Academic literature on the topic 'Organosol'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organosol.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organosol"
Mohd Hirmizi, N. H., M. Abu Bakar, W. L. Tan, N. H. H. Abu Bakar, J. Ismail, and C. H. See. "Electrical and Thermal Behavior of Copper-Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique." Journal of Nanomaterials 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/219073.
Full textCurtis, Andrew C., Daniel G. Duff, Peter P. Edwards, David A. Jefferson, Brian F. G. Johnson, Angus I. Kirkland, and Andrew S. Wallace. "A Morphology-Selective Copper Organosol." Angewandte Chemie International Edition in English 27, no. 11 (November 1988): 1530–33. http://dx.doi.org/10.1002/anie.198815301.
Full textCurtis, Andrew C., Daniel G. Duff, Peter P. Edwards, David A. Jefferson, Brian F. G. Johnson, Angus I. Kirkland, and Andrew S. Wallace. "Ein Kupfer-Organosol mit wohldefinierter Morphologie." Angewandte Chemie 100, no. 11 (November 1988): 1588–90. http://dx.doi.org/10.1002/ange.19881001122.
Full textEde, Sivasankara Rao, S. Anantharaj, U. Nithiyanantham, and Subrata Kundu. "DNA-encapsulated chain and wire-like β-MnO2 organosol for oxidative polymerization of pyrrole to polypyrrole." Physical Chemistry Chemical Physics 17, no. 7 (2015): 5474–84. http://dx.doi.org/10.1039/c4cp04236k.
Full textAnantharaj, S., U. Nithiyanantham, Sivasankara Rao Ede, E. Ayyappan, and Subrata Kundu. "π-stacking intercalation and reductant assisted stabilization of osmium organosol for catalysis and SERS applications." RSC Advances 5, no. 16 (2015): 11850–60. http://dx.doi.org/10.1039/c4ra15521a.
Full textXiaochun, Wu, Wang Rongyao, Zou Bingsuo, Wang Li, Liu Shaomei, Xu Jiren, and Huang Wei. "Optical properties of nanometer-sized CdO organosol." Journal of Materials Research 13, no. 3 (March 1998): 604–9. http://dx.doi.org/10.1557/jmr.1998.0077.
Full textMchedlov-Petrossyan, Nikolay O., Nika N. Kamneva, Younis T. M. Al-Shuuchi, Andriy I. Marynin, Olexii S. Zozulia, Alexander P. Kryshtal, Vladimir K. Klochkov, and Sergey V. Shekhovtsov. "Towards better understanding of C60organosols." Physical Chemistry Chemical Physics 18, no. 4 (2016): 2517–26. http://dx.doi.org/10.1039/c5cp06806a.
Full textGanguly, Mainak, Anjali Pal, and Tarasankar Pal. "Purification of Gold Organosol by Solid Reagent." Journal of Physical Chemistry C 116, no. 16 (April 17, 2012): 9265–73. http://dx.doi.org/10.1021/jp2121356.
Full textIchiba, Sumio, and Toshio Sakamoto. "Mössbauer Emission Spectra of119mSn in Tin Organosol." Bulletin of the Chemical Society of Japan 58, no. 4 (April 1985): 1323–24. http://dx.doi.org/10.1246/bcsj.58.1323.
Full textLi, Yanping, Huangzhong Yu, Xinxin Huang, Zuping Wu, and Mingdong Chen. "A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells." RSC Advances 7, no. 13 (2017): 7890–900. http://dx.doi.org/10.1039/c7ra00303j.
Full textDissertations / Theses on the topic "Organosol"
Silva, Pedro Henrique Fernandes. "Fracionamento da biomassa lignocelulósica pelo processo organosolv." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/23561.
Full textSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-05-12T17:31:19Z No. of bitstreams: 1 2017_PedroHenriqueFernandesSilva.pdf: 2269694 bytes, checksum: 5d996a917c19246d3b909b397afb4b5d (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-05-24T22:53:16Z (GMT) No. of bitstreams: 1 2017_PedroHenriqueFernandesSilva.pdf: 2269694 bytes, checksum: 5d996a917c19246d3b909b397afb4b5d (MD5)
Made available in DSpace on 2017-05-24T22:53:16Z (GMT). No. of bitstreams: 1 2017_PedroHenriqueFernandesSilva.pdf: 2269694 bytes, checksum: 5d996a917c19246d3b909b397afb4b5d (MD5) Previous issue date: 2017-05-21
A biomassa tem ganhado destaque como matéria-prima renovável para obtenção de produtos químicos e energia, frente a uma competitiva indústria baseada em fontes fósseis. No Brasil, a biomassa florestal é largamente cultivada, seja na construção civil e fabricação de móveis, ou na produção de energia e na produção do papel. O eucalipto é a biomassa florestal de maior relevância em termos de cultivo no Brasil (38,1 m³/ha/ano no ano de 2015) e no mundo. Nas últimas décadas, têm-se buscado a desconstrução da biomassa lignocelulósica, como a madeira, em seus polímeros constituintes, a celulose, a hemicelulose e a lignina, de forma que cada uma possa ser processada de forma a gerar produtos de maior valor agregado. Neste contexto temos o processo organosolv, que é um pré-tratamento da biomassa lignocelulósica com a mistura de solventes orgânicos e água em elevadas temperaturas. Além de fracionar a biomassa, é possível se obter a partir do processo organosolv, componentes com elevado grau de pureza e mais reativos para futuras aplicações. O presente trabalho teve como objetivo estudar o efeito da temperatura (avaliada entre 180 °C e 220 °C) e relação etanol/água (avaliada entre 30% e 70% v/v) no processo organosolv aplicados a amostras de Eucalyptus grandis, sendo observado quanto de cada um dos polímeros foi removido da amostra sólida inicial. Os experimentos foram realizados segundo um planejamento experimental fatorial 22 com ponto central, com triplicata em todos os pontos. Como resultado foi obtido que o melhor ponto foi na condição experimental E(50,200) (relativo a 50% etanol e 200 °C), com 80,36% de lignina extraída e 91,35% de rendimento da celulose.
Biomass has gained prominence as a renewable raw material for obtaining chemicals and energy, in front of a competitive industry based on fossil sources. In Brazil, forest biomass is widely cultivated, whether in the construction and manufacturing of furniture, or in energy production and paper production. Eucalyptus is the most important forest biomass in terms of cultivation in Brazil (38.1 m³ / ha / year in 2015) and in the world. In the last decades, we have sought to deconstruct lignocellulosic biomass, such as wood, in its constituent polymers, cellulose, hemicellulose and lignin, so that each can be processed in order to generate products with higher benefit. In this context, we have the organosolv process, which is a pretreatment of the lignocellulosic biomass with the mixture of organic solvents and water at high temperatures. In addition to fractionating biomass, it is possible to obtainm from the organosolv process, components with high purity and more reactive for future applications. The objective of this work was to study the effect of temperature (evaluated between 180 °C and 220 °C) and ethanol / water ratio (evaluated between 30% and 70% v/v) in the organosolv process applied to samples of Eucalyptus grandis, being observed how much of each of the polymers was removed from the initial solid sample. The experiments were performed according to a factorial 22 experimental design with center point, with triplicate at all points. As a result it was obtained that the best point was in the experimental condition E(50,200) (relative to 50% ethanol and 200 °C), with 80.36% lignin extracted and 91.35% cellulose yield.
Yawalata, Dominggus. "Catalytic selectivity in alcohol organosolv pulping of spruce wood." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61209.pdf.
Full textBianchi, Maria Lucia. "Polpação de palha de milho, utilizando-se diferentes processos organosolv." [s.n.], 1995. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249491.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-07-20T11:10:13Z (GMT). No. of bitstreams: 1 Bianchi_MariaLucia_M.pdf: 2540696 bytes, checksum: e3a0bf6e723b44caf0ad21cfdc50b424 (MD5) Previous issue date: 1995
Mestrado
Muurinen, E. (Esa). "Organosolv pulping:a review and distillation study related to peroxyacid pulping." Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:9514256611.
Full textMaza, Lisa Jésus. "Résines vertes à base de lignine organosolve." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3039.
Full textPhenolic resins, may be used in the wood industry for the manufacture of particle boards or plywood, after gluing, impregnation and/or hot-pressing steps. They are mainly obtained by step polymerization (polycondensation) from formaldehyde and phenol. These two raw materials are currently petrochemicals.This thesis work, supported by Rolkem, a company specialized in the design and manufacture of resol type phenolic resins, aims to reduce the use of non-biobased materials by replacing phenol with lignin exhibiting a phenolic structure and a structural similarity with the network of phenolic resins. Lignin is abundant in the environment and easily available. To achieve the industrialization of these new biobased resins, a study on the understanding of the reaction mechanisms has been carried out to favor the incorporation of lignin within the resins. It has been possible to replace up to 50wt.% of the phenol with organosolve lignin and to reduce the initial concentration of formaldehyde at the same time. 75wt.% substitution has been achieved using a Kraft lignin by reducing up to 30wt.% of the formaldehyde concentration as compared to conventional resins. The new biobased resins respect the Rolkem specifications. Thanks to this work results, the scale transfer of biobased resins from the laboratory scale to the industrial pilot was possible, while respecting industrial constraints such as productivity, quality, safety and environment. In addition, the industrial plywood bonding tests were in accordance with the prerequisite.In addition to the above objectives the reactivity of BiolignineTM with formaldehyde has been studied under conventional heating and microwave irradiation. This complementary study allows the correlation of the lignine-formaldehyde reactivity and the heating modes to specifically reach products resulting from addition or condensation reactions
Muurinen, Esa. "Organosolv pulping a review and distillation study related to peroxyacid pulping /." OuLu : Oulun yliopisto, 2000. http://catalog.hathitrust.org/api/volumes/oclc/47152371.html.
Full textTan, Xin. "Effect of Organosolv Lignin and Extractable Lignin on Enzymatic Hydrolysis of Lignocelluloses." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613752000022518.
Full textChao, Hsiu-Yi. "Luminescent organogold(I) complexes with electron rich bulky phosphine ligands : synthesis and spectroscopic studies /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?23242309.
Full textHess, Fiona Millicent. "Halo- and organogold(I) complexes as potential metallomesogens." Master's thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/9757.
Full textThere is currently much interest in how the properties of liquid crystals may be altered by metal atoms. Gold(I) complexes of the type RAuL have recently been shown to exhibit interesting liquid crystal behaviour. As molecular structure and intermolecular forces play a major role in liquid crystal chemistry, changing the nature of the R and L groups result in changes mesomorphic properties. The aim of the project was to synthesise RAuL complexes with stilbazole ligands and to investigate how different R groups influence the liquid crystal properties. ClAu(n-OST) complexes, n-OST = trans-4,4'-alkoxystilbazole with n = number of carbon atoms in the alkoxy chain, were synthesised from ClAu(tht) and n-OST. They were found to exhibit smectic A mesophases, melting between 135-153 °C and decomposing at the clearing point at 168-180 °C. The transition temperatures decreased as the chain length of the n-OST ligand increased.
Schwiderski, Martin [Verfasser], Herbert [Akademischer Betreuer] Vogel, and Andrea [Akademischer Betreuer] Kruse. "Aluminiumchlorid katalysierter Organosolv-Aufschluss von Lignocellulosen / Martin Schwiderski ; Herbert Vogel, Andrea Kruse." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1131254201/34.
Full textBooks on the topic "Organosol"
Ariztegui, Aurelio Sagaseta. Organos de Navarra. [Pamplona]: Gobierno De Navarra, Departamento De Educacion Y Cultura, Institucion Principe De Viana, 1985.
Find full textKhan, Tasneem A. Chemistry of organogold (I) & (III) complexes. Manchester: UMIST, 1997.
Find full textPaszner, Laszlo. Innovations for hardwood utilization: Catalysed organosolv pulping and saccharification. Edmonton: Forestry Canada, 1988.
Find full textJosé Santos de la Iglesia Ugarte. Los organos en La Rioja. [La Rioja, Spain]: Gobierno de La Rioja, Consejeria de Cultura, Deportes y Juventud, 1991.
Find full textIzcovich, Sara Gampel de. Enseñanza media: Organos colegiados de gobierno. Buenos Aires: Fundación Arturo Illia para la Democracia y la Paz, 1988.
Find full textParra, Gustavo Delgado. Organos históricos de Oaxaca: Estudio y catalogación. México, D.F: CONACULTA-INAH, 1999.
Find full textParedes, José Sánchez. Catálogo de los organos judiciales de España. 2nd ed. Lorca: J. Sánchez Paredes, 1992.
Find full textGafo, Javier, and Diego Gracia. Trasplantes de organos: Problemas tecnicos, eticos y legales. Madrid: Fundación Humanismo y Democracía, 1996.
Find full textGemert, Hans van. Organos históricos del Perú =: Historic organs of Peru. Hillbrow, Sudáfrica: H. van Gemert, 1990.
Find full textBook chapters on the topic "Organosol"
Gooch, Jan W. "Organosol." In Encyclopedic Dictionary of Polymers, 506. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8245.
Full textBrosse, Nicolas, Mohd Hazwan Hussin, and Afidah Abdul Rahim. "Organosolv Processes." In Advances in Biochemical Engineering/Biotechnology, 153–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/10_2016_61.
Full textKrause, Norbert. "Organogold Chemistry." In Organometallics in Synthesis, 429–540. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118651421.ch4.
Full textCook, Phillip M., and Terry Sellers. "Organosolv Lignin-Modified Phenolic Resins." In ACS Symposium Series, 324–33. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0397.ch024.
Full textPye, E. Kendall, and Michael Rushton. "Organosolv Biorefining: Creating Higher Value from Biomass." In Catalytic Process Development for Renewable Materials, 239–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527656639.ch9.
Full textGonçalves, Adilson R., and Ulf Schuchardt. "Oxidation of Organosolv Lignins in Acetic Acid." In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 127–32. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_12.
Full textXu, Chunbao, Baoqiang Liao, and Wei Shi. "Organosolv Pretreatment of Pine Sawdust for Bio-ethanol Production." In Pretreatment Techniques for Biofuels and Biorefineries, 435–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32735-3_19.
Full textRuzene, Denise S., Adilson R. Gonçalves, José A. Teixeira, and Maria T. Pessoa de Amorim. "Carboxymethylcellulose Obtained by Ethanol/Water Organosolv Process Under Acid Conditions." In Applied Biochemistry and Biotecnology, 573–82. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-181-3_47.
Full textPan, Xuejun. "Organosolv Biorefining Platform for Producing Chemicals, Fuels, and Materials from Lignocellulose." In The Role of Green Chemistry in Biomass Processing and Conversion, 241–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118449400.ch7.
Full textHergert, H. L., G. C. Goyal, and J. H. Lora. "Limiting Molecular Weight of Lignin from Autocatalyzed Organosolv Pulping of Hardwood." In ACS Symposium Series, 265–77. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0742.ch012.
Full textConference papers on the topic "Organosol"
Wu, Xiaochun, Rongyao Wang, Li Wang, Shaomei Liu, and Bingsuo Zou. "Optical nonlinearity of nanometer-sized CdO organosol using Z-scan measurement." In Photonics China '96, edited by Ratnakar R. Neurgaonkar, Tsutomu Shimura, and Peixian Ye. SPIE, 1996. http://dx.doi.org/10.1117/12.253236.
Full textKOBETS, A., and T. VOROBYOVA. "ELECTROLESS NICKEL PLATING ON SILICATE GLASS SENSITIZED WITH Sn(II) CONTAINING ORGANOSOL." In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0088.
Full textPals, Matiss, Liga Lauberte, Alexandr Arshanitsa, Laima Vevere, Vilhelmine Jurkjane, and Galina Telysheva. "Organosolv delignification of residual plantation willow bark after extractive removal." In Research for Rural Development 2020. Latvia University of Life Sciences and Technologies, 2020. http://dx.doi.org/10.22616/rrd.26.2020.011.
Full textPham, Q., N. Brosse, C. Frochot, and B. Jamart-Grégoire. "Self-Organization of Gelator Molecules Inside an Organogel." In 3rd France-Russia Seminar. Les Ulis, France: EDP Sciences, 2007. http://dx.doi.org/10.1051/names2007030.
Full textSidiras, Dimitrios, Ioanna Salapa, and Dorothea Politi. "Organosolv Modified Wheat Straw as Adsorbent for Basic Dyes in Water Bodies." In The 2nd World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2016. http://dx.doi.org/10.11159/iccpe16.106.
Full textAl Afif, Rafat, Martin Wendland, Lutz Christian Krapf, Thomas Amon, and Christoph Pfeifer. "Organosolv Plus Supercritival Carbon Dioxide Pre-Treatment of Cotton Stalks for Methane Production." In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-048-6.3.
Full textWei-Kit, Danny Chin, Steven Lim, Pang Yean-Ling, and Wong Kam-Huei. "Application of Organosolv Pretreatment on Pennisetum Purpureum for Lignin Removal and Cellulose Recovery." In ICBBE 2017: 2017 4th International Conference on Biomedical and Bioinformatics Engineering. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3168776.3168781.
Full textBarrera Arellano, Daniel, and Juliana Annes Erbolato. "SISTEMAS ORGANOGEL-AMIDO E SUAS EMULSÕES: CARACTERÍSTICAS REOLÓGICAS E ESTABILIDADE." In XXIII Congresso de Iniciação Científica da Unicamp. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.19146/pibic-2015-37445.
Full text"Cement-Based Composites Reinforced with Nanofibrillated Cellulose from Bamboo Organossolv Pulp." In Non-Conventional Materials and Technologies. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291838-12.
Full textPermatasari, Puspita Rahayu, Imam Prasetyo, and Teguh Ariyanto. "Synthesis of nanoporous carbon from mangosteen peel lignin extracted by using organosolv and soda processes." In THE 11TH REGIONAL CONFERENCE ON CHEMICAL ENGINEERING (RCChE 2018). Author(s), 2019. http://dx.doi.org/10.1063/1.5095029.
Full text