To see the other types of publications on this topic, follow the link: Organic superconductors.

Journal articles on the topic 'Organic superconductors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Organic superconductors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ishiguro, T., K. Yamaji, and William A. Little. "Organic Superconductors." Physics Today 44, no. 4 (April 1991): 104–7. http://dx.doi.org/10.1063/1.2810085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jérome, D. "Organic superconductors." Solid State Communications 92, no. 1-2 (October 1994): 89–100. http://dx.doi.org/10.1016/0038-1098(94)90862-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schegolev, I. F. "Organic Superconductors." Europhysics News 22, no. 1 (1991): 12–15. http://dx.doi.org/10.1051/epn/19912201012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saito, Gunzi, and Mitsuhiko Maesato. "Organic Superconductors." Molecular Crystals and Liquid Crystals 455, no. 1 (October 1, 2006): 31–46. http://dx.doi.org/10.1080/15421400600803655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jérome, Denis. "Organic superconductors." Advanced Materials 2, no. 6-7 (June 1990): 321–24. http://dx.doi.org/10.1002/adma.19900020613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kresin, V. "Organic superconductors." Cryogenics 31, no. 8 (August 1991): 769. http://dx.doi.org/10.1016/0011-2275(91)90246-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saito, Gunzi, and Yukihiro Yoshida. "Organic superconductors." Chemical Record 11, no. 3 (May 27, 2011): 124–45. http://dx.doi.org/10.1002/tcr.201000039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singleton, John, and Charles Mielke. "Superconductors go organic." Physics World 15, no. 1 (January 2002): 35–39. http://dx.doi.org/10.1088/2058-7058/15/1/37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rohr, C., J. M. Büttner, F. A. Palitschka, N. D. Kushch, M. V. Kartsovnik, W. Biberacher, R. Gross, and B. A. Hermann. "Organic superconductors revisited." European Physical Journal B 69, no. 2 (April 15, 2009): 167–71. http://dx.doi.org/10.1140/epjb/e2009-00135-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bulaevskii, L. N. "Organic layered superconductors." Advances in Physics 37, no. 4 (August 1988): 443–70. http://dx.doi.org/10.1080/00018738800101409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Inokuchi, Hiroo. "New Organic Superconductors." Angewandte Chemie 100, no. 12 (December 1988): 1817–21. http://dx.doi.org/10.1002/ange.19881001244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Inokuchi, Hiroo. "New Organic Superconductors." Angewandte Chemie International Edition in English 27, no. 12 (December 1988): 1747–51. http://dx.doi.org/10.1002/anie.198817471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mola, M. M., S. Hill, J. S. Qualls, and J. S. Brooks. "MAGNETO-THERMAL INSTABILITIES IN AN ORGANIC SUPERCONDUCTOR." International Journal of Modern Physics B 15, no. 24n25 (October 10, 2001): 3353–56. http://dx.doi.org/10.1142/s0217979201007750.

Full text
Abstract:
Angle and temperature dependent torque magnetization measurements are reported for the organic superconductor κ-( ET)2Cu(NCS)2 , at extremely low temperatures (~ Tc /103). Magneto-thermal instabilities are observed in the form of abrupt magnetization (flux) jumps. We carry out an analysis of the temperature and field orientation dependence of these flux jumps based on accepted models for layered type-II superconductors. Using a simple Bean model, we also find a critical current density of 4 × 108 A/m 2 from the remnant magnetization, in agreement with previous measurements.
APA, Harvard, Vancouver, ISO, and other styles
14

Devarakonda, A., H. Inoue, S. Fang, C. Ozsoy-Keskinbora, T. Suzuki, M. Kriener, L. Fu, E. Kaxiras, D. C. Bell, and J. G. Checkelsky. "Clean 2D superconductivity in a bulk van der Waals superlattice." Science 370, no. 6513 (October 8, 2020): 231–36. http://dx.doi.org/10.1126/science.aaz6643.

Full text
Abstract:
Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2H-niobium disulfide (2H-NbS2) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.
APA, Harvard, Vancouver, ISO, and other styles
15

Bolech, C. J., and T. Giamarchi. "Tunnelling in Organic Superconductors." Progress of Theoretical Physics Supplement 160 (2005): 28–38. http://dx.doi.org/10.1143/ptps.160.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jérome, D., and H. J. Schulz. "Organic conductors and superconductors." Advances in Physics 51, no. 1 (January 2002): 293–479. http://dx.doi.org/10.1080/00018730110116362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Montambaux, G. "Organic conductors and superconductors." Physica B: Condensed Matter 177, no. 1-4 (March 1992): 339–47. http://dx.doi.org/10.1016/0921-4526(92)90126-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bolech, C. J., and T. Giamarchi. "Tunnelling in organic superconductors." Journal of Low Temperature Physics 142, no. 3-4 (February 2006): 221–26. http://dx.doi.org/10.1007/bf02679498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bolech, C. J., and T. Giamarchi. "Tunnelling in Organic Superconductors." Journal of Low Temperature Physics 142, no. 3-4 (April 12, 2006): 225–30. http://dx.doi.org/10.1007/s10909-006-9022-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Maki, K., and H. Won. "Models for organic superconductors." Synthetic Metals 120, no. 1-3 (March 2001): 725–26. http://dx.doi.org/10.1016/s0379-6779(00)00628-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

WILLIAMS, J. M., A. J. SCHULTZ, U. GEISER, K. D. CARLSON, A. M. KINI, H. H. WANG, W. K. KWOK, M. H. WHANGBO, and J. E. SCHIRBER. "Organic Superconductors--New Benchmarks." Science 252, no. 5012 (June 14, 1991): 1501–8. http://dx.doi.org/10.1126/science.252.5012.1501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MORI, HATSUMI. "OVERVIEW OF ORGANIC SUPERCONDUCTORS." International Journal of Modern Physics B 08, no. 01n02 (January 20, 1994): 1–45. http://dx.doi.org/10.1142/s0217979294000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shegolev, I. F., and E. B. Yagubskii. "Study of organic superconductors." Physica C: Superconductivity 185-189 (December 1991): 360–65. http://dx.doi.org/10.1016/0921-4534(91)92000-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ikemoto, Isao, Koichi Kikuchi, Kazuya Saito, Kazushi Kanoda, Toshihiro Takahashi, Keizo Murata, and Keiji Kobayashi. "Organic Superconductors, (DMET)2X." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 181, no. 1 (April 1990): 185–95. http://dx.doi.org/10.1080/00268949008036003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yasuzuka, Syuma. "Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors." Crystals 11, no. 6 (May 26, 2021): 600. http://dx.doi.org/10.3390/cryst11060600.

Full text
Abstract:
Layered organic superconductors motivate intense investigations because they provide various unexpected issues associated with their low dimensionality and the strong electron correlation. Since layered organic superconductors possess simple Fermi surface geometry and they often share similarities to the high temperature oxide superconductors and heavy fermion compounds, research on layered organic superconductors is suitable for understanding the essence and nature of strongly correlated electron systems. In strongly correlated electron systems, one of the central problems concerning the superconducting (SC) state is the symmetry of the SC gap, which is closely related to the paring mechanism. Thus, experimental determination of the SC gap structure is of essential importance. In this review, we present the experimental results for the in-plane angular variation of the flux-flow resistance in layered organic superconductors k-(ET)2Cu(NCS)2, β″-(ET)2SF5CH2CF2SO3, and λ-(BETS)2GaCl4. The interplay between the vortex dynamics and nodal structures is discussed for these superconductors.
APA, Harvard, Vancouver, ISO, and other styles
26

Agosta, Charles. "Inhomogeneous Superconductivity in Organic and Related Superconductors." Crystals 8, no. 7 (July 11, 2018): 285. http://dx.doi.org/10.3390/cryst8070285.

Full text
Abstract:
Evidence of inhomogeneous superconductivity, in this case superconductivity with a spatially modulated superconducting order parameter, has now been found in many materials and by many measurement methods. Although the evidence is strong, it is circumstantial in the organic superconductors, scant in the pnictides, and complex in the heavy Fermions. However, it is clear some form of exotic superconductivity exists at high fields and low temperatures in many electronically anisotropic superconductors. The evidence is reviewed in this article, and examples of similar measurements are compared across different families of superconductors. An effort is made to find a consistent way to measure the superconducting energy gap across all materials, and use this value to predict the Clogston–Chandrasakhar paramagnetic limit Hp. Methods for predicting the existence of inhomogeneous superconductivity are shown to work for the organic superconductors, and then used to suggest new materials to study.
APA, Harvard, Vancouver, ISO, and other styles
27

Ishiguro, Takehiko, and Hiroyuki Anzai. "Mechanism of organic superconductors and possibility of polymeric superconductors." Kobunshi 37, no. 7 (1988): 530–33. http://dx.doi.org/10.1295/kobunshi.37.530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jérome, Denis. "The development of organic conductors: Organic superconductors." Solid State Sciences 10, no. 12 (December 2008): 1692–700. http://dx.doi.org/10.1016/j.solidstatesciences.2008.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kruchinin, S., A. Zolotovsky, S. Yamashita, and Y. Nakazawa. "Thermodynamics of the d-wave pairing in organic superconductors." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642020. http://dx.doi.org/10.1142/s0217979216420200.

Full text
Abstract:
Organic superconductors with [Formula: see text]-type structure are most frequently identified as nodal gap superconductors from the experimental observation of a power-law behavior in the low-temperature thermodynamic properties such as specific heat capacity. We perform series of theoretical calculations of specific heat capacity of three typical organic complexes with different transition temperatures by using Bogolyubov–de Gennes equations. The good agreement between the experimental data and the calculations demonstrates that the [Formula: see text]-wave pairing is certainly realized in these superconductors.
APA, Harvard, Vancouver, ISO, and other styles
30

Schirber, J. E., L. J. Azevedo, and J. M. Williams. "Phase Diagrams of Organic Superconductors." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 27–32. http://dx.doi.org/10.1080/00268948508075128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Azevedo, L. J., E. L. Venturini, J. E. Schirber, J. M. Williams, H. B. Wang, and T. J. Emge. "Magnetic Order in Organic Superconductors." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 389–92. http://dx.doi.org/10.1080/00268948508075188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Haddon, R. C. "Electronic Properties of Organic Superconductors." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 284, no. 1 (June 1, 1996): 129–37. http://dx.doi.org/10.1080/10587259608037917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mori, Hatsumi. "Materials Viewpoint of Organic Superconductors." Journal of the Physical Society of Japan 75, no. 5 (May 15, 2006): 051003. http://dx.doi.org/10.1143/jpsj.75.051003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brazovskii, S., D. Jérome, H. Mayaffre, and P. Wzietek. "Vortex dynamics in organic superconductors." Synthetic Metals 85, no. 1-3 (March 1997): 1487–91. http://dx.doi.org/10.1016/s0379-6779(97)80319-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dressel, Martin, George Grüner, John E. Eldridge, and Jack M. Williams. "Optical properties of organic superconductors." Synthetic Metals 85, no. 1-3 (March 1997): 1503–8. http://dx.doi.org/10.1016/s0379-6779(97)80325-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Efimov, V. B., M. K. Makova, and L. P. Mezhov-Deglin. "Thermal conductivity of organic superconductors." Physica C: Superconductivity 282-287 (August 1997): 1903–4. http://dx.doi.org/10.1016/s0921-4534(97)01137-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Theodorakis, Stavros. "Phenomenological model for organic superconductors." Physical Review B 57, no. 6 (February 1, 1998): 3635–39. http://dx.doi.org/10.1103/physrevb.57.3635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kobayashi, Hayao. "Organic superconductors/semiconductors/CT salts." Current Opinion in Solid State and Materials Science 2, no. 4 (August 1997): 440–45. http://dx.doi.org/10.1016/s1359-0286(97)80086-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Saito, Gunzi, Hideki Yamochi, Toshikazu Nakamura, Tokutaro Komatsu, Masako Nakashima, Hatsumi Mori, and Kokichi Oshima. "Recent progress in organic superconductors." Physica B: Condensed Matter 169, no. 1-4 (February 1991): 372–76. http://dx.doi.org/10.1016/0921-4526(91)90253-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wosnitza, J. "Quasi-Two-Dimensional Organic Superconductors." Journal of Low Temperature Physics 146, no. 5-6 (January 31, 2007): 641–67. http://dx.doi.org/10.1007/s10909-006-9282-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jovanović, V., R. Zikic, and L. Dobrosavljević-Grujić. "Pairing in planar organic superconductors." Physica C: Superconductivity 423, no. 1-2 (June 2005): 15–21. http://dx.doi.org/10.1016/j.physc.2005.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, Y., J. E. Eldridge, H. H. Wang, A. M. Kini, and J. Schlueter. "Raman studies of organic superconductors." Synthetic Metals 120, no. 1-3 (March 2001): 709–10. http://dx.doi.org/10.1016/s0379-6779(00)01186-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

JEROME, D. "The Physics of Organic Superconductors." Science 252, no. 5012 (June 14, 1991): 1509–14. http://dx.doi.org/10.1126/science.252.5012.1509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

WOSNITZA, J. "FERMI SURFACES OF ORGANIC SUPERCONDUCTORS." International Journal of Modern Physics B 07, no. 15 (July 10, 1993): 2707–41. http://dx.doi.org/10.1142/s0217979293003012.

Full text
Abstract:
In this review an overview of the present-day knowledge of the Fermi surfaces of organic superconductors obtained by Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) experiments is given. Almost all measurements reported here were made on charge transfer salts of the type (ET)2X where ET stands for bis(ethelenedithio)-tetrathiafulvalene (or BEDT-TTF) and X is a monovalent anion. The ET-salts are characterized by their extremely two-dimensional properties. Some unique features resulting from this two-dimensionality, like gigantic SdH and dHvA oscillations, directly observable spin-splitting far from the quantum limit and a distinctive angular dependence of the dHvA amplitude will be discussed in detail. By comparison of the measured cyclotron effective mass with the bare band mass the electron-phonon coupling constant can be extracted and the validity of the BCS formula for the superconducting transition temperature can be checked.
APA, Harvard, Vancouver, ISO, and other styles
45

Ardavan, Arzhang, Stuart Brown, Seiichi Kagoshima, Kazushi Kanoda, Kazuhiko Kuroki, Hatsumi Mori, Masao Ogata, Shinya Uji, and Jochen Wosnitza. "Recent Topics of Organic Superconductors." Journal of the Physical Society of Japan 81, no. 1 (January 15, 2012): 011004. http://dx.doi.org/10.1143/jpsj.81.011004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Inokuchi, Hiroo. "Organic semiconductors, conductors and superconductors." International Reviews in Physical Chemistry 8, no. 2-3 (April 1989): 95–124. http://dx.doi.org/10.1080/01442358909353225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jérome, Denis, and Klaus Bechgaard. "European action on organic superconductors." Advanced Materials 4, no. 7-8 (July 1992): 461–63. http://dx.doi.org/10.1002/adma.19920040702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Doi, Takashi, Kokichi Oshima, Hironobu Maeda, Hitoshi Yamazaki, Hiroshi Maruyama, Hidekazu Kimura, Manabu Fujita, et al. "EXAFS study in organic superconductors." Physica C: Superconductivity 185-189 (December 1991): 2671–72. http://dx.doi.org/10.1016/0921-4534(91)91457-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dressel, M., L. Degiorgi, O. Klein, and G. Grüner. "The electrodynamics of organic superconductors." Journal of Physics and Chemistry of Solids 54, no. 10 (October 1993): 1411–26. http://dx.doi.org/10.1016/0022-3697(93)90202-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Efimov, V. B., M. K. Makova, and L. P. Mezhov-Deglin. "Thermal conductivity of organic superconductors." Czechoslovak Journal of Physics 46, S2 (February 1996): 809–10. http://dx.doi.org/10.1007/bf02583712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography