Dissertations / Theses on the topic 'Orlicz spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 dissertations / theses for your research on the topic 'Orlicz spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Al-Rashed, Maryam Houmod Ali. "Noncommutative Orlicz spaces." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434998.
Full textCazacu, Constantin Dan. "Twisted sums of Orlicz spaces /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9901223.
Full textSzab?o, L?aszl?o. "On ergodic and Martingale theorems in Orlicz spaces /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487683756124057.
Full textDoto, James William. "Conditional uniform convexity in Orlicz spaces and minimization problems." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/27352.
Full textEl-Mabrouk, Khalifa. "Semilinear perturbations of harmonic spaces and Martin-Orlicz capacities an approach to the trace of moderate U-functions /." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964456435.
Full textLai, Wei-Kai. "The radon-nikodym property for the Wittstock and Fremlin tensor products of orlicz sequence spaces and banach lattices /." Full text available from ProQuest UM Digital Dissertations, 2008. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1850496461&SrchMode=1&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1277325845&clientId=22256.
Full textCapolli, Marco. "Selected Topics in Analysis in Metric Measure Spaces." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288526.
Full textCapolli, Marco. "Selected Topics in Analysis in Metric Measure Spaces." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288526.
Full textCarvalho, Marcos Leandro Mendes. "Equações diferenciais parciais elípticas multivalentes: crescimento crítico, métodos variacionais." Universidade Federal de Goiás, 2013. http://repositorio.bc.ufg.br/tede/handle/tede/3686.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:39:40Z (GMT) No. of bitstreams: 2 Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-11-25T14:39:40Z (GMT). No. of bitstreams: 2 Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-09-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we develop arguments on the critical point theory for locally Lipschitz functionals on Orlicz-Sobolev spaces, along with convexity, minimization and compactness techniques to investigate existence of solution of the multivalued equation −∆Φu ∈ ∂ j(.,u) +λh in Ω, where Ω ⊂ RN is a bounded domain with boundary smooth ∂Ω, Φ : R → [0,∞) is a suitable N-function, ∆Φ is the corresponding Φ−Laplacian, λ > 0 is a parameter, h : Ω → R is a measurable and ∂ j(.,u) is a Clarke’s Generalized Gradient of a function u %→ j(x,u), a.e. x ∈ Ω, associated with critical growth. Regularity of the solutions is investigated, as well.
Neste trabalho desenvolvemos argumentos sobre a teoria de pontos críticos para funcionais Localmente Lipschitz em Espaços de Orlicz-Sobolev, juntamente com técnicas de convexidade, minimização e compacidade para investigar a existencia de solução da equação multivalente −∆Φu ∈ ∂ j(.,u) +λh em Ω, onde Ω ⊂ RN é um domínio limitado com fronteira ∂Ω regular, Φ : R → [0,∞) é uma N-função apropriada, ∆Φ é o correspondente Φ−Laplaciano, λ > 0 é um parâmetro, h : Ω → R é uma função mensurável e ∂ j(.,u) é o gradiente generalizado de Clarke da função u %→ j(x,u), q.t.p. x ∈ Ω, associada com o crescimento crítico. A regularidade de solução também será investigada.
Kumar, Vishvesh. "Harmonic analysis on Orlicz spaces for certain hypergroups and on discrete hypergroups arising from semigroups with emphasis on Ramsey theory." Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8075.
Full textMENESES, João Paulo Formiga de. "Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares." Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1425.
Full textMade available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1 JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) Previous issue date: 2016-11-25
Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares.
In this work, using sub and supersolutions and variational methods on Orlicz-Sobolev spaces, we study the existence of multiple positive solutions for a class of quasilinear elliptic problems.
Silva, Ailton Rodrigues da. "Existência, multiplicidade e concentração de soluções positivas para uma classe de problemas quasilineares em espaços de Orlicz-Sobolev." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9258.
Full textMade available in DSpace on 2017-08-15T12:49:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1323834 bytes, checksum: 530efbd6b56f11c5cc1b4369c8c44888 (MD5) Previous issue date: 2016-02-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we establish existence, multiplicity and concentration of positive solutions for the following class of problem 8<: div 2 ( jruj)ru + V (x) (juj)u = f(u); in RN; u 2 W1; (RN); u > 0 in RN; where N 2, is a positive parameter, ; V; f are functions satisfying technical conditions that will be presented throughout the thesis and (t) = Rjtj 0 (s)sds. The main tools used are Variational methods, Lusternik-Schnirelman of category, Penalization methods and properties of Orlicz-Sobolev spaces.
Neste trabalho estabelecemos resultados de existência, multiplicidade e concentração de soluções positivas para a seguinte classe de problemas quasilineares 8<: div 2 ( jruj)ru + V (x) (juj)u = f(u); em RN; u 2 W1; (RN); u > 0 em RN; onde N 2, é um parâmetro positivo, ; V; f são funções satisfazendo condições técnicas que serão apresentadas ao longo da tese e (t) = Rjtj 0 (s)sds. As principais ferramentas utilizadas são os Métodos Variacionais, Categoria de Lusternik-Schnirelman, Método de Penalização e propriedades dos espaços de Orlicz-Sobolev.
Carvalho, Gilson Mamede de. "Equações de Schrödinger quaselineares com potenciais singulares ou se anulando no infinito." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9254.
Full textMade available in DSpace on 2017-08-15T11:35:55Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1290749 bytes, checksum: 9377b99ec1efcaa5be2f62cc2aae83ac (MD5) Previous issue date: 2016-07-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we study existence of standing wave solution for a class of quasilinear Schrödinger equations involving potentials that may be singular at the origin or vanishing at infinity. For dimensions bigger than two, we consider nonlinearities with subcritical growth. In dimension two, we work with nonlinearities having exponential critical growth. To obtain our results, we have used variational techniques, more specifically, a version of the Mountain Pass Theorem, a regularity result of Brézis-Kato type, arguments of symmetrical criticality principle type, Moser iteration method and a Trudinger-Moser type inequality.
Neste trabalho, estudamos existência de solução do tipo onda estacionária para uma classe de equações de Schrödinger quaselineares, envolvendo pontencias que podem ser singular na origem ou que podem se anular no infinito. Para dimensões maiores que dois, consideramos não-linearidades com crescimento subcrítico. Em dimensão dois, trabalhamos com não linearidades possuindo crescimente crítico exponencial. Para a obtenção de nossos resultados, usamos técnicas variacionais, mais especificamente, uma versão do Teorema do Passo da Montanha, um resultado de regularidade do tipo Brézis- Kato, argumentos do tipo princípio da criticalidade simétrica, método de iteração de Moser e uma desigualdade do tipo Trudinger-Moser.
Zghal, Mohamed Khalil. "Inégalités de type Trudinger-Moser et applications." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1077/document.
Full textThis thesis focuses on some Trudinger-Moser type inequalities and their applications to the study of Sobolev embeddings they induce into the Orlicz spaces, and the investigation of nonlinear partial differential equations with exponential growth.The work presented here includes three parts. The first part is devoted to the description of the lack of compactness of the 4D Sobolev embedding into the Orlicz space in the radialframework.The aim of the second part is twofold. Firstly, we characterize the lack of compactness of the 2D Sobolev embedding into the different classes of Orlicz spaces. Secondly, we undertakethe study of the nonlinear Klein-Gordon equation with exponential growth, where the Orlicz norm plays a crucial role. In particular, issues of global existence, scattering and qualitativestudy are investigated.In the third part, we establish sharp Adams-type inequalities invoking Hardy inequalities, then we give a description of the lack of compactness of the Sobolev embeddings they induce
Ben, Ayed Inès. "Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1133.
Full textIn this thesis, we focused on the one hand on the description of the lack of compactness of the critical Sobolev embedding into different classes of Orlicz spaces, and on the other hand on the study of the nonlinear Klein-Gordon equation with exponential nonlinearity. This work is divided into three parts. The aim of the first part is to characterize the lack of compactness of the Sobolev embedding of $H^2_{rad}(R^4)$ into the Orlicz space $mathcal{L}(R^4)$.The aim of the second part is twofold: firstly, we describe the lack of compactness of the Sobolev embedding of $H^1(R^2)$ into different classes of Orlicz spaces, secondly we investigate a family of nonlinear Klein-Gordon equations with exponential nonlinearity. This study includes both the global existence problem, the asymptotic completeness and the qualitative study for the associated Cauchy problem. The third part is dedicated to the analysis of the solutions to the 2D Klein-Gordon equation associated to a sequence of bounded Cauchy data in $H^1_{rad}(R^2)times L^2_{rad}(R^2)$. Based on the profile decompositions, this analysis was conducted in the framework of Orlicz norm
Tomková, Iva. "PERLA Ústí nad Orlicí." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-354977.
Full textAnnová, Denisa. "PERLA Ústí nad Orlicí." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-354956.
Full textVlček, Marek. "Vysokoškolská kolej Hradec Králové, nábřeží Orlice." Master's thesis, Vysoké učení technické v Brně. Fakulta architektury, 2019. http://www.nusl.cz/ntk/nusl-401803.
Full textLivovská, Lucia. "Hotel při ČPP aréně v Hradci Králové, nábřeží Orlice." Master's thesis, Vysoké učení technické v Brně. Fakulta architektury, 2019. http://www.nusl.cz/ntk/nusl-401802.
Full textCharpentier, Stéphane. "Opérateurs de composition sur les espaces de fonctions holomorphes de plusieurs variables complexes : universalité dans les espaces de Banach et de Fréchet." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14104/document.
Full textIn the first part of my thesis, a result on the existence of a closed infinite-dimensional subspace, whose non-zero elements are universal series, is given in Banach and Fréchet spaces framework.The second part is devoted to the study of composition operators on spaces of several variables analytic functions. First, the spectrum and the dynamics of hyperbolic composition operators acting on Hardy spaces on the ball are completely described.Second, continuity and compactness of composition operators on Hardy-Orlicz and Bergman-Orlicz spaces on the ball are characterized. In particular, we deduce from the treatment of the continuity that there exists a class of Orlicz functions which define Hardy-Orlicz and Bergman-Orlicz spaces, on which every composition operator is bounded
SONG, YUKUN SONG. "Stochastic Integrals with Respect to Tempered $\alpha$-Stable Levy Process." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1501506513936836.
Full textGhawadrah, Ghadeer. "Théorie descriptive des ensembles et espaces de Banach." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066078/document.
Full textThis thesis deals with the descriptive set theory and the geometry of Banach spaces.The first chapter consists of the study of the descriptive complexity of the set of Banachspaces with the Bounded Approximation Property, respectively π-property, in the set ofall closed subspaces of C(∆), where ∆ is the Cantor set. We show that these sets areBorel. In addition, we show that if α<ω_1, the set of spaces with Szlenk index at most α which have a shrinking FDD is Borel. We show in the second chapter that the numberof isomorphism classes of complemented subspaces of the reflexive Orlicz function space L^Φ [0,1] is uncountable, where L^Φ [0,1]is not isomorphic to L^2 [0,1]
Issa, Samar. "Méthodes variationnelles : Applications à l'analyse d'image et au modèle de Frenkel-Kontorova." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00808646.
Full textGiri, Chinmay Kumar. "Orlicz Function Spaces and Composition Operator." Thesis, 2013. http://ethesis.nitrkl.ac.in/5436/1/411MA2075.pdf.
Full textTeymurazyan, Rafayel. "Obstacle type problems in Orlicz-Sobolev spaces." Doctoral thesis, 2013. http://hdl.handle.net/10451/8648.
Full textThis thesis consists of four chapters. In the first chapter we study the regularity of solutions for a class of elliptic problems in Orlicz-Sobolev spaces. In particular, we see that bounded weak solutions of Au := div a(x; jruj)ru _ = f(x); x 2 ; where Ω ⊂ Rn is a bounded domain, for an appropriate a and f are C1 α regular. Using Lewy-Stampacchia inequalities for one obstacle problem we derive C1 α regularity results (both locally and up to the boundary) for the solution of a quasilinear obstacle problem. In the second chapter we prove Lewy-Stampacchia inequalities in abstract form for two obstacles problem and for N-membranes problem. Applying those inequalities we derive C1 α regularity results (both locally and up to the boundary) for A(x)-obstacle problem with two obstacles and for N-membranes problem. As another application of Lewy-Stampacchia inequalities, we study a quasivariational problem related to a stochastic switching game. We prove, that the problem admits at least a maximal and a minimal solution. In the third chapter we extend the regularity of the free boundary of the obstacle problem to a class of heterogeneous quasilinear degenerate elliptic operators (including p(x)-Laplacian). We prove that the free boundary is a porous set and hence has Lebesgue measure zero. We also show that the (n - 1)-dimensional Hausdorff measure of the free boundary is finite (for p(x) > 2), which yields, in particular, that up to a negligible singular set, the free boundary is the union of at most a countable family of C1 hypersurfaces. Finally, in the chapter four of the thesis, after homogenizing the Dirichlet problem for A(x)-Laplacian in Orlicz-Sobolev spaces, we study the homogenization of the A(x)-obstacle problem, then prove convergence of the coincidence sets.
Fundação para a Ciência e a Tecnologia (FCT, SFRH/BD/40819/2007)
Offwood, Theresa Maria. "No free lunch and risk measures on Orlicz spaces." Thesis, 2012. http://hdl.handle.net/10539/11942.
Full textWróblewska-Kamińska, Aneta. "An application of Orlicz spaces in partial differential equations." Doctoral thesis, 2012. http://depotuw.ceon.pl/handle/item/138.
Full textZecca, Gabriella. "On the L^p-solvability of the Dirichlet problem and generalizations in Orlicz spaces." Tesi di dottorato, 2008. http://www.fedoa.unina.it/3509/1/tesiGZecca.pdf.
Full textDhara, Raj Narayan. "Existence and regularity theory in weighted Sobolev spaces and applications." Doctoral thesis, 2016. https://depotuw.ceon.pl/handle/item/2051.
Full textEl-Mabrouk, Khalifa [Verfasser]. "Semilinear perturbations of harmonic spaces and Martin-Orlicz capacities : an approach to the trace of moderate U-functions / vorgelegt von Khalifa El Mabrouk." 2002. http://d-nb.info/964456435/34.
Full textBuriánková, Eva. "Chování jednorozměrných integrálních operátorů na prostorech funkcí." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-346973.
Full textNaik, S. "Multipliers between Orlicz sequence space." Thesis, 2014. http://ethesis.nitrkl.ac.in/6292/1/E-74.pdf.
Full textSkrzypczak, Iwona. "Hardy–type inequalities and nonlinear eigenvalue problems." Doctoral thesis, 2013.
Find full textSkříšovský, Emil. "Stlačitelné Navier-Stokes-Fourierovy rovnice pro adiabatický koeficient blízko jedničky." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-405891.
Full textKleprlík, Luděk. "Vlastnosti slabě diferencovatelných funkcí a zobrazení." Doctoral thesis, 2014. http://www.nusl.cz/ntk/nusl-342351.
Full textZindulka, Mikuláš. "Bázové posloupnosti v Banachových prostorech." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-448170.
Full textTakáč, Jakub. "Interpolace logaritmicky konvexních kombinací operátorů." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-448302.
Full textKlawe, Filip. "Mathematical analysis of thermo-visco-elastic models." Doctoral thesis, 2015.
Find full textNasze badania koncentrują się na analizie modeli termo-lepko-sprężystych opisujących ewolucję quasi-statyczną. Rozważamy modele, które łączą odkształcenia odwracalne (sprężyste) i nieodwracalne (lepko-sprężyste). Dodatkowo, pojawienie się w modelu odkształceń nieodwracalnych związane jest z dysypacją energii mechanicznej i pojawieniem się efektów cieplnych, które również są przedmiotem analizy.Przedmiotem badań prezentowanych w niniejszej pracy są modele termodynamicznie domknięte opisujące to zjawisko. Dowodzimy istnienia rozwiązań dla modelu Mroza, modelu typu Nortona-Hoffa i modelu z warunkami wzrostu w przestrzeniach Orlicza.Dowody istnienia rozwiązań oparte są na dwustopniowej aproksymacji Galerkina. Prezentujemy konstrukcję rozwiązań przybliżonych oraz dowodzimy ich istnienia. Ponadto, w rozważanych modelach pojawia się problem niskiej regularności danych w równaniu przewodnictwa cieplnego. Rozważamy dwa sposoby rozwiązania tego problemu, tj. podejście Boccardo & Galloueta oraz podejście oparte na teorii rozwiązań zrenormalizowanych.Dodatkowo zakładamy, że rozważane materiały nie ulegają rozszerzalności cieplnej. W związku z tym, zależność przemieszczenia i temperatury jest spowodowana tylko przez funkcję konstytutywną opisującą ewolucję tensora lepko-sprężystego.
Musil, Vít. "Klasické operátory harmonické analýzy v Orliczových prostorech." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-392438.
Full textMusil, Vít. "Poloha Orliczova prostoru a optimalita." Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-340763.
Full textLe, Van Dinh. "The broken circuit complex and the Orlik - Terao algebra of a hyperplane arrangement." Doctoral thesis, 2016. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2016021714257.
Full text