Academic literature on the topic 'Organic Light-emitting diode (OLED)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic Light-emitting diode (OLED).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organic Light-emitting diode (OLED)"

1

Hande, Savithri, and Prajna K B. "Survey on Organic Light Emitting Diode." International Journal of Innovative Science and Research Technology 5, no. 6 (July 2, 2020): 630–36. http://dx.doi.org/10.38124/ijisrt20jun492.

Full text
Abstract:
Organic light emitting diodes is a new display technology, which uses organic thin materials that are placed between conductors. When an electric current is applied, a bright light is emitted. OLEDs are thin, transparent, flexible, foldable displays. In 1987 researchers of Eastman Kodak company invented OLED diode technology. The principal inventors were Chemists Ching W. Tang and Steven Van Slyke. In 2001 they received an Industrial Innovation Award from the American Chemical Society for their contribution in organic light emitting diodes. In 2003, Kodak realised its first OLED display had 512 by 218 pixels, 2.2 inch. Two technologies necessary to make flexible OLEDs were invented by Researchers at Pacific Northwest National Laboratory and the Department of Energy. Many researchers are contributing to improve the OLED technology. In this paper we give a brief of what is OLED, types of OLED, different fabrication methods of OLED, advantages and disadvantages of OLED.
APA, Harvard, Vancouver, ISO, and other styles
2

Khoerun, Bobi, and Arief Udhiarto. "PENGARUH VARIASI SUHU LAMINATING, WAKTU ULTRASONIC CLEANING, KECEPATAN ROTASI SPIN COATING TERHADAP KARAKTERISASI ORGANIC LIGHT EMITTING DIODE (OLED)." JTT (Jurnal Teknologi Terapan) 5, no. 2 (October 30, 2019): 72. http://dx.doi.org/10.31884/jtt.v5i2.205.

Full text
Abstract:
Organic Light Emitting Diode (OLED) merupakan divais fotonik yang tersusun dari katoda sebagai sisi negatif, anoda sebagai sisi positif, dan sebuah lapisan emissive dari bahan organik yang dapat memancarkan cahaya ketika penghantar diberi arus listrik. Karakteristik arus yang dibutuhkan harus sesuai dengan karakteristik tahanan sehingga dapat menghasilkan fabrikasi OLED yang optimal. Teknik laminasi merupakan salah satu teknik yang digunakan dalam pembuatan Organic Light Emitting Diode (OLED) dengan cara menempatkan struktur OLED pada plastik laminasi. Tahun 2015, Adnan Fatahillah Afiff [1] memfabrikasi Organic Light Emitting Diode (OLED) menggunakan teknik laminasi tetapi hasil fabrikasi belum dapat memancarkan cahaya. Ada beberapa hal yang mempengaruhi karakterisasi OLED saat fabrikasi yaitu suhu laminating, waktu ultrasonic cleaning, dan kecepatan rotasi spin coating. Ketiga faktor tersebut akan mempengaruhi karakteristik arus yang dihasilkan dan dapat memaksimalkan fabrikasi OLED. Oleh karena itu diperlukan penelitian terkait pengaruh ketiga faktor tersebut terhadap karakteristik arus listrik pada OLED. Langkah-langkah yang dilakukan adalah menggunakan teknik laminasi dan memvariasikan waktu ultrasonic cleaning, kecepatan rotasi spin coating, dan suhu laminating. Arus listrik yang mengalir pada Organic Light Emitting Diode OLED dapat mencapai nilai paling tinggi pada saat waktu ultrasonic cleaning selama 15 menit, suhu laminating sebesar 130o C, dan kecepatan rotasi spin coating 4500 rpm.
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Taekyung, Kyung Hyung Lee, and Jun Yeob Lee. "Superb lifetime of blue organic light-emitting diodes through engineering interface carrier blocking layers and adjusting electron leakage and an unusual efficiency variation at low electric field." Journal of Materials Chemistry C 6, no. 31 (2018): 8472–78. http://dx.doi.org/10.1039/c8tc02286k.

Full text
Abstract:
An extremely long lifetime blue organic light-emitting diode (OLED) was developed through managing the electron density and an S-shaped variation of efficiency in blue fluorescent organic light-emitting diodes (FOLEDs) using carrier blocking layers and systematically analyzed in conjunction with the efficiency–lifetime interrelationship.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Ai. "The Design and Progress of Organic Light-Emitting Diode." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 343–48. http://dx.doi.org/10.54097/hset.v27i.3776.

Full text
Abstract:
Organic light emitting diode (OLED) is one of the main lighting devices and can be used as mobile phone screens, so its performance enhancement is worthy of an in-depth study. This paper discusses three types of devices with different light emitting principles in the history of OLED development in chronological order and their performances, as well as ways to enhance their external quantum efficiency (EQE). For fluorescent, phosphorescent and thermally activated delayed fluorescent (TADF) OLEDs, adding additional layers and doping are effective means of improving the performance. For fluorescent OLED, the EQE can be increased up to 11.5% by adding an efficiency enhancement layer and doping the emitting layer with a new blue dopant with a higher orientation coefficient. For phosphorescent OLED, a hole transport layer is utilized to block excitons within the FIrpic-doped emissive layer leading to an EQE of 16.7%. For TADF OLED, the soluble doped TADF OLEDs is helpful at improving the quantum efficiency up to 18.3%. This paper looks forward to the maturation of these strategies and their practical application, and the identification of more technologies that can enhance the performance of OLED devices to help make it more usable.
APA, Harvard, Vancouver, ISO, and other styles
5

YAMAGUCHI, Hajime, Kentaro MIURA, and Tomomasa UEDA. "Flexible Organic Light Emitting Diode (OLED) Display." Journal of The Institute of Electrical Engineers of Japan 132, no. 2 (2012): 77–80. http://dx.doi.org/10.1541/ieejjournal.132.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

POLOȘAN, Silviu. "ORGANIC LIGHT EMITTING DIODES (OLED)." Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 8, no. 1 (2023): 46–57. http://dx.doi.org/10.56082/annalsarsciphyschem.2023.1.46.

Full text
Abstract:
"Organic Light Emitting Diodes (OLED) now reach the third phase concerning efficiency. The first devices are based on pure organic materials, and the second and third generations are based on combinations between metals and organic ligands in so- called organometallics for which their emission external quantum efficiency is increased. The second generation is now widely used in large displays reaching high efficiency because of the spin-orbit coupling between metal and their ligands, which induces intersystem crossing processes. The third generation of OLED comprises an increased external quantum efficiency obtained by adequately choosing the ligands, reaching a theoretical value of 100%. These OLEDs will be briefly described with their advantages and the technologies necessary for next-generation displays."
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Yan, Lin Ding, Li-Ming Xiang, and Jian Pei. "Covalent Functionalized Conjugated Dendrimers for Organic Light Emitting Diodes: Synthesis, Characterization, and the Deep Blue Electroluminescence." Australian Journal of Chemistry 64, no. 2 (2011): 160. http://dx.doi.org/10.1071/ch10320.

Full text
Abstract:
Two deep blue-emitting dendrimers 11 and 12 with carbazole containing dendrons were developed in this contribution. The carbazole-containing units were introduced to tune the charge-transporting property of the desired dendrimers. The investigation of photophysical properties, electrochemical, and electroluminescence properties demonstrated that the balance between electron and hole transporting was achieved from both dendrimers. The preliminary organic light-emitting diode (OLED) fabrication achieved a pure blue colour with stable CIE chromaticity coordinates (X: 0.15–0.16, Y: 0.09–0.10) for 11 and 12. Single layer deep blue emitting diode devices with higher efficiency are achieved without the colour changing. The investigation of OLED performance indicates that dendrimers 11 and 12 are promising light-emitting materials with pure blue colour and good colour stability for OLEDs.
APA, Harvard, Vancouver, ISO, and other styles
8

Rahman, Nurul Hafizah A., Azrif Manut, and Mohamad Rusop. "Review on Electroluminescence Behaviour of Organic Light Emitting Diode." Advanced Materials Research 832 (November 2013): 455–59. http://dx.doi.org/10.4028/www.scientific.net/amr.832.455.

Full text
Abstract:
In this paper report a review on electroluminescent efficiency using a deoxyribonucleic acid (DNA) complex as an electron blocking layer (EBL) material in emitting organic light emitting diode (OLED). The resulting called BioLED showed a high luminous efficiency. The DNA-based BioLED was as much more efficient and brighter than their OLED counterparts. It is found the effect of EBL is to increase the device turn-on voltage for OLED structure. This is attributed to the fact that the DNA complex increases the series resistance of the device which is turn reduces the current through the device.
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Soon-Seok. "Parameter Analysis of an Organic Light-Emitting Diode (OLED)." Journal of the Korean Physical Society 53, no. 2 (August 14, 2008): 840–44. http://dx.doi.org/10.3938/jkps.53.840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cole, Cameron M., Susanna V. Kunz, Paul E. Shaw, Nico-Patrick Thoebes, Thomas Baumann, Eva Blasco, James P. Blinco, Prashant Sonar, Christopher Barner-Kowollik, and Soniya D. Yambem. "A printable thermally activated delayed fluorescence polymer light emitting diode." Journal of Materials Chemistry C 8, no. 37 (2020): 13001–9. http://dx.doi.org/10.1039/d0tc02735a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Organic Light-emitting diode (OLED)"

1

Rosenow, Thomas. "White Organic Light Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67342.

Full text
Abstract:
Die vorliegende Arbeit beschäftigt sich mit drei Ansätzen der hocheffizienten Erzeugung von weißem Licht mit organischen Leuchtdioden (OLEDs) auf der Basis kleiner Moleküle. Ein Ansatz kombiniert die Emission eines fluoreszenten und zweier phosphoreszenter Emitter in einer einzelnen Emissionsschicht. Da das Triplettniveau des verwendeten Blauemitters niedriger ist als die Triplettniveaus der phosphoreszenten Emitter, werden die Konzentrationen der Emitter so gewählt, dass ein Exzitonenübertrag zwischen ihnen unterbunden wird. Die strahlungslose Rekombination von Tripletts auf dem fluoreszenten Blauemitter begrenzt die Effizienz dieses Ansatzes, jedoch besticht die resultierende weiße OLED durch eine bemerkenswerte Farbstabilität. Der zweite Ansatz basiert auf dem “Triplet Harvesting” Konzept. Ansonsten ungenutzte Triplett Exzitonen werden von einem fluoreszenten Blauemitter auf phosphoreszente Emitter übertragen, wodurch interne Quanteneffizienzen bis zu 100 % möglich sind. Der zur Verfügung stehende Blauemitter 4P-NPD erlaubt aufgrund seines niedrigen Triplettniveaus nicht den Triplett übertrag auf einen grünen Emitter. Daher wird das “Triplet Harvesting” auf zwei unterschiedliche phosphoreszente Emitter, anhand des gelben Emitters Ir(dhfpy)2acac und des roten Emitters Ir(MDQ)2acac untersucht. Es wird gezeigt, dass beide phosphoreszente Emitter indirekt durch Exzitonendiffusion angeregt werden und nicht durch direkte Rekombination von Ladungsträgern auf den Emittermolekülen. Eine genaue Justage der Anregungsverteilung zwischen den phosphoreszenten Emittern ist durch Schichtdickenvariation in der Größenordnung üblicher Schichtdicken möglich. Spätere Produktionsanlagen brauchen daher keinen speziellen Genauigkeitsanforderungen gerecht zu werden. Der dritte und zugleich erfolgreichste Ansatz beruht auf einer Weiterentwicklung des zweiten Ansatzes. Er besteht zunächst darin den Tripletttransfer auf den Übertrag von einem fluoreszenten blauen auf einen phosphoreszenten roten Emitter zu beschränken. Die sich ergebende spektrale Lücke wird durch direktes Prozessieren einer unabhängigen voll phosphoreszenten OLED auf diese erste OLED gefüllt. Verbunden sind beide OLEDs durch eine ladungsträgererzeugende Schicht, in welcher durch das angelegte Feld Elektron/Loch-Paare getrennt werden. Dieser Aufbau entspricht elektrisch der Reihenschaltung zweier OLEDs, welche im Rahmen dieser Arbeit individuell untersucht und optimiert werden. Dabei ergibt sich, dass die Kombination von zwei verschiedenen phosphoreszenten Emittern in einer gemeinsamen Matrix die Ladungsträgerbalance in der Emissionszone sowie die Quanteneffizienz der vollphosphoreszenten OLED stark verbessert. Als Ergebnis steht eine hocheffiziente weiße OLED, welche durch die ausgewogene Emission von vier verschiedenen Emittern farbstabiles Licht mit warm weißen Farbkoordinaten (x, y) = (0.462, 0.429) und ausgezeichneten Farbwiedergabeeigenschaften (CRI = 80.1) erzeugt. Dabei sind die mit diesem Ansatz erreichten Lichtausbeuten (hv = 90.5 lm/W) mit denen von voll phosphoreszenten OLEDs vergleichbar.
APA, Harvard, Vancouver, ISO, and other styles
2

Jokinen, K. (Karoliina). "Color tuning of organic light emitting devices." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215891.

Full text
Abstract:
Abstract This thesis reports the investigation of color tuning of two types of organic light emitting devices, transistors (OLETs) and diodes (OLEDs). Voltage tunable two color light emission was demonstrated for OLETs. For OLEDs, two kinds of color tuning methods were presented. For these, color tuning was realized using thermal annealing which changes the light emission color of the devices permanently. The two color light emission of the OLETs, employing a three-layer heterostructure device configuration, occurs in red and green. The device structure was first utilized for producing red light emission originating from a light emission layer made of Alq3:DCM that was deposited between the hole and electron transport layers made of DH-4T and DFH-4T, respectively. After modifying the fabrication process in order to raise the device performance by acquiring smoother active layers green light could also be produced by the devices. Green light emission originated from the electron transport layer. This took place during the electron transport mode, while the red emission was apparent while hole transport was active. The color of the light emission was therefore demonstrated as being tunable by voltage. For OLEDs, devices with one active polymeric layer, undoped and doped, were investigated. The undoped OLEDs had the light emission layer made of blue light emitting polyfluorene PFO. The OLEDs suffered from keto-defects shifting their light emission color from blue to greenish shade, a common problem occurring in widely used blue light emitting polyfluorenes. The work conducted and reported in this thesis demonstrated that thermal annealing can be used for diminishing this undesired green emission. For the doped OLEDs with the light emission layer made of a PFO:F8BT blend, color tuning was realized using thermal annealing as well. As a result of exposure to thermal treatment, the light emission color of these devices which was green as fabricated was converted to white. The phenomenon behind this effect was explained by phase separation between the host and dopant polymers of the light emission layer
Tiivistelmä Tässä väitöskirjatyössä tutkitaan orgaanisten valoa emittoivien transistoreiden (OLET) ja diodien (OLED) värinsäätöä. Työssä tehtiin kolmikerrosrakenteisia OLETeja, jotka kykenevät emittoimaan valoa kahdella värillä ja joiden emittointiväri on jännitesäädettävissä. OLEDien osalta toteutettiin kaksi erilaista värinsäätömenetelmää, joissa molemmissa hyödynnettiin kuumennusta pysyvän värinvaihdon aikaansaamiseksi. Tutkitut OLETit emittoivat punaista ja vihreää valoa. Aluksi tutkittiin vastaavia komponentteja, jotka emittoivat vain punaista valoa. Näissä komponenteissa punaisen valon tuotti keskimmäinen valoemitterinä toiminut kerros (Alq3:DCM), jonka ala- ja yläpuolella olivat aukko- ja elektronijohtavat kerrokset (DH-4T ja DFH-4T). Komponenteilla saatiin tuotettua myös vihreää valoa, kun valmistusprosessia kehitettiin tasaisempien aktiivisten materiaalikerrosten valmistamiseksi. Vihreän valon todettiin olevan elektronijohtavan kerroksen tuottamaa. Kaksiväriemittoiva OLET tuotti vihreää valoa ollessaan elektronijohtavassa tilassa, ja punaista valoa aukkojohtavassa tilassa, emittointivärin ollessa näin jännitesäädettävissä. Työssä tutkittujen OLEDien valon emittointi perustui polymeerikerrokseen, joka oli toisissa OLEDeissa seostamaton ja toisissa seostettu. Seostamattomien OLEDien aktiivinen kerros oli tehty sinistä valoa tuottavasta polyfluoreenista (PFO), jossa usein ilmenee keto-virheitä, joiden vuoksi PFO:sta tehtyjen OLEDien valo muuttuu sinisestä vihertäväksi. Työssä osoitettiin, että kuumennusta voidaan käyttää sinisen emittointivärin palauttamiseen. Seostettujen OLEDien (PFO:F8BT) osalta kuumennusta käytettiin komponenttien emittointivärin muuttamiseksi alkuperäisestä emittointiväristä vihreästä valkoiseksi. Tämä ilmiö selitettiin valoa emittoivan kerroksen polymeerien välisellä faasierkaantumisella
APA, Harvard, Vancouver, ISO, and other styles
3

Thomschke, Michael. "Inverted Organic Light Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-106255.

Full text
Abstract:
This study focuses on the investigation of the key parameters that determine the optical and electrical characteristics of inverted top-emitting organic light emitting diodes (OLED). A co-deposition of small molecules in vacuum is used to establish electrically doped films that are applied in n-i-p layered devices. The knowledge about the functionality of each layer and parameter is important to develop efficient strategies to reach outstanding device performances. In the first part, the thin film optics of top-emitting OLEDs are investigated, focusing on light extraction via cavity tuning, external outcoupling layers (capping layer), and the application of microlens films. Optical simulations are performed to determine the layer configuration with the maximum light extraction efficiency for monochrome phosphorescent devices. The peak efficiency is found at 35%, while varying the thickness of the charge transport layers, the semitransparent anode, and the capping layer simultaneously. Measurements of the spatial light distribution validate, that the capping layer influences the spectral width and the resonance wavelength of the extracted cavity mode, especially for TM polarization. Further, laminated microlens films are applied to benefit from strong microcavity effects in stacked OLEDs by spatial mixing of external and to some extend internal light modes. These findings are used to demonstrate white top-emitting OLEDs on opaque substrates showing power conversion efficiencies up to 30 lm/W and a color rendering index of 93, respectively. In the second part, the charge carrier management of n-i-p layered diodes is investigated as it strongly deviates from that of the p-i-n layered counterparts. The influence of the bottom cathode material and the electron transport layer is found to be negligible in terms of driving voltage, which means that the assumption of an ohmic bottom contact is valid. The hole transport and the charge carrier injection at the anode is much more sensitive to the evaporation sequence, especially when using hole transport materials with a glass transition temperature below 100°C. As a consequence, thermal annealing of fabricated inverted OLEDs is found to drastically improve the device electronics, resulting in lower driving voltages and an increased internal efficiency. The annealing effect on charge transport comes from a reduced charge accumulation due to an altered film morphology of the transport layers, which is proven for electrons and for holes independently. The thermal treatment can further lead to a device degradation. Finally, the thickness and the material of the blocking layers which usually control the charge confinement inside the OLED are found to influence the recombination much more effectively in inverted OLEDs compared to non-inverted ones.
APA, Harvard, Vancouver, ISO, and other styles
4

Kimyonok, Alpay. "Side-chain functionalized luminescent polymers for organic light-emitting diode applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29649.

Full text
Abstract:
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009.
Committee Chair: Weck, Marcus; Committee Member: Christopher Jones; Committee Member: Jean-Luc Bredas; Committee Member: Joseph Perry; Committee Member: Laren M. Tolbert. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, Duncan. "The Optical Outcoupling of Organic Light Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1218042169046-69458.

Full text
Abstract:
OLEDs have seen a strong growth in development in recent years, however up to 80% of emitted light may be lost within the OLED stack and in the substrate layers. This thesis investigates the effects of the layer stack on the OLED properties and also studies a number of approaches to substrate structuring and treatment in order to couple light from the devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Schober, Matthias. "Charge Transport in Organic Light-Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-100071.

Full text
Abstract:
This thesis is about the development and validation of a numerical model for the simulation of the current-voltage characteristics of organic thin-film devices. The focus is on the analysis of a white organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emitters. The simulation model describes the charge transport as a one-dimensional drift-diffusion current and is developed on the basis of the Scharfetter-Gummel method. It incorporates modern theories for the charge transport in disordered organic materials, which are considered by means of special functions for the diffusion coefficient and the charge-carrier mobility. The algorithm is designed such that it can switch between different models for mobility and calculates both transient and steady-state solutions. In the analysis of the OLED, electron and hole transport are investigated separately in series of single-carrier devices. These test devices incorporate parts of the layers in the OLED between symmetrically arranged injection layers that are electrically doped. Thereby, the OLED layer sequence is reconstructed step by step. The analysis of the test devices allows to obtain the numerous parameters which are required for the simulation of the complete OLED and reveals many interesting features of the OLED. For instance, it is shown how the accumulation of charge carriers in front of an interface barrier increases the mobility and the transfer rate across the interface. Furthermore, it is demonstrated how to identify charge-trapping states. This leads to the detection of deep trap states in the emission zone of the OLED -- an interesting aspect, since these states can function as recombination centers and may cause non-radiative losses. Moreover, various other effects such as interface dipoles and a slight freeze-out of active electric dopants in the injection layers are observed. In the simulations of the numerous test devices, the parameters are consistently applied. Thereby, the agreement between simulation and experiment is excellent, which demonstrates the correctness and applicability of the developed model. Finally, the complete OLED is successfully simulated on the basis of the parameters that have been obtained in the analysis of the single-carrier devices. The simulation of the OLED illustrates the transport levels of electrons and holes, and proofs that the OLED efficiency is low because of non-radiative recombination in the interlayer between the phosphorescent and fluorescent emission zones. In this context, many interesting issues are discussed, e.g. the applicability of the Langevin model in combination with the mobility models for the description of recombination and the relevance of interactions between free charge carriers and excitons.
APA, Harvard, Vancouver, ISO, and other styles
7

Hill, Duncan. "The Optical Outcoupling of Organic Light Emitting Diodes." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23702.

Full text
Abstract:
OLEDs have seen a strong growth in development in recent years, however up to 80% of emitted light may be lost within the OLED stack and in the substrate layers. This thesis investigates the effects of the layer stack on the OLED properties and also studies a number of approaches to substrate structuring and treatment in order to couple light from the devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Cioarec, Cristina. "Optimisation d'une source lumineuse OLED (organic light emitting diode) pour application en diagnostic biomoléculaire." Toulouse 3, 2011. http://www.theses.fr/2011TOU30044.

Full text
Abstract:
Le besoin de dispositifs médicaux à faible coût a engendré une révolution dans l'innovation et la mise en œuvre de nouvelles technologies qui vont complètement changer notre façon de pratiquer la médicine. Il s'agit des dispositifs Lab-on-Chip. Se sont des systèmes d'analyses médicales miniaturisés qui réduiront le prix sur une large gamme de tests et de diagnostics tout en améliorant leur sensibilité. Le but de cette thèse est de démontrer la faisabilité du dispositif Lab-on-Chip afin de répondre à ce besoin, en utilisant un dispositif microfluidique combiné à des sources de lumière intégrée et des photo-détecteurs pour obtenir un système d'analyse miniaturisés. Les OLEDs sont des sources de lumière compactes, peu coûteuses, biodégradables, et donnant la potentialité d'obtenir un éclairage homogène sur des surfaces plates, ce qui les rendent des candidates idéales dans les applications Lab-on-Chip comme source d'excitation. Pour réaliser le dispositif Lab-on-Chip, il est important d'éviter le chevauchement des spectres d'émission de la source lumineuse et celui du fluorophore commercial utilisé pour les tests biologiques. Pour cela on a optimisé les dispositifs OLED pour obtenir une émission spectrale d'une longueur d'onde de 435 nm (OLED conventionnelle) et respectivement de 425 nm (microcavité forte OLED). Pour réaliser des microcavités fortes OLED, nous avons optimisé l'anode en argent du dispositif en utilisant des films de nucléation (germanium, chrome, carbone amorphe hydrogéné). Les couches d'argent déposées, ont été analysées par les techniques : MEB, profilométrie optique, angles de contact, ellipsométrie et XPS
The need of low cost medical devices, has led to a revolution for the innovation and the implementation of new technologies, which will completely change the way we practice medicine. These are the Lab-on-Chip devices. They are miniaturized systems that are used for medical tests, which will reduce the cost for a wide range of tests and diagnostics while enhancing the sensitivity. The aim of this thesis is to demonstrate the feasibility of the Lab-on-Chip to meet this need, by using a microfluidic device combined with integrated light sources and photodetectors in order to obtain a miniaturized analysis system. The OLEDs are compact, inexpensive, biodegradable light sources, and giving the potential to obtain a uniform illumination on flat surfaces, which makes them ideal candidates for applications in the Lab-on-Chip devices, as an excitation source. To realise the Lab-on-Chip device, it is important to avoid overlapping of the emission spectras of the light source and the commercial fluorophore used for biological tests. In order to obtain a spectral emission at a wavelength of 435 nm (conventional OLED) and 425 nm respectively (strong microcavity OLED), we optimized the OLED devices. To achieve strong microcavity OLEDs, we have improved the silver anode, by using nucleation films (germanium, chromium, hydrogenated amorphous carbon). The deposited silver layers, were analyzed by different techniques, such as: SEM, optical profilometry, contact angle, ellipsometry and XPS
APA, Harvard, Vancouver, ISO, and other styles
9

Schwartz, Gregor. "Novel Concepts for High-Efficiency White Organic Light-Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1217967185179-03950.

Full text
Abstract:
Diese Arbeit behandelt neue Konzepte zur Realisierung hocheffizienter Weißlicht emittierender organischer Leuchtdioden (OLEDs), wobei blaue fluoreszierende Emitter mit grünen und roten phosphoreszierenden Emittern kombiniert werden. Bisherige Ansätze zur Erreichung höchster Quantenausbeuten basieren auf der ausschließlichen Verwendung phosphoreszierender Emitter, da diese prinzipiell 100% der elektrisch erzeugten Exzitonen in Licht umwandeln können. Allerdings sind speziell OLEDs mit phosphoreszierenden tiefblauen Emittern heutzutage nach wie vor nicht langzeitstabil. Andererseits gibt es zwar sehr stabile fluoreszierende Emitter auch im tiefblauen Spektralbereich, jedoch kann eine rein fluoreszierende OLED aus spinstatistischen Gründen maximal nur ein Viertel der erzeugten Exzitonen in Licht umwandeln. Für eine ernsthafte Verwendung von OLEDs als Lichtquellen sind sowohl die Umwandlungseffizienz elektrischer Leistung in Lichtleistung im sichtbaren Spektralbereich, als auch ihre Langzeitstabilität entscheidend. Ein Kompromiss lässt sich daher mit der Kombination von blauen fluoreszierenden Emittern mit grünen und roten phosphoreszierenden Emittern erzielen. Die beiden in dieser Arbeit entwickelten Konzepte unterscheiden sich in der energetischen Lage des Triplettniveaus des jeweils verwendeten fluoreszierenden blauen Emitters relativ zu den verwendeten phosphoreszierenden Emittern. Das erste Konzept verwendet einen fluoreszierenden blauen Emitter mit niedriger Triplettenergie, weshalb er bei direktem Kontakt mit den phosphoreszierenden Emittern deren Phosphoreszenz löscht. Eine Exzitonen blockierende Zwischenschicht unterdrückt diesen Verlustmechanismus. Dies wird sowohl in Photolumineszenzexperimenten als auch in OLEDs nachgewiesen. Weiterhin muss die Zwischenschicht gleichzeitig die Exzitonengeneration auf beiden Seiten gewährleisten, sie muss also bipolare Transporteigenschaften haben. Mischschichten aus einem Elektronen transportierenden und einem Löcher transportierenden Material werden mit der Methode der raumladungsbegrenzten Ströme in unipolaren Strukturen untersucht, um ihren Einfluss auf die Ladungsträger- und Exzitonenbalance in OLEDs zu erklären. Das zweite Konzept verwendet einen fluoreszierenden blauen Emitter mit hoher Triplettenergie. Dadurch ergeben sich einige Vorteile. Phosphoreszenz wird nicht mehr gelöscht, weshalb keine Zwischenschicht mehr notwendig ist. Zusätzlich können außerdem die auf dem blauen fluoreszierenden Emitter erzeugten Triplettexzitonen für die Lichtemission verwendet werden, indem man sie auf die phosphoreszierenden Emitter überträgt. Damit ist es grundsätzlich möglich, 100% der elektrisch erzeugten Exzitonen für die Lichtemission zu verwenden, obwohl ein fluoreszierender Emitter verwendet wird. Allerdings ist dabei darauf zu achten, dass die Singulettexzitonen nicht ebenfalls übertragen werden, da sonst kein Weißlicht mehr erzeugt werden kann. Es werden verschiedene OLED-Strukturen untersucht, um Singulett- und Triplettexzitonen so auf die jeweiligen Emitter zu verteilen, dass eine ausgewogene spektrale Balance der Emission erreicht wird. Ein zentraler Punkt ist dabei die Ausnutzung der unterschiedlich großen Diffusionslängen von Singulett- und Triplettexzitonen.
APA, Harvard, Vancouver, ISO, and other styles
10

Darade, Balasaheb S. "Hole-Confining Concept for Blue Organic Light Emitting Diode." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321370334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Organic Light-emitting diode (OLED)"

1

Jindi, Chen, and Wu Zhongzhi, eds. Bai guang OLED zhao ming: White OLED for lighting. Taibei Shi: Wu nan tu shu chu ban gu fen you xian gong si, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buckley, Alastair. Organic light-emitting diodes (OLEDs): Materials, devices and applications. Oxford: Woodhead Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsuboi, Taiju. Introduction to Organic Light Emitting Diode (OLED) Physics. Elsevier Science & Technology, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Instrumentation, Society Of Photo-Optical. Building European Oled Infrastructure: 6-7 June, 2005, Cambridge, United Kingdom (SPIE Conference Proceedings). SPIE-International Society for Optical Engine, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mazzeo, Marco, ed. Organic Light Emitting Diode. Sciyo, 2010. http://dx.doi.org/10.5772/254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Organic Light-emitting diode (OLED)"

1

Karatsu, Takashi. "Materials for Organic Light Emitting Diode (OLED)." In Electronic Processes in Organic Electronics, 227–51. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55206-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tominetti, Stefano, Jiabril Gigli, Sheng-Hsu Shih, Yu-Ting Su, and J. H. Jou. "Seal Encapsulation: OLED Sealing Processes." In Handbook of Organic Light-Emitting Diodes, 1–31. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-55761-6_23-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tominetti, Stefano, Jiabril Gigli, Sheng-Hsu Shih, Yu-Ting Su, and J. H. Jou. "Seal Encapsulation: OLED Sealing Processes." In Handbook of Organic Light-Emitting Diodes, 1–31. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-55761-6_23-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morena, Robert M., John F. Bayne, Jamie T. Westbrook, Sujanto Widjaja, and Lu Zhang. "Frit Sealing of OLED Displays." In Handbook of Organic Light-Emitting Diodes, 1–22. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-55761-6_24-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chin, Byung Doo. "Solution Deposition: Inkjet-Printed OLED." In Handbook of Organic Light-Emitting Diodes, 1–20. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-55761-6_40-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Seungbae. "Panel Performance of OLED Display." In Handbook of Organic Light-Emitting Diodes, 1–17. Tokyo: Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-55761-6_38-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsueda, Yojiro. "Driving Technologies for OLED Display." In Handbook of Organic Light-Emitting Diodes, 1–18. Tokyo: Springer Japan, 2022. http://dx.doi.org/10.1007/978-4-431-55761-6_39-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moro, Lorenza, Robert J. Visser, Bill MacDonald, Senthil Ramadas Kumar, Martin P. Rosenblum, Neil Morrison, Philipp Maydannik, Mikko Söderlund, and Kazuhiko Hirabayashi. "Barrier Film Development for Flexible OLED." In Handbook of Organic Light-Emitting Diodes, 1–37. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-55761-6_25-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Méhes, Gábor, Atula S. D. Sandanayaka, Jean-Charles Ribierre, and Kenichi Goushi. "Physics and Design Principles of OLED Devices." In Handbook of Organic Light-Emitting Diodes, 1–73. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55761-6_49-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chiba, Takayuki, Yong-Jin Pu, and Junji Kido. "White OLED (WOLED) and Charge Generation Layer (CGL)." In Handbook of Organic Light-Emitting Diodes, 1–22. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-55761-6_20-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organic Light-emitting diode (OLED)"

1

Özdemir, Orhan, Emine Tekin, Selin Pravadalı, Pelin Kavak, A. Evrim Saatci, F. Pınar Gökdemir, U. Deneb Menda, Nursel Can, and Kubilay Kutlu. "Electroluminescence property of organic light emitting diode (OLED)." In 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS. AIP, 2013. http://dx.doi.org/10.1063/1.4849295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kasahara, T., J. Mizuno, S. Hirata, T. Edura, S. Matsunami, C. Adachi, and S. Shoji. "Microfluidic organic light emitting diode (OLED) using liquid organic semiconductors." In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2012. http://dx.doi.org/10.1109/memsys.2012.6170256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chihaya Adachi, Toshinori Matsushima, Hajime Nakanotani, Daisuke Yokoyama, and Masayuki Yahiro. "Organic light emitting devices from OLED to organic laser diode." In 2007 Asia Optical Fiber Communication and Optoelectronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/aoe.2007.4410748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaerkkaeinen, Ari H. O., Juha T. Rantala, Maurice Jabbour, Chen Liang, Robert Bedford, Nasser Peyghambarian, Michael R. Descour, and Ghassan E. Jabbour. "Miniaturized organic light-emitting diode (OLED) light source for micro-optical systems." In Symposium on Integrated Optics, edited by Michael R. Descour and Juha T. Rantala. SPIE, 2001. http://dx.doi.org/10.1117/12.426861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Juhari, Nurjuliana, Wan Haliza Abd Majid, and Zainol Abidin Ibrahim. "Degradation of Single Layer MEH-PPV Organic Light Emitting Diode (OLED)." In 2006 IEEE International Conference on Semiconductor Electronics. IEEE, 2006. http://dx.doi.org/10.1109/smelec.2006.381030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ide, Nobuhiro, Takuya Komoda, and Junji Kido. "Organic light-emitting diode (OLED) and its application to lighting devices." In SPIE Optics + Photonics, edited by Zakya H. Kafafi and Franky So. SPIE, 2006. http://dx.doi.org/10.1117/12.683215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alessi, Paula J., and Patrick L. Cottone. "Color reproduction scheme for Kodak organic light emitting diode (OLED) technology." In 9th Congress of the International Color Association, edited by Robert Chung and Allan Rodrigues. SPIE, 2002. http://dx.doi.org/10.1117/12.464736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fellowes, David A., Michael V. Wood, Arthur R. Hastings, Jr., Amalkumar P. Ghosh, and Olivier Prache. "Active matrix organic light emitting diode (OLED)-XL life test results." In SPIE Defense and Security Symposium, edited by Randall W. Brown, Peter L. Marasco, Thomas H. Harding, and Sion A. Jennings. SPIE, 2008. http://dx.doi.org/10.1117/12.780147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Othman, Mohd Khairy, Muhamad Mat Salleh, and Abdul Fatah Awang Mat. "Organic Light Emitting Diode (OLED) Using Different Hole Transport and Injecting Layers." In 2006 IEEE International Conference on Semiconductor Electronics. IEEE, 2006. http://dx.doi.org/10.1109/smelec.2006.381034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aamoum, Aouatif, Said Taboukhat, Mina Bakasse, Anna Zawadzka, Robert Wielgosz, Anatoliy Andrushchak, Houda El Karout, and Bouchta Sahraoui. "Photoluminescence properties of Reactive Red 141 for organic light-emitting diode (OLED)." In 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). IEEE, 2022. http://dx.doi.org/10.1109/tcset55632.2022.9766928.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Organic Light-emitting diode (OLED)"

1

Cai, Yuankun. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/985317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Rui. Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1082959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

So, Franky. Manufacturable Corrugated Substrates for High Efficiency Organic Light-Emitting Diodes (OLEDs). Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1854330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Min. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1048510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, Lynn, Kelley Rountree, and Karmann Mills. Stress Testing of Organic Light- Emitting Diode Panels and Luminaires. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1437099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Forrest, Stephen R., Mark E. Thompson, and Mike Hack. Final Report: Stable, High Efficiency White Electrophosphorescent Organic Light Emitting Devices (OLED) by Reduced Molecular Dissociation. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1467469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Teng. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs). Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1048522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rountree, Kelly, Lynn Davis, Michelle McCombs, Karmann Mills, Jean Kim, and Roger Pope. Round 3 Update of Stress Testing Results for Organic Light-Emitting Diode Panels and Luminaires. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1618036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Lynn. Round 2 Update of Stress Testing Results for Organic Light-Emitting Diode Panels and Luminaires. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1644394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manna, Eeshita. Enhanced light out-coupling of organic light emitting devices (OLEDs) using novel plastic substrates and improved performance of OLED-based photoluminescence sensing platform. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1417487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography