Academic literature on the topic 'Origami applications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Origami applications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Origami applications"

1

Morgan, Michael Robert. "Using the Offset Panel Technique to Develop Innovative Origami-Based Applications." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5776.

Full text
Abstract:
Origami, the art of folding paper, was once only an art form. In recent years, it has collided with the world of engineering and is acting as a source of inspiration for solutions to various engineering problems. Paper, the typical material used in the art form, is thin and works well for origami, but is not often suitable for use in engineering. Researchers have developed a handful of methods for accommodating thick/rigid materials in origami design. Most of these preserve only the kinematics of the model or its range of motion. Not only does the offset panel technique (OPT) preserve both the kinematics and the range of motion, it also allows for flexibility in design. This work focuses on the further development of the OPT and its potential to be implemented in real-world applications. The OPT provides design flexibility by allowing for the use of various and multiple materials, the modification of panel geometry, and the utilization of any rigid-foldable origami pattern. These and other capabilities are demonstrated in several application examples.
APA, Harvard, Vancouver, ISO, and other styles
2

Francis, Kevin Campbell. "Origami-Based Design for Engineering Applications." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3998.

Full text
Abstract:
Origami can be a powerful source of design inspiration in the creation of reconfigurable systems with unparalleled performance. This thesis provides fundamental tools for designers to employ as origami-based designs are pursued in their respective fields of expertise. The first chapter introduces origami and makes connections between origami and engineering design through a survey of engineered applications and characterizing the relationship between origami and compliant mechanisms. The second chapter evaluates the creasing of non-paper sheet materials, such as plastics and metals, to facilitate origami-based compliant mechanism design. Although it is anticipated that most origami-based design will result from surrogate folds (indirect methods of replacing the crease), it is valuable to provide information that may help in more direct approaches for origami-based design in materials other than paper. Planar sheets of homogeneous material are considered as they maintain the principles fundamental to origami (flat initial state, low cost, readily available). The reduced stiffness along the axis of the crease is an enabling characteristic of origami. Hence a metric based on the deformation of the crease compared to the deformation of the panels enables engineering materials to be evaluated based on their ability to achieve the "hinge-like" behavior observed in folded paper. Advantages of both high and low values of this metric are given. Testing results (hinge indexes, residual angles, localized hinge behavior and cyclic creasing to failure) are presented for various metals and polymers. This methodology and subsequent findings are provided to enable origami-based design of compliant mechanisms. The third chapter proposes a basic terminology for origami-based design and presents areas of considerations for cases where the final engineering design is directly related to a crease pattern. This framework for navigating from paper art to engineered products begins once the crease pattern has been selected for a given application. The four areas of consideration are discussed: 1) rigid foldability 2) crease characterization 3) material properties and dimensions and 4) manufacturing. Two examples are concurrently presented to illustrate these considerations: a backpack shell and a shroud for an adjustable C-Arm x-ray device used in hospitals. The final chapter provides concluding remarks on origami-based design.
APA, Harvard, Vancouver, ISO, and other styles
3

Hudoba, Michael W. "Force Sensing Applications of DNA Origami Nanodevices." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471474143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Darcy, Michael Augusto. "High Force Applications of DNA Origami Devices." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1619092851712077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andrews, David Wayne. "Incorporating Stability in Deployable Origami-based Engineering Applications." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8616.

Full text
Abstract:
For origami-based designs to be functional, they need to be stable. Typically, stability is achieved through the introduction of exterior supports or members. This work focuses on incorporating stability into deployable origami-based engineering applications, including the development of deployable stiffeners or hard stops and generating concepts for stable origami-based systems in specific applications. Two types of deployable stiffeners are developed. Models for transcrease hard stops are presented, which can be directly implemented into origami-patterns to block motion at a specified angle. Thickness Utilizing Deployable Hard Stops (ThUDS), adapted from the transcrease hard stop models, can be implemented into thick materials for use in origami-based design. The application of self-deploying, self-locking ThUDS in an origami-based CubeSat reflectarray is shown, designed using optimization principles. Last, various multistable furniture concepts are presented, with stability incorporated into the concept design. These concepts focus on using composite wood as the base material, due to wood's abundance and commonality in furniture design.
APA, Harvard, Vancouver, ISO, and other styles
6

Feng, Huijuan. "Kinematics of spatial linkages and its applications to rigid origami." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC014/document.

Full text
Abstract:
La thèse conduit une analyse cinématique des mécanismes spatiaux allant de mécanismes sphériques aux mécanismes spatiaux sur-contraints basés sur la méthode matricielle D-H et l’applique pour explorer le comportement rigide de pliabilité et de mouvement des modèles d’origami. Dans ce processus, la pliabilité rigide du motif origami en torsion triangulaire est d’abord examinée sur la base de la cinématique du réseau de mécanismes 4 R sphériques et de nouveaux mécanismes 6 R sur-contraints dérivés par la technique du kirigami. Ensuite, la cinématique du mécanisme de Bricard 6 R plan-symétrique est analysée et ses variations de bifurcation sont discutées. Après cela, les résultats sont appliqués pour étudier le pliage symétrique de l’origami de la waterbomb à six plis à panneau épais, qui est modélisé sous laforme d’un réseau de mécanismes de Bricard 6 R plan-symétriques. Le comportement de mouvement de sa tessellation correspondante de feuille de zéro-épaisseur est démontré par unréseau de mécanismes 6 R sphériques. Enfin, le comportement de mouvement de la forme cylindrique fermée de l’origami de la waterbomb est analysé à travers une étude paramétrique, en le modélisant comme un réseau fermé de mécanismes 6 R sphériques. Ces études aident à approfondir la compréhension de la cinématique des mécanismes spatiaux et du mouvement rigide de l’origami, et à jeter les bases des applications techniques des mécanismes spatiaux et des motifs d’origami rigides<br>This dissertation conducts kinematic analysis of spatial linkages ranging from spherical linkages to overconstrained linkages based on the D-H matrix method, and applies it to explore the rigid foldability and motion behaviour of origami patterns. In this process, the rigid foldability of triangle twist origami pattern is firstly examined based on the kinematics of spherical 4 R linkage network and new overconstrained 6 R linkages are derived by kirigami technique. Then the kinematics of the plane-symmetric Bricard 6 R linkage is analyzed and its bifurcation variations are discussed. After that, the results are applied to study the symmetric folding of six-crease thick-panel waterbomb origami, which is modelled as a network of planesymmetric Bricard 6 R linkages. The motion behaviour of its corresponding tessellation of zerothickness sheet is demonstrated by a network of spherical 6 R linkages. Finally, the motion behaviour of the closed cylindrical form of waterbomb origami is investigated through a parametric study, by means of modelling it as a closed network of spherical 6 R linkages. These studies help to deepen the understanding of spatial linkage kinematics and rigid origami motion, and lay the foundation for engineering applications of spatial linkages and rigid origami patterns
APA, Harvard, Vancouver, ISO, and other styles
7

Schüller, Verena. "DNA origami structures for applications in single molecule spectroscopy and nanomedicine." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-157179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seymour, Kendall Hal. "Joint Analysis of and Applications for Devices with Expanding Motions." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7725.

Full text
Abstract:
Origami has been extensively studied by engineers for its unique motions and ability to collapse to small volumes. Techniques have been studied for replicating origami-like folding motion in thick materials, but limited practical applications of these techniques have been demonstrated. Developable mechanisms are a new mechanism type that has a similar ability to collapse to a low profile. The cylindrical developable mechanism has the ability to emerge from and conform to a cylindrical surface. In this work, a few practical applications of devices with novel expanding motions are presented. The design and testing of an origami-inspired deployable ballistic barrier, which was designed by combining and modifying existing thickness accommodation techniques, is discussed. The properties of cylindrical developable mechanisms are examined and two devices designed for use with minimally invasive surgical tooling are presented. Various hinge options for small-scale cylindrical developable mechanisms are then reviewed and discussed. A planar modeling assumption for curved lamina emergent torsional joints in thin-walled cylinders is then analytically and empirically validated. Conclusions are drawn and recommendations for future work are given.
APA, Harvard, Vancouver, ISO, and other styles
9

Nabiyouni, Ehsan. "Toward Auxetic Composites for Structural Applications: Finite Element Analysis of Origami-Inspired Foldcores." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1493406860478926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halley, Patrick D. "DNA Origami as a Drug Delivery Vehicle for in vitro and in vivo Applications." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480632777328142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography