Academic literature on the topic 'Organic compounds Organic electrochemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic compounds Organic electrochemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organic compounds Organic electrochemistry"
LI, Wei, Tsutomu NONAKA, and Tse-Chuan CHOU. "Paired Electrosynthesis of Organic Compounds." Electrochemistry 67, no. 1 (January 5, 1999): 4–10. http://dx.doi.org/10.5796/electrochemistry.67.4.
Full textNavrátil, Tomáš, and Miroslav Fojta. "Electrochemistry of organic and bioactive compounds." Monatshefte für Chemie - Chemical Monthly 150, no. 3 (February 25, 2019): 371. http://dx.doi.org/10.1007/s00706-019-02402-w.
Full textde Luca, Carlo, Claudio Giomini, and Liliana Rampazzo. "Electrochemistry of organic acceptor compounds: aromatic anhydrides." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 238, no. 1-2 (December 1987): 215–23. http://dx.doi.org/10.1016/0022-0728(87)85175-6.
Full textFojta, Miroslav, and Tomáš Navrátil. "Electrochemistry of organic, bioactive compounds and biopolymers." Monatshefte für Chemie - Chemical Monthly 146, no. 5 (April 11, 2015): 721. http://dx.doi.org/10.1007/s00706-015-1462-3.
Full textLyalin, B. V., and V. A. Petrosyan. "Electrochemical halogenation of organic compounds." Russian Journal of Electrochemistry 49, no. 6 (June 2013): 497–529. http://dx.doi.org/10.1134/s1023193513060098.
Full textGolabi, S. M., F. Nourmohammadi, and A. Saadnia. "Electrosynthesis of organic compounds." Journal of Electroanalytical Chemistry 548 (May 2003): 41–47. http://dx.doi.org/10.1016/s0022-0728(03)00218-3.
Full textJaworski, Jan S. "ChemInform Abstract: Electrochemistry of Organic Selenium and Tellurium Compounds." ChemInform 44, no. 5 (January 29, 2013): no. http://dx.doi.org/10.1002/chin.201305178.
Full textStenina, E. V. "Electrochemistry of organic compounds in the early XXI century." Russian Journal of Electrochemistry 45, no. 11 (November 2009): 1313–15. http://dx.doi.org/10.1134/s1023193509110159.
Full textSuzuki, Katsutoshi, Shinsuke Inagi, and Toshio Fuchigami. "Electrochemical fluorination of organic compounds." Electrochimica Acta 54, no. 3 (January 2009): 961–65. http://dx.doi.org/10.1016/j.electacta.2008.08.032.
Full textLyalin, B. V., and V. A. Petrosyan. "Oxidation of organic compounds on NiOOH electrode." Russian Journal of Electrochemistry 46, no. 11 (November 2010): 1199–214. http://dx.doi.org/10.1134/s1023193510110017.
Full textDissertations / Theses on the topic "Organic compounds Organic electrochemistry"
Makgae, Mosidi Elizabeth. "Environmental electrochemistry of organic compounds at metal oxide electrodes." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49947.
Full textENGLISH ABSTRACT: This study investigates the electrochemical oxidation of phenol. Phenol is a major toxin and water pollutant. In addition, during water treatment it reacts with chlorine to produce carcinogenic chlorophenols. lts treatment down to trace levels is therefore of increasing concern. For this purpose, dynamically stable anodes for the breakdown of phenols to carbon dioxide or other less harmful substances were developed and characterized. The anodes were prepared from mixed oxides of tin (Sn) and the precious metals ruthenium (Ru), tantalum (Ta) and iridium (Ir), which in tum were prepared using sol-gel techniques. This involved dip-coating the aqueous salts of the respective metals onto titanium substrates and heating to temperatures of several hundreds of degree Celsius. The properties of these mixed oxide thin films were investigated and characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), elemental dispersive energy X-ray analysis (EDX), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), particle induced X-ray emission (PIXE) and electrochemical measurements. A variety of different electrode materials including Til Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 and Ti/RhOx-Ir02 were developed and tested for their potential as oxidation catalysts for organic pollutants in wastewaters. Depending on the anode type, phenol was found to be electrochemically degraded, to different extents, on these surfaces during electrolysis. It was however found that the oxidation rate not only depended on the chemical composition but also on the oxide morphology revealed, resulting from the preparation procedure. The Ti/SnOz-Ru02-Ir02 film was found to be the most efficient surface for the electrolytic breakdown of phenol. This film oxidized phenol at a potential of 200 mV vs Ag/AgC!. The activity of the catalytic systems was evaluated both on the basis of phenol removal efficiency as well as the kinetics of these reactions. Phenol removal efficiency was more than 90% for all the film surfaces prepared and the rate of the reaction followed first order kinetics. A pathway for the electrochemical degradation of phenol was derived using techniques such as HPLC to identify the breakdown products. These pathway products included the formation of benzoquinone and the further oxidation of benzoquinone to the carboxylic acids malic, malonic and oxalic.
AFRIKAANSE OPSOMMING: Die onderwerp van hierdie studie is die elektrochemiese oksidasie van fenol deur nuwe gemengde-oksied elektrodes. Fenol is 'n belangrike gifstof en besoedelingsmiddel in water. Daarbenewens kan fenolook met chloor reageer tydens waterbehandeling om sodoende karsinogeniese chlorofenole te vorm. Dit is dus belangrik dat metodes ondersoek word wat die konsentrasie van fenol in water verminder. Hierdie studie behels die bereiding en karakterisering van nuwe dinamiese stabiele anodes (DSA) vir die afbreek van fenol tot koolstofdioksied en ander minder gevaarlike verbindings. Hierdie nuwe anodes is berei vanaf die gemengde-okside van die edelmetale tin (Sn), ruthenium (Ru), tantalum (Ta) en iridium (Ir), met behulp van sol-gel tegnieke. Die finale stap in die bereiding behels kalsinering van die oksides by temperature van "n paar honderd grade Celsius. Hierdie nuwe elektrodes is later gebruik om die oksidasie van fenol te evalueer. Die gemengde-oksied dunlae/anodes IS d.m.v. die volgende analitiesetegnieke gekarakteriseer: termiese-gravimetriese analise (TGA), skandeerelektronmikroskopie (SEM), atoomkragmikroskopie (AFM), elementverstrooiingsenergie- X-straalanalise (EDX), X-straaldiffraksie (XRD), Rutherford terug-verstrooiingspektroskopie (RBS), partikel-geinduseerde X-straal emissie (PIXE), en elektrochemiese metings. 'n Verskeidenheid elektrodes van verskillende materiale is berei en hul potensiaal as oksidasie-kataliste vir organiese besoedelingsmiddels in afloopwater bepaal. Hierdie elektrodes het die volgende ingesluit: Ti/Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 en Ti/RhOx-Ir02. Gedurende elektrolise is fenol elektrochemies afgebreek tot verskillende vlakke, afhangende van die tipe elektrode. Die oksidasietempo het egter nie alleen van die chemiese samestelling van die elektrode afgehang nie, maar ook van die morfologie van die okside, wat op hulle beurt van die voorbereidingsprosedure afgehang het. Daar is bevind dat die Ti/Sn02-Ru02-Ir02 elektrode die mees effektiewe oppervlakke vir die afbreek van fenol is. Hier het die oksidasie van fenol by 'n potensiaal van 200 mV plaasgevind. Die aktiwiteite van die katalitiese sisteme IS bepaal op grond van hulle fenolverwyderingsdoeltreffendheid. Die kinetika van die reaksies is ook bepaal. Al die elektrodes het >90% fenolverwyderingsdoeltreffendheid getoon en die reaksietempos was van die eerste-orde. Deur van analitiese tegnieke soos hoëdrukvloeistofchromatografie (HPLC) gebruik te maak is die afbreekprodukte van fenol geïdentifiseer en 'n skema vir die elektrochemiese afbreek van fenol uitgewerk. Daar is bevind dat bensokinoon gevorm het, wat later oksidasie ondergaan het om karboksielsure te vorm.
Rogerson, Martin. "An NMR study of molecular dynamics in organic crystalline compounds." Thesis, University of St Andrews, 1995. http://hdl.handle.net/10023/14804.
Full textKruger, Elna. "Ionic liquids as media for electro-organic synthesis." Thesis, Nelson Mandela Metropolitan University, 2007. http://hdl.handle.net/10948/538.
Full textMafatle, Tsukutlane J. P. "Homogenous and heterogenous catalytic activity of metallophthalocyanines towards electrochemical detection of organic compounds." Thesis, Rhodes University, 1998. http://hdl.handle.net/10962/d1004974.
Full textDelsorbo, Carter A., Annie B. McCullough, Pau Peiro'Vila, Lyndsey B. Pulliam, Alyssa N. Rojas, Kayla M. Sager, and Dennis L. Ashford. "Ruthenium Compounds for Photodynamic Chemotherapeutics and Solar Fuel Generation." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/156.
Full textReis, Adriana Karla Cardoso Amorim. "Análise conformacional das α-etilsulfinil- e α-etilsulfonil-acetofenonas-para-substituídas; α-metiltio, α-dietoxifosforilacetofenonas-para-substituídas e suas formas mono- e di-oxigenadas." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/46/46135/tde-22082014-113026/.
Full textThis thesis reports the conformational and electronic interaction studies of some: a) α-ethylsulfinyl- (Ia) and α-ethylsulfonyl- (Ib) para-substituted acetophenones Y-PhC(O)CH2SOnEt [I, n=1 (a) and n=2 (b)]; b) α-methylthio-α-diethoxyphosphoryl-para-substituted acetophenones (IIa) and their corresponding mono- (IIb) and di- (IIc) oxygenated derivatives Y-PhC(O)CH[SOnMe][P(O)(OEt2)] [II, n=0 (a), n=1 (b)] and n=2 (c)]; c) α-bromo, α- ethylsulfonyl-para-substituted acetophenones Y-PhC(O)[Br][SO2Et] (III). This study was performed by means of Infrared, Nuclear Magnetic Resonance, Ultraviolet spectroscopies, ab initio computations and X-ray diffraction analysis. For the α-ethylsulfinylacetophenones (Ia) the cis conformer predominates over the gauche one while in the case of the α-ethylsulfonylacetophenones (Ib) the gauche conformer is the more stable relative to the quasi-cis one. The α-methylthio-α-diethoxyphosphoryl acetophenones (IIa) present only a single stable conformer which bears the (SMe) group in a syn-clinal (gauche) geometry and the [P(O)(OEt2)] group in the quasi-periplanar (quasi-cis) geometry with respect to the carbonyl group. The α-methylsulfinyl-α-diethoxyphosphoryl acetophenones (IIb) display two stable conformations corresponding each one to a different diastereomer. The most stable conformer CSSS presents the methylsulfinyl group [MeS(O)] in a quasi-periplanar (quasi-cis) geometry and the diethoxyphosphoryl group [P(O)(OEt2)] in a anti-clinal (gauche) geometry relative to the carbonyl group. The second less stable conformer corresponds to the CRSS diastereomer and displays both the [MeS(O)] and the [P(O)(OEt2)] groups in a syn-clinal (gauche) geometry. The α-methylsulfonyl-α-diethoxyphosphoryl acetophenones (IIc) presents only a single stable conformer bearing both the [MeSO2] and [P(O)(OEt)2] groups in a sin-clinal geometry with respect to the carbonyl group. The α-bromo-α-ethylsulfonylacetophenones III present a single stable conformation bearing the the [SO2Et] group in a syn-periplanar (quasi-cis) geometry and the [Br] atom in a syn-clinal (gauche) geometry relative to the carbonyl group.
Hunter, James Freeman. "Oxidation of atmospheric organic carbon : interconnecting volatile organic compounds, intermediate-volatility organic compounds, and organic aerosol." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97794.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 101-110).
.Organic molecules have many important roles in the atmosphere, acting as climate and biogeochemical forcers, and in some cases as toxic pollutants. The lifecycle of atmospheric organic carbon is extremely complex, with reaction in multiple phases (gas, particle, aqueous) and at multiple timescales. The details of the lifecycle chemistry (especially the amount and properties of particles) have important implications for air quality, climate, and human and ecosystem health, and need to be understood better. Much of the chemical complexity and uncertainty lies in the reactions and properties of low-volatility oxidized intermediates that result from the oxidation of volatile organic precursors, and which have received comparatively little study thus far. This thesis describes three projects that link together the entire chain of oxidation (volatile to intermediate to condensed) in an effort to improve our understanding of carbon lifecycle and aerosol production. Laboratory studies of atmospherically relevant aerosol precursors show that the slow oxidation of intermediates is critical to explaining the yield and properties of aerosol under highly oxidized ("aged") conditions, and that the production of organic particles is significantly increased when intermediates are fully oxidized. This aging process is a strong function of molecular structure, and depends on aerosol concentration through the phenomenon of condensational trapping. Further laboratory studies of a series of (poly)cyclic 10 carbon alkanes show that structural effects are largely explained through fragmentation reactions, and that more generally, carbon-carbon bond scission is a ubiquitous and important reaction channel for oxidized intermediates. Finally, direct measurement of oxidized intermediate compounds in field studies shows that these compounds are abundant and important in the ambient atmosphere, with concentrations and properties in between those of volatile and particulate organic compounds. Together with other co-located measurements and complementary techniques, this enables estimates of emission, oxidation, and deposition to be constructed. The results from this thesis can be used to inform more sophisticated models of atmospheric organic carbon cycling, and to improve prediction of organic particulate matter concentrations.
by James Freeman Hunter.
Ph. D. in Environmental Chemistry
Gonçalves, Márcia Regina. "Síntese, caracterização e estudo fotofísico e eletroquímico de compostos polipiridínicos de Re(I) e ciclometalados de Ir(III) e aplicação desses compostos em dispositivos eletroluminescentes." reponame:Repositório Institucional da UFABC, 2018.
Find full textTese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência e Tecnologia/Química, Santo André, 2018.
Neste trabalho foram estudadas as propriedades fotofisicas e eletroquimicas dos compostos polipiridinicos fosforescentes de Re(I), fac-[ReCl(CO)3(N^N)] e fac-[Re(PPh3)(CO)3(N^N)]+, em que N^N = 1,10-fenantrolina (phen), 4,7-dimetil-1,10-fenantrolina (Me2phen) ou 4,7-dimetoxi-1,10-fenantrolina ((MeO)2phen) e PPh3 = trifenilfosfina e dos compostos fosforescentes ciclometalados de Ir(III), mer-[Ir(ppy)2(L^X)], em que L^X= 4,4fff'-(1,4-fenileno-bis-(2,2f,6f,2ff-terpiridina)) (tpy), carboxilato de 3-iodopiridinilmetila (Ipic) e ppy = 2-fenilpiridina. Ademais, o desempenho de dispositivos eletroluminescentes emissores de luz com esses compostos foi investigado por meio da capacidade de injecao e transporte de carga e transferencia de energia entre matriz e dopante. Os compostos foram sintetizados, purificados, caracterizados por meio de espectroscopias UV-visivel, na regiao do infravermelho, IV, e ressonancia magnetica nuclear de hidrogenio, 1H RMN. Os compostos de Re(I) e Ir(III) se encontram nas conformacoes facial e meridional, respectivamente.Nos espectros de absorcao dos compostos fac-[ReL(CO)3(N^N)], L = Cl e PPh3, e mer-[Ir(ppy)2(L^X)] foram observadas duas regioes: uma de mais alta energia, atribuida as transicoes intraligantes (IL) e, uma de menor energia, atribuida as transicoes de transferencia de carga do metal para o ligante (MLCT). Foi investigada a emissao desses compostos em solucao e em meio rigido, que pode ser atribuida ao estado excitado triplete de energia mais baixa. Para os compostos de Re(I), a temperatura ambiente, essa emissao pode ser atribuida principalmente ao estado excitado triplete de transferencia de carga do metal para o ligante polipiridinico (3MLCTRe¨N^N*) e que, em meio rigido, apresenta um maior carater do estado excitado triplete centrado no ligante (3IL), observando-se a inversao entre esses estados para os compostos com os ligantes polipiridinicos Me2phen e ((MeO)2phen. Para os compostos de Ir(III), a temperatura ambiente, a emissao pode ser atribuida ao estado excitado triplete de transferencia de carga do metal para o ligante auxiliar 3MLCTIr+ppy¨L^N, e que, em meio rigido, para o composto mer-[Ir(ppy)2(Ipic)], ocorre a inversao entre os estados 3MLCT e 3IL e, portanto, a emissao e atribuida a este ultimo estado excitado. Os tempos de vida obtidos para os compostos de Re(I), 0,18-2,52 ¿Ês, e de Ir(III), 60 ns - 0,43 ¿Ês, sao consistentes com estados emissores tripletes. Os rendimentos quanticos, constantes de decaimento radiativas e nao radiativas, potenciais de oxidacao e reducao tambem foram avaliados. Os calculos dos niveis de energia HOMO (highest occupied molecular orbital) e do LUMO (lowest unoccupied molecular orbital) foram realizados e comparados aos do polimero poli(vinil)carbazol (PVK).
In this work, both photophysical and electrochemical properties of phosphorescent polypyridyl Re(I) compounds, fac-[ReCl(CO)3(N^N)] and fac-[Re(PPh3)(CO)3(N^N)]+, N^N = 1,10-phenanthroline (phen), 4,7-dimethyl-1,10- phenanthroline (Me2phen) and 4,7-dimethoxi-1,10-phenanthroline ((MeO)2phen) and PPh3 = triphenylphosphine and phosphorescent cyclometalated Ir(III) complexes, mer-[Ir(ppy)2(L^X)], where L^X= 4¿,4¿¿¿¿-(1,4-Phenylene)bis(2,2¿:6¿,2¿¿-terpyridine) (tpy), 3-iodopyridine-2-carboxylate (Ipic) e ppy = 2-phenylpyridine, were investigated. Furthemore, the performance of electroluminescent devices by means of the charge injection ability was investigated as well as transport and energy transfer between the host and guest. These compounds were synthesized, purified and characterized by Uv-visible, infrared and proton nuclear magnetic resonance, 1H NMR, spectroscopies. Re(I) and Ir(III) compounds are in facial and meridional geometries, respectively. In the absorption spectra of the fac-[ReL(CO)3(N^N)], L = Cl and PPh3, and mer-[Ir(ppy)2(L^X)] are observed two bands: the higher energy one, assigned to intraligand transitions (IL), and the lower energy one, assigned to metal to ligand charge transfer (MLCT) transition. The emission of the compounds was investigated in fluid and rigid media, which could be ascribed to the low-lying triplet excited state. For the Re(I) compounds, at room temperature, the emission is characteristic of the triplet metal-to-ligand charge transfer (3MLCTRe¨N^N*) and, in rigid media, shows some degree of the triplet ligand-centered (3IL) emission, observing the inversion between these states for the compounds with the polypyridine ligands Me2phen and (MeO)2phen. For the Ir(III) compounds, at room temperature, the emission could be assigned to the triplet low-lying metal-to-ligand charge transfer 3MLCTIr+ppy¨L^N, and, in rigid media, for the mer-[Ir(ppy)2(Ipic)] compound occurs the inversion between the 3MLCT and 3IL excited states, therefore, the emission is ascribed from the latter excited state. The lifetime obtained for the the Re(I) compounds, 0.18-2.52 ¿Ês, and for the Ir(III) compounds, 60 ns - 0.43 ¿Ês, are consistent with triplet excited states. The emission quantum yields, radiative and non-radiative rates, oxidation and reduction potentials were also evaluated. The calculations of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels were performed and the values compared to the poly(vinyl)carbazol polymer (PVK).
Zhou, Xiaofei. "The electrochemistry of organic nanoparticles." Thesis, University of Oxford, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728824.
Full textOjala, S. (Satu). "Catalytic oxidation of volatile organic compounds and malodorous organic compounds." Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:9514278704.
Full textBooks on the topic "Organic compounds Organic electrochemistry"
A, Jannakoudakis Demetrios, ed. Electrocatalysis for organic synthesis. New York: Wiley, 1986.
Find full textM, Averʹi͡a︡nova N., and Rotenberg Z. A, eds. Ėlektrokhimicheskiĭ sintez khlororganicheskikh soedineniĭ. Moskva: "Nauka", 1987.
Find full textBudniok, Antoni. Materiały elektrodowe stosowane w organicznej syntezie elektrochemicznej. Katowice: Uniwersytet Śląski, 1993.
Find full textBook chapters on the topic "Organic compounds Organic electrochemistry"
Rondinini, Sandra, and Alberto Vertova. "Electroreduction of Halogenated Organic Compounds." In Electrochemistry for the Environment, 279–306. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68318-8_12.
Full textVolke, Jiří, and František Liška. "Reactions of Organic Compounds at Electrodes." In Electrochemistry in Organic Synthesis, 45–139. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78699-0_3.
Full textKotz, John C. "The Electrochemistry of Transition Metal Organometallic Compounds." In Topics in Organic Electrochemistry, 81–176. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2034-8_3.
Full textHendrickson, W. A., and M. C. Palazzotto. "Photoinitiator Activity, Electrochemistry, and Spectroscopy of Cationic Organometallic Compounds." In Photosensitive Metal—Organic Systems, 411–30. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/ba-1993-0238.ch021.
Full textTorriero, Angel A. J., and Douglas R. MacFarlane. "Electrochemical Reaction of Organic Compounds in Ionic Liquids." In Electrochemistry in Ionic Liquids, 435–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15132-8_15.
Full textDryhurst, Glenn. "Electrochemistry of Low Molecular Weight Organic Compounds of Biological Interest." In Comprehensive Treatise of Electrochemistry, 131–88. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2359-4_2.
Full textBeden, Bernard, Jean-Michel Léger, and Claude Lamy. "Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes." In Modern Aspects of Electrochemistry, 97–264. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3376-4_2.
Full textPletcher, Derek, and Frank C. Walsh. "Organic electrosynthesis." In Industrial Electrochemistry, 294–330. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2154-5_6.
Full text"Organoelemental Compounds." In Organic Electrochemistry, 777–85. CRC Press, 2000. http://dx.doi.org/10.1201/9781420029659-53.
Full text"Heterocyclic Compounds." In Organic Electrochemistry, 1329–76. CRC Press, 2015. http://dx.doi.org/10.1201/b19122-44.
Full textConference papers on the topic "Organic compounds Organic electrochemistry"
Syed, Yasir I., Chris Phillips, Davide Deganello, and Keir E. Lewis. "Exhaled Volatile Organic Compounds In COPD Exhaled Volatile Organic Compounds & COPD." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a4598.
Full textMcGehee, Mike. "Electrochemistry in Perovskite Solar Cells and Smart Windows." In 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.033.
Full textBuck, Manfred, Dinesh K. Aswal, and Anil K. Debnath. "Organic Monolayers, Networks, Electrochemistry: A Toolbox for the Nanoscale." In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530469.
Full textYost, C., B. Pacolay, and L. Coyne. "348. Monitoring Volatile Organic Compounds Samplers." In AIHce 2002. AIHA, 2002. http://dx.doi.org/10.3320/1.2766288.
Full textPlace, M. C. "Dissolved Organic Compounds in Produced Water." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/22780-ms.
Full textBarachevsky, Valery A. "Photochromic organic compounds with polyfunctional properties." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.340018.
Full textWolff, Marcus, Henry Bruhns, and Wenyi Zhang. "Photoacoustic detection of volatile organic compounds." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, Robert A. Lieberman, and Kyriacos Kalli. SPIE, 2011. http://dx.doi.org/10.1117/12.888966.
Full textHenley, Michael V., William R. Bradley, Sheryl E. Wyatt, G. M. Graziano, and J. R. Wells. "Atmospheric transformation of volatile organic compounds." In AeroSense 2000, edited by Patrick J. Gardner. SPIE, 2000. http://dx.doi.org/10.1117/12.394076.
Full textMuñoz-Aguirre, Severino, Carlos Martínez-Hipatl, Gilberto Camacho-Basilio, Juan Castillo-Mixcóatl, and Georgina Beltrán-Pérez. "Development of an Interferometric Gas Sensor to Detect Organic Volatile Compounds." In Organic Photonics and Electronics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ope.2006.optud9.
Full textSasaki, Takeo, Masashi Ikegami, Satoshi Kajikawa, and Yumiko Naka. "Photorefractive effect in ferroelectric liquid crystals containing oligo-thiophene chiral compounds." In SPIE Organic Photonics + Electronics, edited by Iam Choon Khoo. SPIE, 2013. http://dx.doi.org/10.1117/12.2022580.
Full textReports on the topic "Organic compounds Organic electrochemistry"
Wiberg, K. B. Energies of organic compounds. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/75255.
Full textWiberg, K. B. [Energies of organic compounds]. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/79710.
Full textWiberg, K. (Energies of organic compounds). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5484131.
Full textHites, R. A. Toxic organic compounds from energy production. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6150097.
Full textHites, R. A. Toxic organic compounds from energy production. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6263915.
Full textDix, K. Gas chromatographic determination of water in organic compounds and of organic compounds in water after steam distillations. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6783378.
Full textHoffman, F. Retardation of volatile organic compounds in ground water in low organic carbon sediments. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/39598.
Full textGu, B., and R. L. Siegrist. Alkaline dechlorination of chlorinated volatile organic compounds. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/419269.
Full textWiberg, K. B. Energies of organic compounds. Technical progress report. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/82275.
Full textJohn F. Schabron, Jr Joseph F. Rovani, and Theresa M. Bomstad. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/820761.
Full text