Academic literature on the topic 'Organic semiconductors Electron mobility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic semiconductors Electron mobility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organic semiconductors Electron mobility"

1

Sosorev, Andrey, Dmitry Dominskiy, Ivan Chernyshov, and Roman Efremov. "Tuning of Molecular Electrostatic Potential Enables Efficient Charge Transport in Crystalline Azaacenes: A Computational Study." International Journal of Molecular Sciences 21, no. 16 (August 6, 2020): 5654. http://dx.doi.org/10.3390/ijms21165654.

Full text
Abstract:
The chemical versatility of organic semiconductors provides nearly unlimited opportunities for tuning their electronic properties. However, despite decades of research, the relationship between molecular structure, molecular packing and charge mobility in these materials remains poorly understood. This reduces the search for high-mobility organic semiconductors to the inefficient trial-and-error approach. For clarifying the abovementioned relationship, investigations of the effect of small changes in the chemical structure on organic semiconductor properties are particularly important. In this study, we computationally address the impact of the substitution of C-H atom pairs by nitrogen atoms (N-substitution) on the molecular properties, molecular packing and charge mobility of crystalline oligoacenes. We observe that besides decreasing frontier molecular orbital levels, N-substitution dramatically alters molecular electrostatic potential, yielding pronounced electron-rich and electron-deficient areas. These changes in the molecular electrostatic potential strengthen face-to-face and edge-to-edge interactions in the corresponding crystals and result in the crossover from the herringbone packing motif to π-stacking. When the electron-rich and electron-deficient areas are large, sharply defined and, probably, have a certain symmetry, calculated charge mobility increases up to 3–4 cm2V−1s−1. The results obtained highlight the potential of azaacenes for application in organic electronic devices and are expected to facilitate the rational design of organic semiconductors for the steady improvement of organic electronics.
APA, Harvard, Vancouver, ISO, and other styles
2

CAMPBELL, I. H., and D. L. SMITH. "ELECTRICAL TRANSPORT IN ORGANIC SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 11, no. 02 (June 2001): 585–615. http://dx.doi.org/10.1142/s0129156401000952.

Full text
Abstract:
Organic semiconductors have processing and performance advantages for low cost and/or large area applications that have led to their rapid commercialization. Organic semiconductors are π conjugated materials, either small molecules or polymers. Their electrical transport properties are fundamentally distinct from those of inorganic semiconductors. Organic semiconductor thin films are amorphous or polycrystalline and their electronic structures consist of a distribution of localized electronic states with different energies. The localized sites are either individual molecules or isolated conjugated segments of a polymer chain. Electrical transport results from carrier hopping between neighboring sites. At room temperature, equilibration between neighboring sites of different energy is fast enough that carrier transport can be described using a mobility picture. Hopping transport in these disordered systems leads to a mobility that can depend strongly on both the electric field and carrier density. This article presents experimental measurements and theoretical analysis of the electrical transport properties of representative organic semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
3

Takata, Masashi, Kenichiro Takagi, Takashi Nagase, Takashi Kobayashi, and Hiroyoshi Naito. "Effects of Bimolecular Recombination on Impedance Spectra in Organic Semiconductors: Analytical Approach." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3322–26. http://dx.doi.org/10.1166/jnn.2016.12289.

Full text
Abstract:
An analytical expression for impedance spectra in the case of double injection (both electrons and holes are injected into an organic semiconductor thin film) has been derived from the basic transport equations (the current density equation, the continuity equation and the Possion’s equation). Capacitance-frequency characteristics calculated from the analytical expression have been examined at different recombination constants and different values of mobility balance defined by a ratio of electron mobility to hole mobility. Negative capacitance appears when the recombination constant is lower than the Langevin recombination constant and when the value of the mobility balance approaches unity. These results are consistent with the numerical results obtained by a device simulator (Atlas, Silvaco).
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Ming, Jing Li, Xuechen Jiao, Xiaochun Yang, Wenting Wu, Christopher R. McNeill, and Xike Gao. "Enantiopure versus racemic naphthalene diimide-based n-type organic semiconductors: effect on charge transport." Journal of Materials Chemistry C 7, no. 9 (2019): 2659–65. http://dx.doi.org/10.1039/c8tc06273k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, Thao P., and Ji Hoon Shim. "Hydrostatic pressure effect on charge transport properties of phenacene organic semiconductors." Physical Chemistry Chemical Physics 18, no. 20 (2016): 13888–96. http://dx.doi.org/10.1039/c6cp00127k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mendil, Nesrine, Mebarka Daoudi, Zakarya Berkai, and Abderrahmane Belghachi. "Charge Carrier Mobility Behavior in the SubPc/C60 Planar Heterojunction." Zeitschrift für Naturforschung A 73, no. 11 (October 25, 2018): 1047–52. http://dx.doi.org/10.1515/zna-2018-0142.

Full text
Abstract:
AbstractStructural arrangement and construction are the keys to electron/hole motion through organic semiconductor lattices. In this work, we focused on the disorder energy, temperature, and electric field effects on charge carrier mobilities using a Poole–Frenkel mobility model for SubPc/C60 devices. The results agree with those found in the literature. We observed important temperature, applied voltage, and disorder energy dependencies of the current-voltage characteristics and charge carrier mobilities; these characteristics have the Gunn curve form called negative conductivity, which has been reported in amorphous semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
7

Okamoto, Toshihiro, Shohei Kumagai, Eiji Fukuzaki, Hiroyuki Ishii, Go Watanabe, Naoyuki Niitsu, Tatsuro Annaka, et al. "Robust, high-performance n-type organic semiconductors." Science Advances 6, no. 18 (May 2020): eaaz0632. http://dx.doi.org/10.1126/sciadv.aaz0632.

Full text
Abstract:
Organic semiconductors (OSCs) are important active materials for the fabrication of next-generation organic-based electronics. However, the development of n-type OSCs lags behind that of p-type OSCs in terms of charge-carrier mobility and environmental stability. This is due to the absence of molecular designs that satisfy the requirements. The present study describes the design and synthesis of n-type OSCs based on challenging molecular features involving a π-electron core containing electronegative N atoms and substituents. The unique π-electron system simultaneously reinforces both electronic and structural interactions. The current n-type OSCs exhibit high electron mobilities with high reliability, atmospheric stability, and robustness against environmental and heat stresses and are superior to other existing n-type OSCs. This molecular design represents a rational strategy for the development of high-end organic-based electronics.
APA, Harvard, Vancouver, ISO, and other styles
8

Kathirgamanathan, Poopathy, Sivagnanasundram Surendrakumar, Seenivasagam Ravichandran, Muttulingam Kumaraverl, Juan Antipan Lara, Subramaniam Ganeshamurugan, Lisa M. Bushby, Jeremiah P. Tidey, and Alexander J. Blake. "Energy level tuning of blue emitting and electron transporting vinylene bis(vinyl quinolinyl)benzene derivatives: synthesis, characterisation, thin film characterisation and performance in OLEDs." Journal of Materials Chemistry C 3, no. 26 (2015): 6652–67. http://dx.doi.org/10.1039/c5tc00932d.

Full text
Abstract:
Band gap tuning by attaching aromatic and heterocyclic substituents on the vinylene bis(vinylquinolinyl)benzene moiety results in multifunctional organic semiconductors with high thermal stability and electron mobility.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Ming-Cong, Jun-ichi Hanna, and Hiroaki Iino. "Novel calamitic liquid crystalline organic semiconductors based on electron-deficient dibenzo[c,h][2,6]naphthyridine: synthesis, mesophase, and charge transport properties by the time-of-flight technique." Journal of Materials Chemistry C 7, no. 42 (2019): 13192–202. http://dx.doi.org/10.1039/c9tc03990b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Joseph, Vellaichamy, Chih-Hsin Yu, Chia-Chi Lin, Wei-Chieh Lien, Hsin-Chia Tsai, Cheng-Shiun Chen, Alfonsina Abat Amelenan Torimtubun, et al. "Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors." Journal of Materials Chemistry C 8, no. 43 (2020): 15450–58. http://dx.doi.org/10.1039/d0tc03808c.

Full text
Abstract:
Solution-processable dicyanomethylene end-capped bithiophene quinoidal organic semiconductors with four inserted thioalkyl side chains exhibit an electron mobility of 0.18 cm2 V−1 s−1 with excellent ambient and operational stability.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Organic semiconductors Electron mobility"

1

Kondo, Takeshi. "Current-voltage characteristics of organic semiconductors interfacial control between organic layers and electrodes /." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-05022007-122219/.

Full text
Abstract:
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.
Dr. Marder Seth R, Committee Chair ; Dr. Kippelen Bernard, Committee Co-Chair ; Dr. Brďas Jean-Luc E, Committee Member ; Dr. Perry Joseph W, Committee Member ; Dr. Srinivasarao Mohan, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
2

Bittle, Emily Geraldine. "Voltage Modulated Infrared Reflectance Study of Soluble Organic Semiconductors in Thin Film Transistors." UKnowledge, 2013. http://uknowledge.uky.edu/physastron_etds/10.

Full text
Abstract:
Soluble organic semiconductors have attracted interest due to their potential in making flexible and cheap electronics. Though their use is being implemented in electronics today, the conduction mechanism is still under investigation. In order to study the charge transport, this study examines the position, voltage, and frequency dependence of charge induced changes in far infrared absorption in soluble organic semiconductors in thin-film transistor structures. Measurements are compared to a simple model of a one-dimensional conductor which gives insight into the charge distribution and timing in devices. Main results of the study are dynamic measurements of charge taken by varying the frequency of the applied gate voltage while observing signal at one position within the transistor; mobility values obtained from a comparison to the one-dimensional model compare well with standard current-voltage measurements. Two small molecule soluble organic semiconductors were studied: 6,13 bis(triisopropylsilylethynyl)-pentacene and fluorinated 5,11 bis(triethylsilylethynyl) anthradithiophene.
APA, Harvard, Vancouver, ISO, and other styles
3

Widmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.

Full text
Abstract:
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices
Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
APA, Harvard, Vancouver, ISO, and other styles
4

Naresh, Shakya Man. "Studies of Electronic Transport in Novel Smectic and Discotic Liquid Crystalline Organic Semiconductors." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1289418142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pejic, Sandra. "Structure-Property Studies of Substituted Azadipyrromethene-Based Dyes and High Dielectric Constant Polymers for Organic Electronic Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1527949734211196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schott, Sam. "Spin dynamics in organic semiconductors." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288119.

Full text
Abstract:
Organic semiconductors exhibit exceptionally long spin lifetimes, and recent observations of the inverse spin hall effect as well as micrometer spin diffusion lengths in conjugated polymers have spiked interest in employing such carbon-based materials in spintronics applications. The charge transport and photophysics of organic semiconductors have been intensely studied for optoelectronic applications, revealing subtle relationships between molecular geometry, morphology and physical properties. Similar structure-property relationships remain mostly unknown for spin dynamics, where the charge carrier spins couple to their environment through hyperfine (HFI) and spin-orbit interactions (SOC). HFIs provide a pathway for spin relaxation while SOC plays a dual role in such materials: it couples the spin to its angular momentum and therefore enables both spin-to-charge conversion and spin relaxation. Understanding the molecular SOC, and finding a means to tune its strength, therefore is fundamentally important for materials design and selection. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. We initially present a systematic study of the g-tensor shift in molecular semiconductors and establish it as a probe for the SOC strength in a series of high mobility molecular semiconductors. The results demonstrate a rich variability of molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We then correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 µs to 0.15 µs, for isolated molecules in solution and relate our findings to the spin relaxation mechanisms that are likely to be relevant in solid state systems. Isolated molecules provide an ideal model system to investigate a spin's interactions with its environment but device applications commonly employ thin films. The second half of this thesis investigates polaron spin lifetimes in field effect transistors with high-mobility conjugated polymers as active layers. We use field-induced electron spin resonance measurements to demonstrate that spin relaxation is governed by the charges' hopping motion at low temperatures while Elliott-Yafet-like relaxation due to short-range, rapid spin density dynamics likely dominates high temperature spin lifetimes. Such a microscopic relaxation mechanism is highly sensitive to the local conformation of polymer backbones and we show its dependence on the degree of crystallinity in a polymer film.
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Duke H. "Theoretical studies of submicron gate length high electron mobility transistors." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/13744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Risko, Chad Michael. "Theoretical Evaluations of Electron-Transfer Processes in Organic Semiconductors." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7272.

Full text
Abstract:
The field of organic electronics, in which -conjugated, organic molecules and polymers are used as the active components (e.g., semiconductor, light emitter/harvester, etc.), has lead to a number a number of key technological developments that have been founded within fundamental research disciplines. In the Dissertation that follows, the research involves the use of quantum-chemical techniques to elucidate fundamental aspects of both intermolecular and intramolecular electron-transfer processes in organic, -conjugated molecules. The Dissertation begins with an introduction and brief review of organic molecular systems used as electron-transport semiconducting materials in device applications and/or in the fundamental studies of intramolecular mixed-valence processes. This introductory material is then followed by a brief review of the electronic-structure methods (e.g., Hartree-Fock theory and Density Functional Theory) and electron-transfer theory (i.e., semiclassical Marcus theory) employed throughout the investigations. The next three Chapters deal with investigations related to the characterization of non-rigid, -conjugated molecular systems that have amorphous solid-state properties used as the electron-transport layer in organic electronic and optoelectronic devices. Chapters 3 and 4 involve studies of silole- (silacyclopentadiene)-based materials that possess attractive electronic and optical properties in the solid state. Chapter 5 offers a preliminary study of dioxaborine-based molecular structures as electron-transport systems. In Chapters 6 8, the focus of the work shifts to investigations of organic mixed-valence systems. Chapter 6 centers on the examination of tetraanisylarylenediamine systems where the inter-redox site distances are approximately equal throughout the series. Chapter 7 examines the bridge-length dependence of the geometric structure, charge-(de)localization, and electronic coupling for a series of vinylene- and phenylene-vinylene-bridged bis-dianisylamines. In Chapter 8, the role of symmetric vibrations in the delocalization of the excess charge is studied in a dioxaborine radical-anion and a series of radical-cation bridged-bisdimethylamines. Finally, Chapter 9 provides a synopsis of the work and goals for future consideration.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Danti. "Local electron transport of organic semiconducting monolayers /." Connect to online version, 2009. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2009/363.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strobel, Thomas. "High sensitivity infrared charge modulation spectroscopy of high-mobility organic semiconductors." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Organic semiconductors Electron mobility"

1

Corvasce, Chiara. Mobility and impact ionization in silicon at high temperature. Konstanz: Hartung-Gorre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Corvasce, Chiara. Mobility and impact ionization in silicon at high temperature. Konstanz: Hartung-Gorre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cisowski, Jan. Niektóre zjawiska transportu elektronowego w półprzewodnikach typu II₃--V₂. Wrocław: Zakład Narodowy im. 0ssolińskich, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Emanuel, Mark A. Metalorganic chemical vapor deposition for the heterostructure hot electron diode. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Walkosz, Weronika. Atomic Scale Characterization and First-Principles Studies of Si₃N₄ Interfaces. New York, NY: Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Könenkamp, Rolf. Photoelectric Properties and Applications of Low-Mobility Semiconductors. Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ying-quan, Peng, ed. Charge carrier transport in organic semiconductor thin film devices. New York: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Solymar, L., D. Walsh, and R. R. A. Syms. Semiconductors. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0008.

Full text
Abstract:
Both intrinsic and extrinsic semiconductors are discussed in terms of their band structure. The acceptor and donor energy levels are introduced. Scattering is discussed, from which the conductivity of semiconductors is derived. Some mathematical relations between electron and hole densities are derived. The mobilities of III–V and II–VI compounds and their dependence on impurity concentrations are discussed. Band structures of real and idealized semiconductors are contrasted. Measurements of semiconductor properties are reviewed. Various possibilities for optical excitation of electrons are discussed. The technology of crystal growth and purification are reviewed, in particular, molecular beam epitaxy and metal-organic chemical vapour deposition.
APA, Harvard, Vancouver, ISO, and other styles
9

Walkosz, Weronika. Atomic Scale Characterization and First-Principles Studies of Si₃N₄ Interfaces. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

George C. Marshall Space Flight Center., ed. [Computational modeling of properties]: [final report]. Marshall Space Flight Center, AL: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Organic semiconductors Electron mobility"

1

Sirringhaus, Henning, Tomo Sakanoue, and Jui-Fen Chang. "Charge Transport Physics of High-Mobility Molecular Semiconductors." In Physics of Organic Semiconductors, 201–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654949.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tanase, C., P. W. M. Blom, D. M. de Leeuw, and E. J. Meijer. "Charge Carrier Density Dependence of the Hole Mobility in Poly(p-phenylene vinylene)." In Physics of Organic Semiconductors, 305–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606637.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Basu, Debarshi, and Ananth Dodabalapur. "Drift Velocity and Drift Mobility Measurement in Organic Semiconductors Using Pulse Voltage." In Organic Electronics, 29–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/12_2009_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masselink, W. Ted. "Electron Mobility in Delta-Doped Quantum Well Structures." In Negative Differential Resistance and Instabilities in 2-D Semiconductors, 83–98. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2822-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morita, Akira, Hideo Asahina, Chioko Kaneta, and Taizo Sasaki. "Anisotropic Mobility and Electron-Phonon Interaction in Black Phosphorus." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 1320–24. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kera, Satoshi, Hiroyuki Yamane, and Nobuo Ueno. "Ultraviolet Photoelectron Spectroscopy (UPS) II: Electron–Phonon Coupling and Hopping Mobility." In Electronic Processes in Organic Electronics, 27–49. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55206-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mendil, Nesrine, Mebarka Daoudi, Zakarya Berkai, and Abderrahmane Belghachi. "Temperature Dependence of Carrier Mobility in SubPc and C60 Organic Semiconductors for Photovoltaic Applications." In Renewable Energy in the Service of Mankind Vol II, 469–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guyot, A., A. Revillon, M. Camps, J. P. Montheard, and B. Catoire. "Electron Spin Resonance Measurement of Nitroxy Probes Mobility, Attached to a Polymer Through a Spacer Arm." In Electron Spin Resonance (ESR) Applications in Organic and Bioorganic Materials, 277–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77214-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klinger, M. I. "Electron States, Negative-U Centers, in Mobility Gap and Some Features of Atomic Structures in Galssy Semiconductors." In Physics of Disordered Materials, 617–31. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2513-0_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Graphene Materials for Third Generation Solar Cell Technologies." In Materials for Solar Cell Technologies I, 29–61. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090-2.

Full text
Abstract:
Photovoltaic technology is the most sustainable source of renewable energy because sunlight radiation is free and readily available. Therefore, the materials required accessing this energy source, cost and the efficiency of conversion from solar to electricity is the topic of interest in continued research. Graphene as a sp2-hybridized 2-dimensional carbon with unique crystal and electronic properties comprising high charge carrier mobility, optical transparency, inexpensive, excellent mechanical strength and flexibility with chemical stability and inertness among others is a suitable material for application in various units of the different architectures in third generation solar cells. It can be applied as a semiconductor layer, electrolyte and counter-electrode in dye-sensitized solar cells; electrode, perovskite, electron and hole transporting layers in perovskite solar cells; and electrode, hole transporting layer and electron acceptor and donor in organic solar cells; in addition to graphene/silicon Schottky junction. Following the application of graphene in various units of the third generation architecture, the power conversion efficiency has increased from 1.9% to over 22%, with ongoing research expected to develop a more stable design with longevity comparable to commercially available silicon-based p-n junction.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organic semiconductors Electron mobility"

1

Sosorev, Andrey, Dmitry Maslennikov, Elizaveta Feldman, Vladimir Bruevich, Ivan Chernyshov, Mikhail Vener, Oleg Borshchev, George Abashev, Sergei Ponomarenko, and Dmitry Paraschuk. "Spectroscopic Assessment of Charge Mobility in Organic Semiconductors." In 1st International Conference on Advances in Organic and Hybrid Electronic Materials. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.aohm.2019.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sirringhaus, Henning. "Charge and spin transport physics of high mobility organic semiconductors." In 1st International Conference on Advances in Organic and Hybrid Electronic Materials. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.aohm.2019.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takeya, Jun, H. Matsui, T. Kubo, and Roger Hausermann. "High-mobility strained organic semiconductors (Conference Presentation)." In Organic Field-Effect Transistors XV, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2016. http://dx.doi.org/10.1117/12.2238903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Venkateshvaran, Deepak, Katharina Broch, Chris N. Warwick, and Henning Sirringhaus. "Thermoelectric transport properties of high mobility organic semiconductors." In SPIE Organic Photonics + Electronics, edited by Iain McCulloch and Oana D. Jurchescu. SPIE, 2016. http://dx.doi.org/10.1117/12.2235503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maiti, T. K., and C. K. Maiti. "Charge-based Mobility Modeling for Organic Semiconductors." In 2009 13th International Workshop on Computational Electronics (IWCE 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwce.2009.5091090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Surmalyan, Ash V. "Electron mobility variance in metals and degenerate semiconductors." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Melkonyan, Slavik V., Ferdinand V. Gasparyan, and Haik V. Asriyan. "Main sources of electron mobility fluctuations in semiconductors." In SPIE Fourth International Symposium on Fluctuations and Noise, edited by Massimo Macucci, Lode K. Vandamme, Carmine Ciofi, and Michael B. Weissman. SPIE, 2007. http://dx.doi.org/10.1117/12.724567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chao, Teng-Chih, Heh-Lung Huang, and Mei-Rurng Tseng. "High mobility OLED electron transport materials." In Organic Light Emitting Materials and Devices XII. SPIE, 2008. http://dx.doi.org/10.1117/12.795743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leyland, W. J. H., R. T. Harley, M. Henini, A. J. Shields, and D. A. Ritchie. "Coherent Oscillatory Spin-Dynamics in High-Mobility 2D Electron Gases." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lindsay, Andrew. "Theory Of Electron Effective Mass And Mobility in Dilute Nitride Alloys." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994098.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Organic semiconductors Electron mobility"

1

Basov, Dimitri N. An Infrared Probe of Charge Dynamics in High Mobility Organic Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada578205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography