im Rahmen dieser Arbeit untersucht, welche Typen von Eisenerzlagerstätten es im Osterzgebirge und im Elbtalschiefergebirge gab, wie diese entstanden sind, um welche Mineralisation und um welche Art von Eisenerztypen es sich dabei handelt. Mit den gegenwärtig zur Verfügung stehenden Methoden der Analytik (REM-EDX) werden zudem die Mineralparagenese und die chemische Zusammensetzung von historischen und neuen Eisenerzproben aus dem Osterz- und Elbtalschiefergebirge untersucht. Ferner wird den Fragestellungen nachgegangen, wann diese Eisenerzlagerstätten erschlossen wurden, über welchen Zeitraum sie unter Abbau standen und wie viel Eisenerz aus den jeweiligen Gruben gefördert wurde. Hierfür erfolgte eine detaillierte Dokumentation der wichtigsten ehemaligen Eisenerzlagerstätten mit den dazugehörigen Zeugnissen des historischen Eisenerzbergbaus. Darauf aufbauend werden die Bedeutung des Eisenerzbergbaus und des daran angeschlossenen Eisenhüttenwesens für die wirtschaftliche und kulturelle Entwicklung des Gebietes untersucht. Des Weiteren werden die regionalen Beziehungen zu anderen Bergbau- und Wirtschaftszweigen aufgezeigt. Der Prozess des Aufbrechens der regionalen Wirtschaftsstrukturen im Zuge der Industrialisierung wird eingehend erläutert. Und die Gründe für den Niedergang des Eisenerzbergbaus und Eisenhüttenwesens werden ebenfalls genannt. Danach erfolgt eine Betrachtung darüber, welche bergbauhistorischen Zeugnisse heute im Gelände noch auffindbar bzw. welche Nachfolgenutzungen an den Standorten des historischen Eisenerzbergbaus und des Eisenhüttenwesens gegenwärtig vorhanden sind. Abschließend wird erläutert welche Schlussfolgerungen für die Nutzung des geotouristischen Potenzials sich daraus ergeben.
APA, Harvard, Vancouver, ISO, and other styles
32

Stewart, Peter William. "Geology, geochemistry, geochronology and genesis of granitoid clasts in breccia-conglomerates, MacLean extension orebody, Buchans, Newfoundland /." 1985. http://collections.mun.ca/u?/theses,119284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Farmer, Lucian P. "Trace element characteristics of zircon : a means of assessing mineralization potential of intrusions in northern Nevada." Thesis, 2012. http://hdl.handle.net/1957/36276.

Full text
Abstract:
Oxidized hydrous intermediate composition magmas are responsible for porphyry copper (Cu ±Mo ±Au) deposits and epithermal Au ore deposits formed globally in the shallow crust (Sillitoe, 2010; Seedorff et al., 2005). Recently, zircon geochemistry has been used to characterize both productive and barren intrusions associated with porphyry Cu-Au ore deposits. Zircon composition differs slightly between the two intrusive groups, and researchers have proposed that zircon in productive intrusions has crystallized from a relatively more oxidized melt compared to barren intrusions (Ballard et al., 2002; Muñoz et al., 2012). Zircon rare earth elements record anomalies in Ce and Eu contents that allow estimation of the ratio of oxidized versus reduced species, i.e. Ce⁴⁺/Ce³⁺ (Ce[superscript IV]/Ce[superscript III]) and Eu³⁺/Eu²⁺ (Eu/Eu*)[subscript CN]. This study focuses on understanding the compositions of Eocene magmas associated with sediment hosted Carlin gold deposits and the gold-copper ores of the Battle Mountain porphyry Cu-Au-skarn district in northern Nevada. Zircon trace element composition was analyzed using LA-ICP-MS and SHRIMP-RG to determine differences between mineralizing and non-mineralizing intrusions in northern Nevada and to compare these compositions with known porphyry Cu-Au type magmas. These zircon and rock compositional data was then used to test the hypothesis of a magmatic origin of the Carlin type gold deposits (Muntean et al., 2011). Zircon U-Pb ages were calculated using multiple SHRIMP-RG spot analyses of each sample for two Carlin biotite porphyry dikes, two Battle Mountain porphyry dikes and the granodiorite of the Copper Canyon stock. The new U-Pb age dates for Carlin porphyry dikes are 38.7 ± 0.5 Ma and 38.8 ± 0.4 Ma. The age of the Copper Canyon stock is 38.0 ± 0.7 Ma, and the age of the Battle Mountain porphyry dikes are 40.2 ± 0.4 Ma and 41.3 ± 0.4 Ma. The Carlin dike ages are the same age, within uncertainty, with previous studies conducted (Mortensesn et al., 2000). The productive porphyry dikes from the Battle Mountain district have Ce(IV)/Ce(III) ratios of 500 to 10000 and a wide range of (Eu/Eu*)[subscript CN] values between 0.3 and 0.7 respectively. Carlin porphyry dikes have Ce(IV)/Ce(III) values between 100 and 1000, and a more limited (Eu/Eu*)[subscript CN] range of 0.5 to 0.7. Barren Eocene intrusions at Harrison Pass and Caetano have much lower Ce(IV)/Ce(III) ratios that range from 20 to 500, and have a very large span of (Eu/Eu*)[subscript CN] from 0.03 to 0.6. Calculated Ce(IV)/Ce(III) and (Eu/Eu*)[subscript CN] of zircon of this study illustrate a distinction between productive and barren intrusions in northern Nevada, and demonstrate a geochemical link between porphyry type magmas and dikes associated with Carlin type gold deposits. These ratios may provide a useful means of evaluating potentially economic geologic terranes and serving as a method to infer relative oxidation state of zircon bearing intrusive rocks.
Graduation date: 2013
APA, Harvard, Vancouver, ISO, and other styles
34

