Academic literature on the topic 'Organic photovoltaic solar cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic photovoltaic solar cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organic photovoltaic solar cell"
Haque, A., F. Sultana, M. A. Awal, and M. Rahman. "Efficiency Improvement of Bulk Heterojunction Organic Photovoltaic Solar Cell through Device Architecture Modification." International Journal of Engineering and Technology 4, no. 5 (2012): 567–72. http://dx.doi.org/10.7763/ijet.2012.v4.434.
Full textZeinidenov, A. K., and N. Kh Ibrayev. "Photovoltaic and electrophysical properties of plasmon-enhanced organic solar cells." Bulletin of the Karaganda University. "Physics Series" 88, no. 4 (December 30, 2017): 18–23. http://dx.doi.org/10.31489/2017phys4/18-23.
Full textKim, Soyeon, Muhammad Jahandar, Jae Hoon Jeong, and Dong Chan Lim. "Recent Progress in Solar Cell Technology for Low-Light Indoor Applications." Current Alternative Energy 3, no. 1 (November 28, 2019): 3–17. http://dx.doi.org/10.2174/1570180816666190112141857.
Full textForrest, Stephen R. "The Limits to Organic Photovoltaic Cell Efficiency." MRS Bulletin 30, no. 1 (January 2005): 28–32. http://dx.doi.org/10.1557/mrs2005.5.
Full textGreenham, Neil C. "Polymer solar cells." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1996 (August 13, 2013): 20110414. http://dx.doi.org/10.1098/rsta.2011.0414.
Full textShin, Dong, and Suk-Ho Choi. "Recent Studies of Semitransparent Solar Cells." Coatings 8, no. 10 (September 20, 2018): 329. http://dx.doi.org/10.3390/coatings8100329.
Full textZając, Dorota, Jadwiga Sołoducho, and Joanna Cabaj. "Organic Triads for Solar Cells Application: A Review." Current Organic Chemistry 24, no. 6 (May 25, 2020): 658–72. http://dx.doi.org/10.2174/1385272824666200311151421.
Full textShin, Gilyong, Jei Gyeong Jeon, Ju Hyeon Kim, Ju Hwan Lee, Hyeong Jun Kim, Junho Lee, Kyung Mook Kang, and Tae June Kang. "Thermocells for Hybrid Photovoltaic/Thermal Systems." Molecules 25, no. 8 (April 21, 2020): 1928. http://dx.doi.org/10.3390/molecules25081928.
Full textLi, Qianqian, Zhongxing Jiang, Jingui Qin, and Zhen Li. "Heterocyclic-Functionalized Organic Dyes for Dye-Sensitized Solar Cells: Tuning Solar Cell Performance by Structural Modification." Australian Journal of Chemistry 65, no. 9 (2012): 1203. http://dx.doi.org/10.1071/ch12126.
Full textWürfel, Peter. "Photovoltaic Principles and Organic Solar Cells." CHIMIA International Journal for Chemistry 61, no. 12 (December 19, 2007): 770–74. http://dx.doi.org/10.2533/chimia.2007.770.
Full textDissertations / Theses on the topic "Organic photovoltaic solar cell"
Pendyala, Raghu Kishore. "Automated Simulation of Organic Photovoltaic Solar Cells." Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15338.
Full textThis project is an extension of a pre-existing simulation program (‘Simulation_2dioden’). This simulation program was first developed in Konarka Technologies. The main purpose of the project ‘Simulation_2dioden’ is to calibrate the values of different parameters like, Shunt resistance, Series resistance, Ideality factor, Diode current, epsilon, tau, contact probability, AbsCT, intensity, etc; This is one of the curve fitting procedure’s. This calibration is done by using different equations. Diode equation is one of the main equation’s used in calculating different currents and voltages, from the values generated by diode equation all the other parameters are calculated.
The reason for designing this simulation_2dioden is to calculate the values of different parameters of a device and the researcher would know which parameter effects more in the device efficiency, accordingly they change the composition of the materials used in the device to acquire a better efficiency. The platform used to design this project is ‘Microsoft Excel’, and the tool used to design the program is ‘Visual basics’. The program could be otherwise called as a ‘Virtual Solar cell’. The whole Virtual Solar cell is programmed in a single excel sheet.
An Automated working solution is suggested which could save a lot of time for the researchers, which is the main aim of this project. To calibrate the parameter values, one has to load the J-V characteristics and simulate the program by just clicking one button. And the parameters extracted by using this automated simulation are Parallel resistance, Series resistance, Diode ideality, Saturation current, Contact properties, and Charge carrier mobility.
Finally, a basic working solution has been initiated by automating the simulation program for calibrating the parameter values.
Pachoumi, Olympia. "Metal oxide/organic interface investigations for photovoltaic devices." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246263.
Full textPotscavage, William J. Jr. "Physics and engineering of organic solar cells." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39634.
Full textGhamande, Maithili. "Optical Modeling of Organic Photovoltaic Solar Cells." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1320329919.
Full textSahare, Swapnil Ashok. "Enhancing the Photovoltaic Efficiency of a Bulk Heterojunction Organic Solar Cell." TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1609.
Full textWoods, Kurt Wade. "Solar Energy Conversion and Control Using Organic Photovoltaic Cells." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1315.
Full textWynands, David. "Strategies for Optimizing Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65084.
Full textDiese Arbeit befasst sich mit organischen Solarzellen aus kleinen Molekülen. Anhand des Materialsystems α,ω-bis(Dicyanovinylen)-Sexithiophen (DCV6T) - C60 wird der Zusammenhang zwischen Morphologie der photovoltaisch aktiven Schicht und dem Leistungverhalten der Solarzellen untersucht. Zur Beeinflussung der Morphologie werden verschiedene Substrattemperaturen (Tsub ) während des Schichtwachstums der aktiven Schicht eingestellt. Beim Heizen des Substrates weisen DCV6T Einzelschichten eine erhöhte Kristallinität auf, die mittels Röntgenbeugung und Rasterkraftmikroskopie (AFM) erkennbar ist. Zudem bewirkt die Erhöhung der Substrattemperatur von 30°C auf 120°C eine ausgeprägtere Feinstrukturierung des Absorptionsspektrums, eine Rotverschiebung um bis zu 11 nm und eine Verstärkung der niederenergetischen Absorptionsbande. Entgegen den Erwartungen wird weder in Feldeffekttransistoren noch mit der Methode der Ladungsextraktion bei linear steigenden Spannungspulsen (CELIV) eine Verbesserung der Löcherbeweglichkeit in Zusammenhang mit der erhöhten Kristallinität gemessen. Mischschichten mit C60 weisen bei erhöhten Substrattemperaturen eine stärkere Phasentrennung auf, die zu größeren DCV6T Domänen innerhalb der Schicht führt. Dieser Effekt wird zum Einen durch größere Körnung und Rauigkeit der Topographie, zum Anderen durch die Erhöhung des Lumineszenzsignals von DCV6T sowie der Ausprägung der Feinstruktur im Absorptionsspektrum nachgewiesen. Ausgehend von den Ergebnissen der Morphologieuntersuchung werden die Auswirkungen von verschiedenen Substrattemperaturen auf das Leistungsverhalten von DCV6T - C60 Solarzellen mit planarem und Volumen-Heteroübergang analysiert. Solarzellen mit planarem Heteroübergang weisen eine geringe Verbesserung des Photostromes von etwa 10 % beim Heizen des Substrates auf. Diese wird durch die Erhöhung der DCV6T Absorption verursacht. In Volumen-Heteroübergängen führt die stärkere Phasentrennung bei steigender Substrattemperatur im untersuchten Temperaturbereich von -7°C bis 120°C zu einer Verbesserung des Ladungsträgertransports. Dadurch verbessern sich die interne Quanteneffizienz (IQE), der Photostrom und der Füllfaktor. Der Wirkungsgrad der Solarzellen erhöht sich von 0.5 % bei Tsub = -7°C auf 3.0 % bei Tsub ≥ 77°C. Eine weitere Optimierung des DCV6T : C60 Mischverhältnisses und des Schichtaufbaus ermöglicht Solarzellen mit Wirkungsgraden von 4.9±0.2 %. Mittels optischer Simulationen wird die IQE dieser Solarzellen näher untersucht, um verbleibende Verlustmechanismen zu identifizieren. Es ergibt sich, dass innerhalb des Wellenlängenbereichs von 300 bis 750 nm nur 77 % der absorbierten Photonen tatsächlich in den photovoltaisch aktiven Schichten absorbiert werden, während der Rest in nicht aktiven Schichten verloren geht. Des Weiteren kann nachgewiesen werden, dass C60 Exzitonen aus der aktiven Schicht, bestehend as einer intrinsischen C60 Schicht und einer DCV6T : C60 Mischschicht, durch Diffusion in die angrenzende Elektronentransportschicht verloren gehen
Dindar, Amir. "Microfabrication of organic electronic devices: organic photovoltaic module with high total-area efficiency." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53582.
Full textGreenbank, William. "Interfacial stability and degradation in organic photovoltaic solar cells." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0338/document.
Full textOrganic photovoltaic (OPV) solar cells show great promise but suffer from short operating lifetimes. This study examines the role that the selection of materials for the hole extraction interface in inverted OPV devices plays in determining the lifetime of a device. In the first part of the study, the effects of thermal degradation were examined. It was found that devices containing MoO3 HTLs and silver top electrodes exhibit an open-circuit voltage (VOC)/fill factor (FF)-driven mechanism. Physical characterisation experiments showed that, with heating, the silver electrode undergoes de-wetting. With thin electrodes this can result in the catastrophic failure of the device. A fracture analysis study found that silver-containing devices experience an increase in adhesion of their top layers to the active layer due to interdiffusion between the layers. This interdiffusion may be related to the loss of VOC and FF in Ag/MoO3 devices through diffused species forming charge traps in the active layer. In the second part of the study, the effects of photodegradation in different atmospheres were studied. Some material-dependent effects were observed when the devices were aged in an inert atmosphere, including variations in projected lifetime. The effect of oxygen was to greatly accelerate degradation, and remove any of the material-dependence observed in the inert experiment, while humidity led to a substantial increase in the degradation rate of devices containing PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate). This study underlines the importance of considering device lifetime in device design, and choosing materials to minimise degradation
Sutcu, Sinan Mahmut. "The effects of ITO surface modification on lifetime in organic photovoltaic devices and a test setup for measuring lifetime." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34685.
Full textBooks on the topic "Organic photovoltaic solar cell"
Yūki hakumaku taiyō denchi no kaihatsu dōkō: Development trend of thin film organic photovoltaic cells. Tōkyō: Shīemushī Shuppan, 2010.
Find full textMeeting, Materials Research Society, Symposium GG, "Nanoscale Charge Transport in Excitonic Solar Cells" (2010 : San Francisco, Calif.), Symposium HH, "Organic Photovoltaic Science and Technology" (2010 : San Francisco, Calif.), and Symposium II, "Materials Science and Charge Transport in Organic Electronics" (2010 : San Francisco, Calif.), eds. Organic photovoltaics and related electronics: From excitons to devices : symposium held April 5-9, 2010, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2010.
Find full textKrebs, Frederik C. Stability and degradation of organic and polymer solar cells. Hoboken, N.J: Wiley, 2012.
Find full textInstitute for Energy (European Commission) and European Commission. Joint Research Centre., eds. PV status report 2008: Research, solar solar cell production and market implementation of photovoltaics. Luxembourg: Office of Official Publications of the European Communities, 2008.
Find full textYamaguchi, Masafumi, and Laurentiu Fara. Advanced solar cell materials, technology, modeling, and simulation. Hershey PA: Engineering Science Reference, 2012.
Find full textFraas, Lewis M. Path to affordable solar electric power & the 35% efficient solar cell. [Issaquah, WA]: JX Crystals, 2004.
Find full textStefan, Andrej. The solar cell power in your home and your workplace: All you need to know. La Jolla, CA: Stefan University Press, 2009.
Find full textStefan, Andrej. The solar cell power in your home and your workplace: All you need to know. La Jolla, CA: Stefan University Press, 2009.
Find full textRoedern, Bolko G. Von. Photovoltaic cell and module technologies II: 10-11 August 2008, San Diego, California, USA. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2008.
Find full textBook chapters on the topic "Organic photovoltaic solar cell"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "Organic Solar Cells." In Semiconductor Photovoltaic Cells, 373–432. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_9.
Full textRai, Sandeep, and Atul Tiwari. "Efficient Organic Photovoltaic Cells: Current Global Scenario." In Solar Cell Nanotechnology, 447–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch16.
Full textTress, Wolfgang. "Photovoltaic Energy Conversion." In Organic Solar Cells, 15–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10097-5_2.
Full textNava-Vega, A., Mario Cerda Lemus, Denisse Makoske Ibarra, and Moisés Viloria Sánchez. "Organic Solar Photovoltaic Cells." In Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 335–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_46.
Full textDeLongchamp, Dean M. "Organic Photovoltaics." In Semiconductor Materials for Solar Photovoltaic Cells, 169–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20331-7_6.
Full textWu, Bo, Nripan Mathews, and Tze-Chien Sum. "Characterization Plasmonic Organic Photovoltaic Devices." In Plasmonic Organic Solar Cells, 33–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_3.
Full textKim, Byeong Jo, and Hyun Suk Jung. "Flexible Perovskite Solar Cell." In Organic-Inorganic Halide Perovskite Photovoltaics, 325–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_13.
Full textBonnet, Dieter, and Jürgen Volkheimer. "Organic Solar Cells — A Survey." In Tenth E.C. Photovoltaic Solar Energy Conference, 58–61. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_15.
Full textChen, Hsiang-Yu, Zheng Xu, Gang Li, and Yang Yang. "Improving Polymer Solar Cell Through Efficient Solar Energy Harvesting." In WOLEDs and Organic Photovoltaics, 199–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14935-1_8.
Full textYang, Bin, Ming Shao, Jong Keum, David Geohegan, and Kai Xiao. "Nanophase Engineering of Organic Semiconductor-Based Solar Cells." In Semiconductor Materials for Solar Photovoltaic Cells, 197–228. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20331-7_7.
Full textConference papers on the topic "Organic photovoltaic solar cell"
Muñoz, Ivan I., Amador M. Guzmán, and Andres J. Diaz. "Enhancement of the Optical Efficiency in Organic and Non-Organic Photovoltaic Cells With Inclusion of Metallic Nanoparticles." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62023.
Full textAnctil, Annick, Callie Babbitt, Brian Landi, and Ryne P. Raffaelle. "Life-cycle assessment of organic solar cell technologies." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5617085.
Full textPattnaik, Sambit, Teng Xiao, R. Shinar, J. Shinar, and V. L. Dalal. "Novel hybrid amorphous/organic tandem junction solar cell." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. IEEE, 2012. http://dx.doi.org/10.1109/pvsc-vol2.2012.6656737.
Full textPattnaik, Sambit, Teng Xiao, R. Shinar, J. Shinar, and V. L. Dalal. "Novel hybrid amorphous/organic tandem junction solar cell." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. IEEE, 2013. http://dx.doi.org/10.1109/pvsc-vol2.2013.6656737.
Full textKim, Sung Hyun, Sung Hwak Park, Kyoung Il Lee, Seon Min Kim, and Jin Woo Cho. "Inorganic/organic heterojunction solar cell fabricated with ZnO nanowires." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5616534.
Full textLin, Tzu-Ching, Thiyagu Subramani, Hong-Jhang Syu, Chen-Chih Hsueh, Chien-Ting Liu, Kasimayan Uma, and Ching-Fuh Lin. "Morphology dependence of silicon nanostructure/organic polymer solar cell." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744323.
Full textRao, Arun D., Suresh Karalatti, Tiju Thomas, and Praveen C. Ramamurthy. "Organic solar cell by using vertically aligned nanostructured ZnO nanorods." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745043.
Full textSingh, Ashish, T. Bhim Raju, Anamika Dey, Ritesh Kant Gupta, and Parameswar K. Iyer. "Effect of Dual Cathode Buffer Layer on Ternary Organic Solar Cell." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366619.
Full textHsu, Shu-Tsung, Yean-San Long, and Teng-Chun Wu. "Standardized durability test for organic photovoltaic and dye sensitized solar cell." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366735.
Full textPark, Jinjoo, Sk Md Iftiquar, Youn-Jung Lee, Chonghoon Shin, Shihyun Ahn, Junhee Jung, Sangho Kim, Taehee Kim, Hongkon Kim, and Junsin Yi. "Advanced triple junction solar cell by employing inorganic-organic hybrid materials." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749773.
Full textReports on the topic "Organic photovoltaic solar cell"
Aspuru-Guzik, Alan. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1330957.
Full textHarris, James. Optimization of concentrator photovoltaic solar cell performance through photonic engineering. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1431038.
Full textRussell Gaudiana, David GInley, and Robert Birkmeyer. Low Cost, Light Weight SOlar Modules Based on Organic Photovoltaic Technology. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1039319.
Full textBOWERMAN, B., and V. FTHENAKIS. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/788240.
Full textBOWERMAN, B., and V. FTHENAKIS. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/789278.
Full textPan, Shanlin. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1163882.
Full textBerland, B. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, Final Report, 1 August 2001-30 September 2002. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/15003607.
Full textFerguson, Andrew J. Materials and Device Architectures for Organic Solar Cell Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-355. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1479638.
Full text