Academic literature on the topic 'Organell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organell"
Wagner, Nicolai, Milena Stephan, Doris Höglinger, and André Nadler. "Der Click‐Cage: Organell‐spezifische Photoaktivierung von Lipid‐Botenstoffen." Angewandte Chemie 130, no. 40 (September 3, 2018): 13523–27. http://dx.doi.org/10.1002/ange.201807497.
Full textOborník, Miroslav. "Organellar Evolution: A Path from Benefit to Dependence." Microorganisms 10, no. 1 (January 7, 2022): 122. http://dx.doi.org/10.3390/microorganisms10010122.
Full textMallo, Natalia, Justin Fellows, Carla Johnson, and Lilach Sheiner. "Protein Import into the Endosymbiotic Organelles of Apicomplexan Parasites." Genes 9, no. 8 (August 14, 2018): 412. http://dx.doi.org/10.3390/genes9080412.
Full textEvans, David E., and Chris Hawes. "Organelle Biogenesis and Positioning in Plants." Biochemical Society Transactions 38, no. 3 (May 24, 2010): 729–32. http://dx.doi.org/10.1042/bst0380729.
Full textCostello, Rona, David M. Emms, and Steven Kelly. "Gene Duplication Accelerates the Pace of Protein Gain and Loss from Plant Organelles." Molecular Biology and Evolution 37, no. 4 (November 21, 2019): 969–81. http://dx.doi.org/10.1093/molbev/msz275.
Full textOkamoto, Koji. "Organellophagy: Eliminating cellular building blocks via selective autophagy." Journal of Cell Biology 205, no. 4 (May 26, 2014): 435–45. http://dx.doi.org/10.1083/jcb.201402054.
Full textHaggie, Peter M., and A. S. Verkman. "Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis." American Journal of Physiology-Lung Cellular and Molecular Physiology 296, no. 6 (June 2009): L859—L867. http://dx.doi.org/10.1152/ajplung.00018.2009.
Full textHume, Alistair N., and Miguel C. Seabra. "Melanosomes on the move: a model to understand organelle dynamics." Biochemical Society Transactions 39, no. 5 (September 21, 2011): 1191–96. http://dx.doi.org/10.1042/bst0391191.
Full textWang, Yan, Jennifer Selinski, Chunli Mao, Yanqiao Zhu, Oliver Berkowitz, and James Whelan. "Linking mitochondrial and chloroplast retrograde signalling in plants." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1801 (May 4, 2020): 20190410. http://dx.doi.org/10.1098/rstb.2019.0410.
Full textRobles, Pedro, and Víctor Quesada. "Transcriptional and Post-transcriptional Regulation of Organellar Gene Expression (OGE) and Its Roles in Plant Salt Tolerance." International Journal of Molecular Sciences 20, no. 5 (February 28, 2019): 1056. http://dx.doi.org/10.3390/ijms20051056.
Full textDissertations / Theses on the topic "Organell"
Schwarz, Elisabeth. "Die Rolle des mitochondrialen Hsp70-Systems bei verschiedenen Prozessen der Organell-Biogenese." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961717335.
Full textCerjan, Dijana. "INTRACELLULAR DISTRIBUTION PATTERNS OF ORGANELL SPECIFIC PROTEINS USING IMMUNOHISTOCHEMICAL STAINING OF TISSUE MICRO ARRAYS." Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6154.
Full textThe knowledge of the human genome sequence, as revealed in the HUGO project, has created exciting new possibilities for biomedical research. The Swedish Human Proteome Resource (HPR) program aims to make use of this information to gain further insight into the human proteome. Recombinant proteins are generated from coding sequences identified from the human genome sequence and used to produce specific antibodies to target proteins. Antibodies are subsequently utilized for functional analysis of the corresponding proteins using tissue micro arrays. The aim of my project was to investigate the possibility of distinguishing characteristic distribution patterns of intracellular proteins in the resolution capacity offered by light microscopy. A map of representative distribution patterns was created using immunohistological staining with commercially available antibodies toward well-characterised proteins in the cell. Such a map could then aid in interpreting the results of immunohistological staining of intracellular proteins using antibodies produced within the Human Proteome Resource program. Proteins manifested in nucleus, nuclear membrane and plasma membrane were clearly visible at the expected location. Proteins manifested in different organelles in the cytoplasm however, showed all a similar staining pattern, making determination of exact protein location uncertain. A possible explanation is the resolution of the light microscope not being sufficient to visualize certain proteins specific to organelles in the cytoplasm. Results may also have been influenced by the choice of secondary antibody, where the strenghtened signal generated by an enzyme labelled polymer may have a negative effect on depiction of details in the image generated.
Freitag, Johannes [Verfasser], and Michael [Akademischer Betreuer] Bölker. "Neue Enzyme für ein altes Organell : kryptische peroxisomale Lokalisationssignale in Pilzen / Johannes Freitag. Betreuer: Michael Bölker." Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/1050816994/34.
Full textMietner, Silke. "Charakterisierung von Organellen und Signalwegen des Thrombozyten." kostenfrei, 2008. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2008/3121/.
Full textEriksson, Therese. "Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin." Licentiate thesis, Linköpings universitet, Farmakologi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19973.
Full textPanax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
Berglund, Jenny. "Structure-function studies of organelle assembly and receptor recognition in organelles assembled via the chaperone/usher pathway /." Uppsala : Dept. of Molecular Biology, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/a441.pdf.
Full textMorley, Stewart Anthony. "Interactions Between the Organellar Pol1A, Pol1B, and Twinkle DNA Replication Proteins and Their Role in Plant Organelle DNA Replication." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8128.
Full textMalchus, Nina Isabelle [Verfasser], and Michael [Akademischer Betreuer] Hausmann. "On the spatial organization of cell organelles and diffusion of proteins in organelle membranes / Nina Isabelle Malchus ; Betreuer: Michael Hausmann." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179230477/34.
Full textGonzález, González Luis. "Functional and structural analyses of the terminal organelle of Mycoplasma genitalium." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/326466.
Full textMycoplamsa genitalium is a human pathogen and the causative agent of non-gonococcal non-chlamydial urethritis in men and pelvic inflammatory disease and cervicitis. Mycoplasmas, besides being interesting as minimal cells (given the small size of its genome), also have unique features only present in its genus. In particular, the presence of mechanisms of adhesion and motility has been detected, and in addition of being involved in addition of being involved in the infection mechanism, are only found in this genus. In particular, the mechanism of motility of M. genitalium involves a polar structure containing characteristic cytoskeleton. It is known that the cytoskeleton is composed of several proteins involved in the adhesion and motility processes. In the first three chapters of this thesis dissertation the role of three of this proteins—MG219, MG318 (also called P32) and MG386—has been stablished. The study was conducted by obtaining null mutants strains of these proteins. The MG219 protein has been found to be necessary for the proper functionality of the motility machinery. By fusion to fluorescent proteins it has been determined the subcellular localization of this MG219, which located at the nearest part of the terminal organelle relative to the cell body. Cells in the absence of MG219 move slower than half speedy (and half frequently) the cells of the wild type strain. This speed reduction is concomitant with the appearance of a greater number of dividing cells and cell with multiple terminal organelles. In a similar manner, cells of the strain lacking P32 move at lower speeds (and with half also half frequently) than cells of the wild type strain. Furthermore, it has been determined that the N-terminal P32 plays an important role in protein stability P110 and P140, the major adhesins of M. genitalium. It has also been established that the P32 protein is critical to the morphology of the most distal part of the terminal organelle relative to the cell body. The last mutant generated in this work, the null mutant for MG386, presents significant alterations in both cell morphology and motility. The cells of this strain show motility half frequently than the wild type strain but move to a velocities as greater as1.7 times than the reference strain. Surprisingly, this strain has a high number of terminal organelles detached from the cell body, suggesting an important role of protein MG386 anchoring the organelle to the cell body. It has been observed that the membrane around the cytoskeleton is completely covered by the adhesion complex or "nap". By electron microscopy studies it has determined the structure by cryo-electron tomography at 3.5 nm and at 1.9 nm single particle by negative staining TEM of the purified P110 and P140 complex. Additionally, cryo-electron tomography also allowed to determine at low resolution the structure of the terminal button of the cytoskeleton, revealing that the plates forming most of the cytoskeleton are actually rings about 20 nm in diameter. In addition, 14 mutants lacking different proteins (or domains thereof) related to motility and / or adhesion have been analysed by cryo-electron tomography. All these data taken together provides an overview of the prior knowledge—in addition to the data generated in this work—of the role of the proteins involved motility and cytoskeleton formation in M. geniatlium.
Mahon, Piers Seaburne Macmahon. "Localisation of organelle proteins." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621831.
Full textBooks on the topic "Organell"
Rodionov, V. S. Sovremennye metody vydelenii͡a︡ organell i membrannykh sistem iz kletok rasteniĭ. Petrozavodsk: Karelʹskiĭ nauch. t͡s︡entr AN SSSR, 1990.
Find full textElli, Kohen, ed. Atlas of cell organelles fluorescence. Boca Raton: CRC Press, 2004.
Find full textJendrossek, Dieter, ed. Bacterial Organelles and Organelle-like Inclusions. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7.
Full textOrganelles in tumor diagnosis: An ultrastructural atlas. New York: Igaku-Shoin, 1996.
Find full textEdward, Bittar E., and Bittar Neville, eds. Cellular organelles. Greenwich, Conn: JAI Press, 1995.
Find full textEdward, Bittar E., and Bittar Neville, eds. Cellular organelles and the extracellular matrix. Greenwich, Conn: JAI Press, 1995.
Find full textPflieger, Delphine, and Jean Rossier, eds. Organelle Proteomics. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-028-7.
Full textBullerwell, Charles E., ed. Organelle Genetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22380-8.
Full textDelphine, Pflieger, and Rossier Jean, eds. Organelle proteomics. Totowa, NJ: Humana, 2008.
Find full textBook chapters on the topic "Organell"
Jendrossek, Dieter. "Polyphosphate Granules and Acidocalcisomes." In Bacterial Organelles and Organelle-like Inclusions, 1–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_1.
Full textJendrossek, Dieter. "Carbonosomes." In Bacterial Organelles and Organelle-like Inclusions, 243–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_10.
Full textDahl, Christiane. "Bacterial Intracellular Sulphur Globules." In Bacterial Organelles and Organelle-like Inclusions, 19–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_2.
Full textSchüler, Dirk, and Frank D. Müller. "Biosynthesis and Intracellular Organization of Magnetosomes in Magnetotactic Bacteria." In Bacterial Organelles and Organelle-like Inclusions, 53–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_3.
Full textPfeifer, Felicitas. "Gas Vesicles of Archaea and Bacteria." In Bacterial Organelles and Organelle-like Inclusions, 71–106. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_4.
Full textClaret Fernández, Laura, Rob Mesman, and Laura van Niftrik. "The Anammoxosome Organelle: The Power Plant of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria." In Bacterial Organelles and Organelle-like Inclusions, 107–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_5.
Full textHeinhorst, Sabine, and Gordon C. Cannon. "Bacterial Microcompartments." In Bacterial Organelles and Organelle-like Inclusions, 125–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_6.
Full textWatzer, Björn, Friederike Klemke, and Karl Forchhammer. "The Cyanophycin Granule Peptide from Cyanobacteria." In Bacterial Organelles and Organelle-like Inclusions, 149–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_7.
Full textColpaert, Matthieu, Malika Chabi, Ugo Cenci, and Christophe Colleoni. "Storage Polysaccharides in Prokaryotes: Glycogen, Granulose, and Starch-Like Granules." In Bacterial Organelles and Organelle-like Inclusions, 177–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_8.
Full textSteinbüchel, Alexander, and Marc Wältermann. "Wax Ester and Triacylglycerol Inclusions." In Bacterial Organelles and Organelle-like Inclusions, 211–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60173-7_9.
Full textConference papers on the topic "Organell"
Kuznetsov, Andrey V. "Modeling the Effect of Vesicle Traps on Mass Transfer and Traffic Jam Formation in Fast Axonal Transport." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22169.
Full textTran, Duc Hoa, Michel Meunier, and Farida Cheriet. "OrgaNet: A Robust Network for Subcellular Organelles Classification in Fluorescence Microscopy Images." In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9175162.
Full textShou, Jingwen, Fanghao Hu, Robert Oda, Wei Min, and Yasuyuki Ozeki. "High-speed super-multiplex organelle imaging." In Advanced Chemical Microscopy for Life Science and Translational Medicine, edited by Garth J. Simpson, Ji-Xin Cheng, and Wei Min. SPIE, 2020. http://dx.doi.org/10.1117/12.2544808.
Full textKohen, Elli, Joseph G. Hirschberg, Cahide Kohen, Dietrich O. Schachtschabel, Marco Monti, and Rita Stanikunaite. "Fluorescence spectral imaging of organelle interaction." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Daniel L. Farkas and Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384215.
Full textDhar, Shanta. "Abstract B56: Organelle targeted photodynamic therapy." In Abstracts: Second AACR International Conference on Frontiers in Basic Cancer Research--Sep 14-18, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.fbcr11-b56.
Full text"The variability of organelle genomes in barley." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-190.
Full textAmorim, Marianny Rodrigues Costa, Letícia Oliveira Martins, and Andreia Juliana Rodrigues Caldeira. "ORIGEM E IMPORTÂNCIA FILOGENÉTICA DO CPDNA." In I Congresso Nacional On-line de Biologia Celular e Estrutural. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/1946.
Full textNawa, Yasunori, Wataru Inami, Atsushi Ono, Sheng Lin, Yoshimasa Kawata, and Susumu Terakawa. "Label-free cell organelle imaging by D-EXA microscopy." In JSAP-OSA Joint Symposia. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/jsap.2014.19a_c4_8.
Full textGuirguis, Mark, Katelyn Rimkunas, Michael Raymond, and Leo Q. Wan. "Cell Organelle Positioning of Micropatterned Single C2C12 Mouse Myoblasts." In 2013 39th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2013. http://dx.doi.org/10.1109/nebec.2013.168.
Full textGrenier, Marie-Claude, Louis-Gilles Durand, and Jacques A. de Guise. "Comparative study of texture measurements for cellular organelle recognition." In Electronic Imaging '91, San Jose,CA, edited by Alan C. Bovik and Vyvyan Howard. SPIE, 1991. http://dx.doi.org/10.1117/12.44293.
Full textReports on the topic "Organell"
Ostersetzer-Biran, Oren, and Alice Barkan. Nuclear Encoded RNA Splicing Factors in Plant Mitochondria. United States Department of Agriculture, February 2009. http://dx.doi.org/10.32747/2009.7592111.bard.
Full textSadot, Einat, Christopher Staiger, and Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7592652.bard.
Full textSally A. Mackenzie. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1011492.
Full textMatsuzaki, Satoshi. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/837275.
Full textFriedman, Haya, Chris Watkins, Susan Lurie, and Susheng Gan. Dark-induced Reactive Oxygen Species Accumulation and Inhibition by Gibberellins: Towards Inhibition of Postharvest Senescence. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7613883.bard.
Full textOstersetzer-Biran, Oren, and Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Full textNelson, Nathan, and Randy Schekman. Functional Biogenesis of V-ATPase in the Vacuolar System of Plants and Fungi. United States Department of Agriculture, September 1996. http://dx.doi.org/10.32747/1996.7574342.bard.
Full textStern, David, and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575289.bard.
Full textStern, David B., and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast: Control of mRNA Stability and Transcription Termination. United States Department of Agriculture, December 1993. http://dx.doi.org/10.32747/1993.7568750.bard.
Full textMcElwain, Terry F., Eugene Pipano, Guy H. Palmer, Varda Shkap, Stephn A. Hines, and Wendy C. Brown. Protection of Cattle against Babesiosis: Immunization against Babesia bovis with an Optimized RAP-1/Apical Complex Construct. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573063.bard.
Full text