Hughes, Martin James. "The Tsumeb ore body, Namibia, and related dolostone-hosted base metal ore deposits of Central Africa." Thesis, 2013. http://hdl.handle.net/10539/13037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Raab, Alexander K. "Geology of the Cerro Negro Norte Fe-Oxide (Cu-Au) District, Coastal Cordillera, northern Chile." Thesis, 2001. http://hdl.handle.net/1957/9821.

Full text
Abstract:
The intrusion-related Cerro Negro Norte Fe-oxide (Cu-Au) deposit is hosted in andesites and diorites of the early to middle Cretaceous Coastal Cordilleran arc of northern Chile. Tabular and irregularly shaped magnetite orebodies are localized on splays and fractures of the regional NINE striking Atacama Fault Zone. Production from this district was [approximately]100 MT @ [approximately] 65 wt. % Fe. Early Na-Ca alteration assemblages associated with magnetite �� apatite �� pyrite �� chalcopyrite ore include actinolite, marialitic scapolite, oligoclase, titanite, and epidote. Na-Ca alteration is extensive (>4 km�� in area), locally pervasive in the district, and is locally associated with granodiorite dike emplacement. The alkali-rich alteration and sulfide poor mineralization at CNN is characterized by metasomatic exchange of major, minor, and trace elements (added Fe, Na, Ca, Cl, P, Rare Earth Elements) between andesitic and diorite host rocks and halite-saturated saline hydrothermal fluids preserved as inclusions. Intrusion-heated fluids converge along the Atacama Fault Zone, and dikes, and may have been derived either from seawater or evaporitic water trapped in sedimentary rocks of the protoarc. Younger, cross-cutting hydrothermal assemblages such as tourmaline-quartzsericite (�� breccias), associated with granodiorite dikes, and chiorite-calcite-tourmalinequartz assemblages are related to pyrite �� chalcopyrite �� hematite and Cu-Au mineralization. Supergene minerals include goethite, Cu-carbonates and Cu-oxide. Later carbonate (dolomite) alteration is also localized along northeast-striking faults. Inferred Cu-Au estimates are [approximately] 1 MT @ [approximately] 1 g/T Au and 0.25 wt. % Cu. Late alteration assemblages may contain a component of magmatic saline fluids generated by observed monzodiorite-granodiorite dikes and pluton emplacement. Massive magnetite ore and associated Na-Ca alteration assemblages were deposited at high temperatures ( 500 to 6000 C), with igneous intrusions providing heat but not necessarily fluids and metals. Later moderate to low temperature Cu-Au mineralization (sulfide + oxide) replaces magnetite, and records the transition to more brittle faulting, with NW �� re-activated NNE structural control, and a greater proportion of magmatic fluids, sulfur ([delta]�����S[subscriptpy] = -1 0/00), and metals.
Graduation date: 2002
APA, Harvard, Vancouver, ISO, and other styles
36

Adams, Garry J. (Garry John). "Structural evolution and ore genesis of the granites gold deposits, Northern Territory / by Garry John Adams." 1997. http://hdl.handle.net/2440/19158.

Full text
Abstract:
Bibliography: leaves 186-210.
v, 242 leaves, [19] leaves of plates : ill. (chiefly col.), map ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
The Granites gold deposits of The Granites-Tanami Inlier are the principal interest of the thesis.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1998
APA, Harvard, Vancouver, ISO, and other styles
37

Princehouse, David S. "Geology and gold mineralization of mesozoic rocks in the Pine Grove Distric, Lyon County, Nevada." Thesis, 1993. http://hdl.handle.net/1957/35956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cuba, Espinoza Miguel Angel. "Accounting for non-stationarity via hyper-dimensional translation of the domain in geostatistical modeling." Master's thesis, 2009. http://hdl.handle.net/10048/704.

Full text
Abstract:
Thesis (M. Sc.)--University of Alberta, 2009.
Title from PDF file main screen (viewed on Feb. 19, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering, Department of Civil and Environmental Engineering, University of Alberta. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
39

Gutierrez, Gay Nell 1955. "Controls on ore deposition in the Lamotte Sandstone, Goose Creek mine, Indian Creek subdistrict, southeast Missouri." 1987. http://hdl.handle.net/2152/20448.

Full text
Abstract:
The Indian Creek subdistrict is the northernmost mineralized area in the Southeast Missouri district and is unique because ore-grade concentrations of sulfides occur within the Lamotte Sandstone. The Lamotte Sandstone-hosted Goose Creek mine is located on the northern end and the Bonneterre Dolomite-hosted Indian Creek mine on the northwestern side of a N30°E-trending, Precambrian rhyolite ridge. A saddle on the northern end of the ridge separates the Indian Creek subdistrict from another probable high along the same trend to the north. Lamotte deposition was influenced by pre-Lamotte basement topography, and local thickness ranges from 0 where it pinches out against the ridge to over 100 ft toward the basin. It is comprised of a thin, discontinuous basal cobble conglomerate overlain by a medium-grained, moderately to poorly sorted, well-rounded quanzarenite. Fourteen authigenic minerals, plus hydrocarbons cement the Lamotte Sandstone at Goose Creek in the following paragenetic sequence: dolomite - framboidal pyrite - marcasite - cuboctahedral pyrite - bravoite - bladed marcasite - pyrite - quartz dissolution - brecciation - siegenite - marcasite - dolomite - brecciation - chalcopyrite - quartz dissolution - sphalerite - galena (cuboctahedral) - quartz - galena (cubic) - dolomite - gypsum - hydrocarbon - kaolinite - illite - calcite - hydrocarbon. Primary and secondary porosity in the Lamotte vary between 1 and 20 volume percent and authigenic cements account for up to 35 volume percent of the sandstone. Quartz overgrowths are the most common cement in the Lamotte Sandstone at Goose Creek, comprising from 1 to 11 volume percent of the rock. Galena is the most abundant sulfide and commonly occurs in 1 to 3 mm blebs, averaging 3-4 volume percent. Chalcopyrite averages 0.5 volume percent, but high grade concentrations reach 8-10 volume percent locally. Sulfides in the Lamotte Sandstone in the Indian Creek subdistrict commonly occur within 40 ft of the Bonneterre-Lamotte contact, with the highest concentrations within 20 ft or less of the contact. Structure maps of the lead- and copper- bearing-zones mimic the basement topography, suggesting that the Precambrian basement was the major controlling factor on ore deposition in the Indian Creek subdistrict. Vertical tubes of sulfides, which cross-cut bedding near the Lamotte pinchout in the Goose Creek mine, suggest that the ore-bearing fluids moved through the sandstone aquifer until the pinchout forced them into the overlying Bonneterre. There the fluids were channeled through the grainstone-algal reef complex along the N30°E-trending Precambrian ridge. Limited fluid inclusion data for Bonneterre-hosted sphalerite indicate that the mineralizing fluid was a Na-Ca-Cl brine with temperatures between 105 and 120° C.
text
APA, Harvard, Vancouver, ISO, and other styles
40

Walemba, Kabungulu Mutoka Ambrose. "Geology, geochemistry, and tectono-metallogenic evolution of neuproterozoic gold deposits in the Kadubu area, Kivu, Democratic Republic of Congo." Thesis, 2014. http://hdl.handle.net/10539/15209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Doucette, John. "A petrochemical study of the Mount Fubilan Intrusion and associated ore bodies, Papua New Guinea." Thesis, 2000. http://hdl.handle.net/1957/33496.

Full text
Abstract:
The Mount Fubilan Intrusion is part of a geologically young hypabyssal stock in the Star Mountains of Papua New Guinea. This stock was mapped as the Ok Tedi Intrusive Complex and divided into four separate bodies: the Mount Fubilan, Sydney Intrusion, Kalgoorlie, and Ningi Intrusions. Hydrothermal fluids caused alteration of the Mount Fubilan, and parts of the other intrusions, to potassic and propylitic mineral assemblages and deposited gold and copper. This investigation documents similarities and differences between the least-altered intrusive rocks of the complex and those that have undergone potassic metasomatism. The study involved detailed petrographic examination of more than two hundred thin-sections, major-oxide and trace element chemistry, and microprobe analyses of individual minerals. The magmas that crystallized to form the stock are shown to be intermediate in composition between andesite and latite. They were quartz-saturated, metaluminous, weakly iron-rich, and crystallized under oxidizing conditions. The principal mineral phases in the least-altered intrusive rocks are andesine, pyroxene, orthoclase, and quartz. The accessory mineral suite in least-altered rocks includes biotite, sphene, apatite, magnetite, and zircon. Hornblende is present in a few samples Magmatic pyroxene is diopsidic in composition; hornblendes is cdenitic; and biotite is annitic. Potassic alteration has converted andesine to orthoclase, or mixtures of albite and orthoclase, ferro magnesian minerals to hydrothermal biotite, sphene to rutile, and magnetite to pyrite and chalcopyrite. Hydrothermal biotite is phlogopitic in composition. Gold and copper were concentrated in the zone of potassic alteration. The mineralogical transformation of the intrusive rocks of the Mount Fubilan and associated intrusions was caused by the infiltration of hydrothermal fluids that deposited potassium, gold, and copper and that leached and removed virtually all other rock constituents. Leached components were transported away from the zone of potassic alteration and deposited in peripheral parts of the intrusive complex to form propylites, endoskarn, and massive replacement bodies or removed from the system entirely. The Mount Fubilan intrusion was closely similar in chemistry and mineralogy to the other intrusions of the complex prior to alteration. Petrochemical differences between the Mount Fubilan Intrusion and the other intrusions were produced entirely by hydrothermal alteration.
Graduation date: 2000
APA, Harvard, Vancouver, ISO, and other styles
42

Mundalamo, Humbulani Rejune. "Investigation of the Geology, Structural Setting and Mineralisation the Copper-Sulphide Deposits in the Messina Area, Limpopo Mobile Belt, South Africa." Thesis, 2019. http://hdl.handle.net/11602/1440.

Full text
Abstract:
PhDENV (Geology)
Department of Mining and Environmental Geology
The study focused on the geology, structural setting and mineralisation of copper-sulphide deposits in the Musina area, located in the Central Zone of the Limpopo Mobile Belt of South Africa. The Messina copper deposits are located in the eastern part of Limpopo Province near the border with Zimbambwe. The deposits stretch from northeastern to southwestern direction for about 15 km. Previous copper mining in the area took place at Artonvilla, Messina, Harper, Campbell and Lilly copper deposits. The current study, however, focused on two main deposits, Campbell and Artonvilla. The origin, nature and mode of formation of the Cu-sulphide deposits in the Musina area have not been established with certainty. Two principal hypotheses on the origin of the Messina copper sulphide deposits have been proposed, viz; a magmatic-hydrothermal model, and meteoric waters model. Consequently, the mode of formation and mineralisation style of the Messina Cu-sulphide deposits remain contentious. Therefore, the main objective of the study was to investigate the nature and mode of formation of Cu-sulphide deposits in the Musina area. Different research methods have been applied in the current study so as to unpack the contradictory positions on the genesis of the Messina copper deposits. This included fieldwork, remote sensing data acquisition, laboratory work, and data analysis and interpretation. Fieldwork involved soil geochemical survey as well as rock and ore sampling within the study area. A total of 295 soil samples, 33 rock specimens and 21 ore samples were collected for laboratory investigation. Laboratory work consisted of a range of methods that included; geochemical analysis, petrographic and cathodoluminescence microscopy, ore mineralogy and ore microscopy, fluid inclusion geothermometry and isotope geochemistry. The work was done in different laboratories including: Mining and Environmental Geology Laboratory, Unviersity of Venda; Department of Geology Laboratory, University of Johannesburg; MINTEK Laboratory in Johannesburg; Société Générale de Surveillance Laboratory in Johannesburg, South Africa; Department of Applied Geology, Geoscience Institute, Göttingen University, Germany and Department of Geology, University of Georgia, Athens, United States of America. Remote sensing data was acquired from Southern Mapping Company, Johannesburg, South Africa. Interpretation of Remote sensing data was done at the University of Applied Sciences, Oswestfalen-Lippe, Germany. Data analysis and interpretation of laboratory results involved the use of: Desktop ArcGIS 10.4.1 for geochemical data interpretation; ENVI 5.1 and ArcGIS 10.4.1 Softwares for remote sensing data; and Triplot version 4.1.2 software for ternary plot for compositional variation of rocks. Soil geochemical survey revealed geochemical anomalies for Pb, Zn, Cu, As and Ni over the known copper deposits in the area as well as over six other areas that have not been associated with any sulphide mineralisation. Such new anomalous areas have been identified as target areas for future exploration of sulphide ore mineralisation. Petrographic studies of the rocks confirmed the host rocks to be amphibolite-quartz granulite, biotite-garnet-quartz granulite, amphibolite, quartzite, hornblende gneiss, quartzo-feldspathic gneiss, potassium-feldspathic gneiss and cal-silicate gneiss. These rocks were subjected to hydrothermal alteration during ore mineralisation within the area. It was further noted that epidote alteration was quite intensive in ore samples, while in unmineralised rock samples it was less intensive. Remote sensing data interpretation revealed spatial distribution and intensity of epidote alteration within the study area and in places coincided either with the known copper deposits or structural features, thus led to the identification of target areas for future mineral exploration in the Musina area. The current study established that the process of ore mineralisation in the Messina copper deposits took place in two distinct phases: first the formation of garnet, graphite, magnetite and hematite during regional metamorphism of the Limpopo Mobile Belt; and secondly, sulphide ore mineralisation resulting in the formation of copper ore comprising, veined, disseminated and brecciated ores. Sulphide ore mineralisation consisted mainly of pyrite, chalcopyrite, sphalerite, bornite, chalcocite and minor pyrrhotite and galena as well as traces of pentlandite, tennantite, mollybdenite, cobaltite and tetrahedrite. This confirms that the Messina copper deposits had complex sulphide ore mineralisation that is typical of hydrothermal mode of ore mineralisation from a magmatic source. The study further establishes the paragenitic sequence of ore mineralisation, comprising four stages: Stage I (Garnet- graphite – Fe oxides); stage II (Quartz- pyrite); stage III (Pyrite- sphalerite - chalcopyrite); and stage IV (Carbonates). Stage III represented the main stage of sulphide ore mineralisation in the area, while Stage IV comprising calcite, dolomite and ankarite marked the final stage of hydrothermal ore mineralisation. Paragenetic sequence identified three generations of quartz; first generation being associated with garnet, graphite, magnetite and hematite, second generation with pyrite and third generation with pyrite, sphalerite and chalcopyrite. Previous studies, however, indicated that there was only one generation of quartz that formed at the temperature between 210o to 150°C, but the current study established that the entrapment temperature of first generation quartz ranges from 315o to 200°C; second generation quartz from 235o to 135°C and third generation quartz from 240o to 115°C. At the same time, sulphur isotope investigation of chalcopyrite-pyrite pair from Campbell deposit registered a temperature of 359°C. The study therefore concluded that the temperature of ore formation within the Messina copper deposits ranged between 359°C and 115°C. The presence of halite and calcite as daughter minerals within the fluid inclusions was noted and this apparently is indicative of high salinity of fluid inclusions, which is considered as a product of direct exolution of crystalizing magma. Raman spectroscopy revealed the composition of gases in the fluid inclusions to be CH4 and N2 with 80% and 20% composition respectively, however, some inclusions were gas-poor. The presence of gases in the fluid inclusions is an indication that there was boiling at the time of entrapment. A narrow range of 34S values of -0.5 to 0.5‰ obtained in this study further confirms the magmatic source of Sulphur as Sulphur from the host rock was found to have high 𝛿34S value of 8.2‰. A genetic model for copper ore mineralisation within Musina area is proposed. The deposits are of polymetallic vein type that are genetically associated with porphyry copper deposits. According to this model, copper ore bodies were formed from hydrothermal fluids originating from magma and were epigenetic in nature. Geological structures in the area acted as conduits for hydrothermal fluids that resulted in the alteration of the host rocks and mineralisation of copper sulphide ore. Thus, the Messina coper deposits are of magmatic hydrothermal origin although the apparent location of a batholith is still unknown and the study recommends further viii research work on the location of the batholith that is presumed to have been the magmatic source. The study further recommend dating of later rocks as well as orebody s it is essential for understanding the process of ore formation in this area. For further exploration, areas that have undergone “moderate” to “high” degree of epidote alteration and lie in close proximity to geological structures such as faults and thrust folds that could have acted as conduits for hydrothermal fluids and resulted in sulphide ore mineralisation and registered high geochemical anomalies for Pb, Zn, As and Ni should be targeted. In support of further mineral exploration within the study area, the study recommend a detailed geostatistical application for the purpose of delineating homogeneous areas based on the combination of lineaments, interpolated soil geochemical maps and thematic maps.
NRF
APA, Harvard, Vancouver, ISO, and other styles
43

Sieber, Thomas. "Styles of hydrothermal alteration in archaean rocks of the Northern Kaapvaal craton, South Africa, with implications for gold mineralization." Thesis, 2014. http://hdl.handle.net/10210/9336.

Full text
Abstract:
Ph.D. (Geology)
Shear zone controlled hydrothermal alteration zones in the northern Kaapvaal craton (NKC) are developed in host rocks of vastly different chemical composition and metamorphic grade. Some carry appreciable Au and base metals and some are barren. Alteration zones in three different distinctive crustal zones were examined in detail to determine the controls of these two types of alteration. 1. The Matok Complex is situated in the southern marginal zone (SMZ) of the Limpopo Belt (LB), close to the zone of rehydration. Two major stages of hydrothermal alteration could be identified in local shear zones, a pervasive propylitization and a subsequent vein controlled quartzalbite alteration. The two-stage alteration occurred sometimes between the emplacement of the Matok Complex (2670 Ma) and the intrusion of unaltered mafic dykes (1900 Ma). Calculated isotopic compositions of the hydrothermal fluids indicate that magmatic ± meteoric waters as well as juvenile C02 were responsible for the establishment of the alteration zones. The fluids most probably were late magmatic fluids associated with the Matok magmatism. The propylitic alteration was accompanied by introduction of small amounts of CU + Au and represents an alteration type identical to that developed in porphyry copper deposits. The subsequent quartz-albite alteration was caused by extremely saline fluids which depleted the rocks of all the major and trace elements with exception of Si, Al, Na and Zr. 2. This chemical alteration pattern' contrasts with those developed in two alteration zones associated with economic gold mineralization in greenstone belts of the NKC (Sutherland and Pietersburg belts). At the Birthday and Eersteling gold mines, a biotite-calcite-quartz alteration is developed. The chemical pattern of the alteration is...
APA, Harvard, Vancouver, ISO, and other styles
44

"Alteration and gold mineralisation in the Roodepoort Goldfield, Pietersburg Granite-Greenstone Terrane." Thesis, 2014. http://hdl.handle.net/10210/12896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography