Academic literature on the topic 'Organotypic Brain Slice Co-Cultures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organotypic Brain Slice Co-Cultures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organotypic Brain Slice Co-Cultures"
Humpel, Christian. "Organotypic Brain Slice Cultures." Current Protocols in Immunology 123, no. 1 (October 12, 2018): e59. http://dx.doi.org/10.1002/cpim.59.
Full textHumpel, Christian. "Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer’s Disease." Current Alzheimer Research 16, no. 2 (February 4, 2019): 172–81. http://dx.doi.org/10.2174/1567205016666181212153138.
Full textHumpel, C. "Organotypic brain slice cultures: A review." Neuroscience 305 (October 2015): 86–98. http://dx.doi.org/10.1016/j.neuroscience.2015.07.086.
Full textPhillips, Wiktor S., Mikkel Herly, Christopher A. Del Negro, and Jens C. Rekling. "Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms." Journal of Neurophysiology 115, no. 2 (February 1, 2016): 1063–70. http://dx.doi.org/10.1152/jn.00904.2015.
Full textHeine, Claudia, Katja Sygnecka, Nico Scherf, Marcus Grohmann, Annett Bräsigk, and Heike Franke. "P2Y1 receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures." Neuropharmacology 93 (June 2015): 252–66. http://dx.doi.org/10.1016/j.neuropharm.2015.02.001.
Full textJoost, Sarah, Stefan Mikkat, Michael Wille, Antje Schümann, and Oliver Schmitt. "Membrane Protein Identification in Rodent Brain Tissue Samples and Acute Brain Slices." Cells 8, no. 5 (May 8, 2019): 423. http://dx.doi.org/10.3390/cells8050423.
Full textUcar, Buket, Sedef Yusufogullari, and Christian Humpel. "Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices." Experimental Brain Research 238, no. 11 (August 29, 2020): 2521–29. http://dx.doi.org/10.1007/s00221-020-05907-7.
Full textGIANINAZZI, C., M. SCHILD, N. MÜLLER, S. L. LEIB, F. SIMON, S. NUÑEZ, P. JOSS, and B. GOTTSTEIN. "Organotypic slice cultures from rat brain tissue: a new approach forNaegleria fowleriCNS infectionin vitro." Parasitology 132, no. 6 (September 13, 2005): 797–804. http://dx.doi.org/10.1017/s0031182005008619.
Full textSpahr-Schopfer, Isabelle, Lazlo Vutskits, Nicholas Toni, Pierre-Alain Buchs, Lorena Parisi, and Dominique Muller. "Differential Neurotoxic Effects of Propofol on Dissociated Cortical Cells and Organotypic Hippocampal Cultures." Anesthesiology 92, no. 5 (May 1, 2000): 1408–17. http://dx.doi.org/10.1097/00000542-200005000-00032.
Full textCroft, Cara L., and Wendy Noble. "Preparation of organotypic brain slice cultures for the study of Alzheimer’s disease." F1000Research 7 (May 15, 2018): 592. http://dx.doi.org/10.12688/f1000research.14500.1.
Full textDissertations / Theses on the topic "Organotypic Brain Slice Co-Cultures"
Sygnecka, Katja. "Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188897.
Full textRambani, Komal. "Thick brain slice cultures and a custom-fabricated multiphoton imaging system: progress towards development of a 3D hybrot model." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22702.
Full textSygnecka, Katja [Verfasser], Andrea [Akademischer Betreuer] Robitzki, Andrea [Gutachter] Robitzki, and Bernd [Gutachter] Heimrich. "Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations / Katja Sygnecka ; Gutachter: Andrea Robitzki, Bernd Heimrich ; Betreuer: Andrea Robitzki." Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1239740050/34.
Full textHenning, Karen [Verfasser]. "Adeno-associated viral gene transfer to prevent the cellular phenotype of cortical organotypic brain-slice cultures derived from Gaucher’s disease type II mice. / Karen Henning." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1050978242/34.
Full textDias, Francisco Filipe Terra Silveira Schäller. "Organotypic brain slice cultures as a model to study supressors of amyloid-β toxicity relevant in Alzheimer’s disease." Master's thesis, 2020. http://hdl.handle.net/10451/48714.
Full textThe accumulation of the amyloid-β peptide and its subsequent aggregation is followed by an initial neuroinflammatory response, thought as one of the driving processes leading to neurodegeneration in AD. Rising evidence describe this disease as an evolving two-stage inflammatory process, where early stages involve glial ability to regulate AD related mechanisms, maintaining an homeostatic environment prior to plaque formation, whilst late stages are characterized by an amyloid plaque-associated exacerbated neuroinflammation and consequent neurodegeneration. The proinflammatory protein S100B is one of the glial response alarmins upregulated in AD, thought to play an important, although unclear role during the early stages of the disease. S100B has been known for its role as an inflammatory inducer in other neurodegenerative disorders, yet recent in vitro approaches established a new chaperone-like function for this protein, as a suppressor of Aβ aggregation. Therefore, we here investigated whether S100B plays a neuroprotective or disease-aggravating role against Aβ induced toxicity in a hippocampal organotypic slice culture model. First, S100B and Aβ42 were recombinantly purified in E. coli. Then, tissue slices were incubated with the recombinant proteins to mimic the AD environment and explore the dual role of S100B. In these conditions, our results suggest that in the dentate gyrus region, S100B is able to partially prevent microglia reactivity induced by Aβ42. Also, it seems to regulate the Aβ42 induced expression of inflammatory genes, such as IL-1β, without affecting neuronal death. Although these initial studies suggest that S100B might play a neuroprotective role against Aβ-induced neuroinflammation, further studies are needed to better ascertain whether the interplay between these two biomolecules can be used as potential therapeutic approach to ameliorate AD pathology.
Os eventos que levam à acumulação do péptido Beta Amiloide (Aβ) e à sua subsequente agregação são seguidos por uma resposta neuro inflamatória, num estágio inicial da doença de Alzheimer (AD), que se pensa ser um dos principais processos conducentes à neurodegeneração observada nesta doença. De facto, descobertas recentes descrevem esta doença como um processo neuroinflamatório bifásico em constante evolução, cujos estados iniciais são caracterizados pela regulação de processos relacionados com AD pelas células gliais, mantendo assim um ambiente homeostático precedente à formação de placas amiloides, enquanto estados mais tardios são caracterizados por uma exacerbada neuroinflamação relacionada com estas placas, conduzindo assim à neurodegeneração característica desta doença. A proteína pró-inflamatória S100B é uma das alarminas provenientes desta resposta glial aumentada em AD, que se pensa ter um papel importante, embora pouco claro, durante os estados iniciais da doença. Esta proteína tem vindo a ser conhecida pela sua função como indutora inflamatória noutras doenças neurodegenerativas, contudo uma recente abordagem in vitro estabeleceu uma nova função para esta proteína, semelhante a uma chaperona, capaz de suprimir a agregação do péptido Aβ. Deste modo, foi investigado neste projeto se a S100B assume uma função neuro protetora ou agravadora da toxicidade imposta pelo péptido Aβ no modelo de culturas organotípicas de hipocampo. Primeiramente, a proteína S100B e o péptido Aβ42 foram purificados de forma recombinante a partir de E. coli. De seguida, as culturas organotípicas foram incubadas com ambas as proteínas de forma a mimetizar o ambiente proteico de AD e para explorar esta dupla função da S100B. Nestas condições, os resultados obtidos sugerem que na região do Dentate Gyrus, a S100B consegue prevenir, de forma parcial, a reatividade da microglia induzida pelo péptido Aβ42. Além disso, parece regular a expressão inflamatória de genes induzida pelo Aβ42, como por exemplo a expressão da citocina IL-1β, sem afetar a viabilidade neuronal. Embora estes resultados preliminares possam indicar que a S100B desempenha uma função neuro protetora face à neuroinflamação induzida pelo péptido Aβ, estudos adicionais são necessários para melhor confirmar se a interação entre estas duas biomoléculas pode ser usada como uma eventual abordagem terapêutica para melhorar a patologia de Alzheimer.
Book chapters on the topic "Organotypic Brain Slice Co-Cultures"
Pringle, A. K., J. Self, and Fausto Iannotti. "Reducing Conditions Produce a Loss of Neuroprotective Efficacy of Competitive but not non-Competitive Antagonists in a Model of NMDA-Mediated Excitotoxicity in Organotypic Hippocampal Slice Cultures." In Brain Edema XI, 79–80. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6346-7_16.
Full textKasri, Nael Nadif, Eve‐Ellen Govek, and Linda Van Aelst. "Characterization of Oligophrenin‐1, a RhoGAP Lost in Patients Affected with Mental Retardation: Lentiviral Injection in Organotypic Brain Slice Cultures." In Methods in Enzymology, 255–66. Elsevier, 2008. http://dx.doi.org/10.1016/s0076-6879(07)00419-3.
Full textConference papers on the topic "Organotypic Brain Slice Co-Cultures"
Yu, Zhe, Woo Hyeun Kang, and Barclay Morrison. "Toward a Functional Tolerance Criterion for the Hippocampus Developed From Organotypic Slice Cultures." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19622.
Full text