Academic literature on the topic 'Orthogonal coordinates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orthogonal coordinates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Orthogonal coordinates"
Chen, Huanyang. "Transformation optics in orthogonal coordinates." Journal of Optics A: Pure and Applied Optics 11, no. 7 (April 20, 2009): 075102. http://dx.doi.org/10.1088/1464-4258/11/7/075102.
Full textCampos, L. M. B. C., and P. J. S. Gil. "On spiral coordinates with application to wave propagation." Journal of Fluid Mechanics 301 (October 25, 1995): 153–73. http://dx.doi.org/10.1017/s0022112095003843.
Full textRedzic, Dragan V. "The operator ∇ in orthogonal curvilinear coordinates." European Journal of Physics 22, no. 6 (September 21, 2001): 595–99. http://dx.doi.org/10.1088/0143-0807/22/6/304.
Full textKane, Thomas R., and David A. Levinson. "Orthogonal Curvilinear Coordinates and Angular Velocity." Journal of Applied Mechanics 57, no. 2 (June 1, 1990): 468–70. http://dx.doi.org/10.1115/1.2892013.
Full textZhang, Haitao, Shugui Liu, and Xinghua Li. "A study on the key techniques of application of REVO five-axis system in non-orthogonal coordinate measuring machine." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, no. 4 (October 1, 2016): 730–36. http://dx.doi.org/10.1177/0954405416666906.
Full textПлатонова, Marina Platonova, Драпалюк, Mikhail Drapalyuk, Платонов, and Aleksey Platonov. "Justification of kinematic scheme small of the manipulator forestry machines." Forestry Engineering Journal 5, no. 3 (November 15, 2015): 234–39. http://dx.doi.org/10.12737/14652.
Full textPaavola, J., and E. M. Salonen. "Coping with Curvilinear Coordinates." International Journal of Mechanical Engineering Education 26, no. 4 (October 1998): 309–17. http://dx.doi.org/10.1177/030641909802600405.
Full textDOUZE, E. J. "TUTORIAL LINEAR INVERSE FILTERS IN ORTHOGONAL COORDINATES*." Geophysical Prospecting 33, no. 8 (December 1985): 1093–102. http://dx.doi.org/10.1111/j.1365-2478.1985.tb01354.x.
Full textAquilanti, Vincenzo, and Simonetta Cavalli. "Coordinates for molecular dynamics: Orthogonal local systems." Journal of Chemical Physics 85, no. 3 (August 1986): 1355–61. http://dx.doi.org/10.1063/1.451223.
Full textWilliams, R. O. "Orthogonal coordinates for systems of many components." Metallurgical Transactions A 16, no. 5 (May 1985): 929–33. http://dx.doi.org/10.1007/bf02814845.
Full textDissertations / Theses on the topic "Orthogonal coordinates"
PIRES, LUIS FERNANDO GONCALVES. "A NUMERICAL METHOD FOR SOLVING FLOWS USING COVARIANT COMPONENTS IN NON-ORTHOGONAL COORDINATES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18621@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O trabalho desenvolveu uma metodologia de solução numérica de escoamentos em geometrias complexas, numa formulação incompressível e bi-dimensional. As equações de conservação são discretizas com o emprego da técnica de volumes finitos em coordenadas não ortogonais. Esta técnica mapeia o espaço real num espaço transformado, no qual as fronteiras do domínio de cálculo coincidem com as fronteiras do domínio físico. Os componentes contravariantes da velocidade foram empregados como variáveis dependentes nas equações de conservação de quantidade de movimento. Estas equações foram obtidas em coordenadas não ortogonais pela manipulação algébrica das equações discretizadas para os componentes cartesianos. Este procedimento, que emprega um sistema de coordenadas auxiliar fixo localmente, evita o surgimento dos diversos termos oriundos da curvutura e da não ortogonalidade da malha, que seriam obtidos caso fosse empregada a análise tensorial para a derivação destas equações. O ocoplamento pressão-velocidade é feito utilizando SIMPLEC. O conjunto de equações algébricas resultante é resolvido por um esquema de solução segregado, no qual é empregado um esquema de solução linha-a-a linha(TDMA), com um processo de correção por blocos para acelerar a convergência. A metodologia desenvolvida foi utilizada para solução de diversos problemas visando analisar o seu desempenho. Foram estudados os seguintes casos-escoamento laminar entre dois cilindros, convecção natural entre dois cilidros excêntricos, escoamento induzido numa cavidade trapezoidal pelo movimento de suas bases, escoamento laminar num canal, escoamento axi-simétrico num duto com estrangulamento.Tendo em vista os bons resultados obtidos para testes, pode-se concluir que as opções realizadas para a confeção do esquema desenvolvido foram corretas, pois geraram um algoritimo efeciente e versátil.
A solution method for bi-dimensional incompressibible fluid flow problems in complex geometrics is developed in this work. The method solves the conservation equations in nonorthogonal coordinate system using the finite volumes technique. The contravariant velocities are kept as dependent variables in the momentum equations. These equations are obtained by an algebric manipulation of the discretization equations written in locally fixed coordinate system. This producedure avoids the treatment of the extra terms if the discretization equations for the curvilinear velocities are obtained in the conventional manner. The coupling of pressure and velocities are performed by the SIMPLEC algorithm. The set of algebric equations are solved using an iterative method in conjunction with coefficient update for linerization. In the computer implementation of the proposed scheme a line-by-line algorithm (TDMA) has been employed with a block corretion procedure to enhance the convergence. The method is tested by solving a variety of problems. The problems include-flow between two concentric rotating cylinders, natural convection in an eccentric annuli, driven flow in a trapezoidal cavity with moving lids, laminar flow in a channel, exismetric flow in duct with reduced cross section and laminar and turbulent flow through a tube with an axisimetric constriction. The objetive of these tests is to establish the validity of the proposed scheme and demonstrate its applicability to a wide variety of problems.
Turner, David Andrew. "The approximation of Cartesian coordinate data by parametric orthogonal distance regression." Thesis, University of Huddersfield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323778.
Full textFARIAS, Vera Solange de Oliveira. "Difusão 3d em sólidos com forma arbitrária Usando coordenadas generalizadas." Universidade Federal de Campina Grande, 2011. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/264.
Full textMade available in DSpace on 2018-02-07T13:41:46Z (GMT). No. of bitstreams: 1 VERA SOLANGE DE OLIVEIRA FARIAS – TESE PPGEP 2011.pdf: 7179434 bytes, checksum: 4a30c9a95f4a089e00fa550fbf1b42b8 (MD5) Previous issue date: 2011-04-29
CNPq
Este trabalho apresenta a solução numérica da equação de difusão tridimensional em regime transiente, para um domínio arbitrário. Para atingir os objetivos, a equação de difusão foi discretizada usando coordenadas generalizadas via método dos volumes finitos com uma formulação totalmente implícita, para condições de contorno de equilíbrio e convectiva. Para cada passo no tempo, o sistema de equações obtido para uma dada malha estruturada foi resolvido pelo método de Gauss-Seidel. O código computacional foi desenvolvido em FORTRAN, usando o estúdio CVF 6.6.0, na plataforma Windows Vista. A solução proposta foi validada usando soluções analíticas e numéricas da equação de difusão para várias geometrias, permitindo validar malhas ortogonais e não-ortogonais. A análise e comparação dos resultados mostraram que a solução proposta forneceu resultados coerentes para todos os casos investigados. O código computacional desenvolvido foi aplicado na simulação, a partir de dados experimentais da secagem de telhas cerâmicas para as seguintes condições experimentais: temperaturas de 55,6 °C, 69,7 °C, 82,7 °C e 98,6 °C e teor de umidade inicial variando de 0,2345 até 0,2405 (b.s.). A simulação tornou possível determinar o coeficiente de difusão efetivo em função da razão de umidade e da temperatura do ar de secagem e também o valor do coeficiente de transferência convectivo de massa correspondente para cada temperatura.
This work presents a three-dimensional numerical solution for the diffusion equation in transient state, in an arbitrary domain. The diffusion equation was discretized using the finite volume method with a fully implicit formulation and generalized coordinates, for the equilibrium and convective boundary condition. For each time step, the system of equations obtained for a given structured mesh was solved by the Gauss-Seidel method. A computational code in FORTRAN, using the CFV 6.6.0 Studio, in a Windows Vista platform was developed. The proposed solution was validated by analytical and numerical solutions of the diffusion equation for several geometries. The geometries tested enabled to validate both orthogonal and non-orthogonal meshes. The analysis and comparison of the results showed that the proposed solution provides correct results for all cases investigated. The developed computational code was applied in the simulation, using experimental data of the drying of ceramic roof tiles, for the following experimental conditions: temperature from 55.6; 69.7; 82.7; 72.8 and 98.7 °C, initial moisture content from 0.2345 up to 0.2405 (d.b.). The simulation makes it possible to determine an expression for the diffusion coefficient as a function of the moisture content and temperature of the drying air, and also the value of the convective mass transfer coefficient corresponding to each temperature.
Smith, M. A. "Simulating multiplicative neural processes in non-orthogonal coordinate systems, a three-dimensional tensor model of the VOR." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22877.pdf.
Full textPearson, Richard Vincent. "Simulation of shallow water hydrodynamics and species transport using elliptically generated non-orthogonal boundary-fitted coordinate systems." Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308220.
Full textElkourdi, Mohamed. "Machine Learning, Game Theory Algorithms, and Medium Access Protocols for 5G and Internet-of-Thing (IoT) Networks." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7782.
Full textBrum, Fabiano Becker. "APLICAÇÃO DA TRANSFORMAÇÃO ORTOGONAL NO GEORREFERENCIAMENTO COM DIVISÃO DE ÁREA." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/9525.
Full textThe Geodesy methods and equipments progress brings with himself the growing need on geodetic surveys. Thereby, it is possible to make compatible any surveys with no extension boundary like from plane models and with no points overlap. These surveys are usually from geodetic satellites for that specific purpose. However, there are cases under precision restriction by nature of these systems, as well as physical conditions lack and equipments deficiency disables such operations. Thus, it becomes necessary to take place surveys from a topographical origin to a geocentric origin. To other cases, it is not enough just to know the geodetic coordinates but it is necessary to know its equivalent ones in the topographical plan, mostly to section and calculus of areas besides point locations. In these cases a solution of great use is the transformation of the geocentric coordinates to the UTM Projection plane cartographic coordinates, usually being ignored the deformations. Therefore it is a mistaken solution. Among the appropriate solutions to transform coordinates between surfaces from a topographical origin to a geocentric origin it is the Orthogonal Transformation. This method is more concise than the traditional Puissant´s methodology and to make possible the conversion of topographical coordinateds to geocentric coordinates and vice-versa. In this work the precision of Orthogonal Transformation method was compared initially with the Puissant´s method. Also were compared the differences among areas calculated from the UTM cartographic plan coordinates and topographical coordinates, besides having established the position discrepancy among boundary points calculated in a certain plan and implanted in other one without the true conversions. The results shows that the Orthogonal Transformation method precision is equivalent to Puissant´s method for observed ranges. It was possible to note that the values to areas calculated from coordinates related to models or different surfaces presents discrepancy. The areas section and estimation from the UTM cartographic projection plane coordinates, even with scale factor and elevation corrections, has been different to the area from the local topographical plan, although it was similar when under corrections. Points from section of geodetic areas can not to have implant in the topographical plane under use of UTM cartographic projection plane coordinates due to the position difference between it and the topographical coordinates. The more appropriate solution, due to good precision and easiness to section and estimate geodetic areas from geocentric coordinates, is the change to topographical ones using the Orthogonal Transformation. The Orthogonal Transformation of Coordinates is a practice and quick solution to make geodetic points from topographical surveys as well as to plot geodetic points in the topographical plan, and it is possible to implement it in the Electronic Total Stations in a easy way.
O avanço da geodésia, em seus métodos e equipamentos traz consigo a crescente necessidade da realização de levantamentos georreferenciados. Assim é possível compatibilizar vários levantamentos sem limites de extensão impostos pelo modelo plano e sem a sobreposição de pontos. Estes levantamentos geralmente são executados pelo rastreio de satélites que operam para este fim. Contudo, em certos casos as limitações de precisão e acurácia impostos pelos princípios destes sistemas, bem como a falta de condições físicas e deficiência de equipamentos impossibilita tal operação. Torna-se necessário então realizar levantamentos com a origem topocêntrica e transforma-la em geocêntrica. Em outros casos, não basta conhecer somente as coordenadas georreferenciadas, sendo necessário conhecer suas equivalentes no plano topográfico, principalmente para calcular e dividir áreas e implantar pontos no plano local. Nestes casos uma solução de grande utilização é transformação das coordenadas elipsoidicas geocêntricas em coordenadas planas associadas ao plano da Projeção Cartográfica UTM, geralmente ignorando-se as deformações, portanto consistindo em uma solução equivocada. Entre as soluções adequadas para a conversão de coordenadas de uma superfície para outra quando a origem dos sistemas difere entre topocêntrica e geocêntrica é a Transformação Ortogonal. Este método, além de ser mais sucinto que a metodologia de Puissant tradicionalmente utilizada permite a conversão tanto de coordenadas topocêntricas em geocêntricas bem como o inverso. Neste trabalho inicialmente se comparou a precisão do método da Transformação Ortogonal com o método de Puissant. Também foram comparadas as diferenças entre áreas calculadas apartir de coordenadas no plano cartográfico UTM e coordenadas topocêntricas, além de estabelecida a diferença de posição entre pontos de divisa calculados em um plano e implantados em outro sem as devidas conversões. O resultados obtidos demonstraram que a precisão do método de Transformação Ortogonal nas distancias observadas equivale com a metodologia de Puissant. Foi possível observar que os valores referentes a áreas quando calculadas em relação a coordenadas associadas a modelos ou superfícies diferentes apresentam variação. O cálculo e divisão de áreas utilizando coordenadas planas no plano da projeção cartográfica UTM, mesmo com correções de fator de escala e elevação diferiu da área no plano topográfico local, embora tenha se aproximado quando efetuadas correções. Pontos de divisão de áreas georreferenciadas não devem ser implantados no plano topográfico local utilizando-se coordenadas planas no plano da projeção cartográfica UTM, pois existe diferença de posição entre estas e as coordenadas topográficas. A solução mais adequada pela precisão e facilidade para cálculo e divisão de áreas georreferenciadas a partir de coordenadas geocêntricas é a conversão destas para topocêntricas pela transformação ortogonal de coordenadas. A transformação ortogonal de coordenadas constitui-se de uma solução prática e rápida tanto para o georreferenciamento de pontos oriundos de levantamentos topográficos, bem como para implantação de pontos georreferenciados no plano topográfico local, podendo ser inclusive facilmente implementado em estações totais topográficas.
Chiang, Chen Kun, and 蔣震坤. "Computations of transonic flow with pressure-correction method and collocated non-orthogonal coordinates." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/71908179084123621085.
Full textCochran, Caroline. "THE EQUIVALENCE PROBLEM FOR ORTHOGONALLY SEPARABLE WEBS ON SPACES OF CONSTANT CURVATURE." 2011. http://hdl.handle.net/10222/14191.
Full textChao, Yi-Chuan, and 趙翊荃. "Power Allocation for Non-orthogonal Precoded Coordinated Multi-point Systems." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/e4rtgg.
Full text國立交通大學
電控工程研究所
106
We propose a mixed precoding strategy for CoMP systems, which allows that the orthogonal Block Diagonalization (BD) and the non-orthogonal Maximum Ratio Transmission (MRT) techniques can be simultaneously used for reducing network backhaul loading. We formulated the issues into two optimization problems. Namely, 1) minimizing the backhaul loading under a minimum target rate constraint and 2) maximizing the sum rate under a minimum target rate constraint. We derive closed-form solutions for these two problems and verify them by the Matlab CVX tool box. The de- rived closed-form solutions can signicantly reduce the computational time compared to the CVX. Simulation results show that the proposed precoding schemes can signicantly reduce the backhaul loading and outperform con- ventional schemes in terms of outage probability in achieving the minimum rate constraint.
Books on the topic "Orthogonal coordinates"
Michelassi, V. Solution of the steady state incompressible Navier-Stokes equations in curvilinear non orthogonal coordinates. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1986.
Find full textLeçons sur les systèmes orthogonaux et les coordonnées curvilignes. 2nd ed. Paris: Gauthier-Villars, 1991.
Find full textBook chapters on the topic "Orthogonal coordinates"
Aguilera-Navarro, V. C. "Quantum Many-Body Systems: Orthogonal Coordinates." In Condensed Matter Theories, 309–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_32.
Full textJog, C. S. "The Equations of Equilibrium in Orthogonal Curvilinear Reference Coordinates." In Methods and Tastes in Modern Continuum Mechanics, 385–95. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1884-5_25.
Full textSamarskii, Aleksandr A., and Evgenii S. Nikolaev. "Methods for Solving Elliptic Equations in Curvilinear Orthogonal Coordinates." In Numerical Methods for Grid Equations, 447–87. Basel: Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-9142-4_11.
Full textMitsuishi, Takashi. "Defects in the Defuzzification of Periodic Membership Functions on Orthogonal Coordinates and a Solution." In Fuzzy Logic in Intelligent System Design, 361–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67137-6_40.
Full textXiaoan, Ren. "Elastic-Plastic Constitutive Equation Using Non-Orthogonal Curvilinear Coordinates and its Application in Numerical Methods." In Computational Mechanics ’86, 711–17. Tokyo: Springer Japan, 1986. http://dx.doi.org/10.1007/978-4-431-68042-0_99.
Full textYang, H. Q., K. T. Yang, and J. R. Lloyd. "Finite-Difference Calculations of Three-Dimensional Laminar Buoyant Flows Based on Curvilinear Non-orthogonal Coordinates." In Computational Mechanics ’88, 1605–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_424.
Full textCossali, Gianpietro Elvio, and Simona Tonini. "Orthogonal Curvilinear Coordinate Systems." In Drop Heating and Evaporation: Analytical Solutions in Curvilinear Coordinate Systems, 89–148. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49274-8_4.
Full textLi, Tian, Xuekun Hao, Guoyan Li, Hui Li, and Xinwei Yue. "Non-orthogonal Multiple Access in Coordinated LEO Satellite Networks." In Communications in Computer and Information Science, 65–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1925-3_5.
Full textGuo, Yecai, and Xueqing Zhao. "Balanced Orthogonal Multi-Wavelet Blind Equalization Algorithm Based on Coordinate Transformation." In Communications in Computer and Information Science, 268–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19853-3_39.
Full textSchreiber, Tom, and Alain Tissier. "Synthetic Transcription Activator-Like Effector-Activated Promoters for Coordinated Orthogonal Gene Expression in Plants." In Molecular Pharming, 25–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781118801512.ch2.
Full textConference papers on the topic "Orthogonal coordinates"
Zernov, Nikolay N., and Vadim E. Gherm. "Gaussian Beams in Orthogonal Full Ray Trajectory Coordinates." In 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). IEEE, 2018. http://dx.doi.org/10.23919/ursi-at-rasc.2018.8471500.
Full textLu, Shengnan, Xilun Ding, and Gregory S. Chirikjian. "Rotations in a Non-Orthogonal Frame." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85862.
Full textTong, Chaofeng, and Yanqiu Meng. "A Numerical Shallow Water Model Based on the Non-Orthogonal Curvilinear Grids." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92424.
Full textFeeny, B. F., P. W. Sternberg, and C. J. Cronin. "Complex Modal Decomposition Applied to Nematode Posturing." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87800.
Full textGao, Shanguo, Jiyuan Liu, Yaohui Lyu, Jun Song, and Minghua Lu. "A new and fast coupled method in hybric orthogonal curvilinear coordinates." In OCEANS 2017 - Aberdeen. IEEE, 2017. http://dx.doi.org/10.1109/oceanse.2017.8084890.
Full textAvakov, Vladimir A. "Fatigue Reliability Functions in Semilogarithmic Coordinates." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0009.
Full textMukira, David. "Finite difference analysis of three dimensional natural convection in non-orthogonal coordinates." In 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1972.
Full textYang, Can, Zheng Chen, Bin Yao, and Bobo Helian. "A Strictly Defined Orthogonal Global Task Coordinate Frame and its Contouring Control Application on Biaxial Systems." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-8988.
Full textYANG, H., SAMI HABCHI, and ANDRZEJ PRZEKWAS. "A general strong conservation formulation of Navier-Stokes equationsin non-orthogonal curvilinear coordinates." In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-187.
Full textMughal, M. "Stability Analysis of Complex Wing Geometries: Parabolised Stability Equations in Generalised Non-Orthogonal Coordinates." In 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3222.
Full textReports on the topic "Orthogonal coordinates"
Rensink, M. E., and T. D. Rognlien. Mapping of orthogonal 2D flux coordinates for two nearby magnetic X-points to logically rectangular domains. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1637587.
Full textColella, P., D. T. Graves, and J. A. Greenough. A second-order method for interface reconstruction in orthogonal coordinate systems. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/834475.
Full text