Dissertations / Theses on the topic 'Orthogonal polynomials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Orthogonal polynomials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Griffin, James Christopher. "Topics in orthogonal polynomials." Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/7620.
Full textThomas, William Howard Fischer Ismor. "Introduction to real orthogonal polynomials /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1992. http://handle.dtic.mil/100.2/ADA256448.
Full textTopkara, Mustafa. "Orthogonal Polynomials And Moment Problem." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/1109164/index.pdf.
Full textth term of the sequence. The conditions of existence and uniqueness of the solution obtained by Hamburger are studied in this thesis by the use of orthogonal polynomials determined by a measure on real line. A chapter on the study of asymptotic behaviour of orthogonal functions on compact subsets of complex numbers is also included.
Larsson-Cohn, Lars. "Gaussian structures and orthogonal polynomials." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2002. http://publications.uu.se/theses/91-506-1535-1/.
Full textThomas, William Howard II. "Introduction to real orthogonal polynomials." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23932.
Full textThe fundamental concept of orthogonality of mathematical objects occurs in a wide variety of physical and engineering disciplines. The theory of orthogonal functions, for example, is central to the development of Fourier series and wavelets, essential for signal processing. In particular, various families of classical orthogonal polynomials have traditionally been applied to fields such as electrostatics, numerical analysis, and many others. This thesis develops the main ideas necessary for understanding the classical theory of orthogonal polynomials. Special emphasis is given to the Jacobi polynomials and to certain important subclasses and generalizations, some recently discovered. Using the theory of hypergeometric power series and their q -extensions, various structural properties and relations between these classes are systematically investigated. Recently, these classes have found significant applications in coding theory and the study of angular momentum, and hold much promise for future applications.
Graneland, Elsa. "Orthogonal polynomials and special functions." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-418820.
Full textSmith, James. "Painleve equations and orthogonal polynomials." Thesis, University of Kent, 2016. https://kar.kent.ac.uk/54758/.
Full textMunemasa, Akihiro. "Nonsymmetric P- and Q-polynomial association schemes and associated orthogonal polynomials /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487670346874604.
Full textWang, Xiangsheng. "Uniform asymptotics of the Meixner polynomials and some q-orthogonal polynomials /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b30082560f.pdf.
Full text"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [115]-118)
Stefánsson, Úlfar F. "Asymptotic properties of Müntz orthogonal polynomials." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34759.
Full textWoods, Mischa Prebin. "Orthogonal polynomials and open quantum systems." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17851.
Full textBauldry, William Charles. "Orthogonal polynomials associated with exponential weights /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259125218568.
Full textZhang, Jianxiang. "Orthogonal polynomials : Selected topics and applications /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487862972135111.
Full textMusonda, John. "Orthogonal Polynomials, Operators and Commutation Relations." Licentiate thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35204.
Full textOrtogonala polynom, operatorer och kommutationsrelationer förekommer i många områden av matematik, fysik och teknik där de spelar en viktig roll. Till exempel ortogonala funktioner i allmänhet är centrala för utvecklingen av Fourierserier och wavelets som är väsentliga för signalbehandling. I synnerhet, såsom visats i denna avhandling, kan ortogonala polynom användas för att fastställa L2-begränsning av singulära integraloperatorer vilket är ett fundamentalt problem i harmonisk analys och föremål för omfattande forskning. Lp-konvergensen av Fourierserien är nära relaterad till Lp-begränsning av singulära integraloperatorer. Många viktiga relationer i fysik representeras av operatorer som uppfyller olika kommutationsrelationer. Sådana kommutationsrelationer spelar nyckelroller i områden som kvantmekanik, waveletanalys, representationsteori, spektralteori och många andra. Denna avhandling består av tre huvuddelar. Den första delen presenterar ett nytt system av ortogonala polynom, och etablerar dess förhållande till de tidigare studerade systemen i klassen Meixner–Pollaczek-polynom. Begränsningsegenskaper hos två singulära integraloperatorer av faltningstyp utreds i Hilbertrum relaterade till de relevanta ortogonala polynomen. Ortogonala polynom används för att bevisa begränsning i viktade rum och Fourieranalys används för att bevisa begränsning i det translationsinvarianta fallet. Det bevisas i båda fallen att de två operatorerna är begränsade på L2-rummen, och uppskattningar av normerna tas fram. Den andra delen utvidgar till Lp-rum på reella tallinjen undersökningen av begränsningsegenskaperna hos de två singulära integraloperatorerna, både på viktade och oviktade rum. Det bevisas att de båda operatorerna är begränsade på dessa rum och uppskattningar av normerna erhålls. Detta uppnås genom att först bevisa begränsning för L2 och svag begränsning för L1, och sedan använda interpolation att erhålla begränsning för de mellanliggande rummen. För att erhålla begränsning för övriga Lp-rum används dualitet i det translationsinvarianta fallet, medan detta i det viktade fallet delvis bygger på en metod av M. Riesz i hans artikel från 1928 om konjugatfunktionsoperatorn. Den tredje och sista delen härleder enkla och explicita formler för omkastning av element i en algebra med tre generatorer och relationer av Lie-typ. Som ett exempel på en tillämpning av formlerna beräknas centralisatorer och centra.
Wallis, David. "Modelling impact crater morphology with orthogonal polynomials." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342267.
Full textWebb, Marcus David. "Isospectral algorithms, Toeplitz matrices and orthogonal polynomials." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264149.
Full textGishe, Jemal Emina. "A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001620.
Full textMusonda, John. "Three Systems of Orthogonal Polynomials and Associated Operators." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-175465.
Full textMiki, Hiroshi. "Studies on Generalized Orthogonal Polynomials and Their Applications." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/160977.
Full textDeFazio, Mark Vincent. "On the zeros of some quasidefinite orthogonal polynomials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ66344.pdf.
Full textNjionou, Sadjang Patrick [Verfasser]. "Moments of classical orthogonal polynomials / Patrick Njionou Sadjang." Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/1045763829/34.
Full textVaktnäs, Marcus. "Multiple Orthogonal Polynomials & Modifications of Spectral Measures." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-453139.
Full textMelin, Valdemar. "Quantum Mechanical Propagators Related to Classical Orthogonal Polynomials." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297558.
Full textSpicer, Paul Edward. "On orthogonal polynomials and related discrete integrable systems." Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/101/.
Full textOakley, Steven James. "Orthogonal polynomials in the approximation of probability distributions." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185117.
Full textCampetti, Marcos Henrique [UNESP]. "Polinômios ortogonais e L-ortogonais associados a medidas relacionadas." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94202.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.
The main purpose of this work is to study some properties of two sequences of polynomials, {Pϕ0 n }∞ n=0 and {Pϕ1 n }∞ n=0, orthogonal, respectively, with respect to the related measures dϕ0 and dϕ1, and properties of two sequences of L-orthogonal polynomials, {Bψ0 n }∞ n=0 and {Bψ1 n }∞ n=0, when the associated measures, dψ0 and dψ1, are also related. For the orthogonal polynomials, we considered two cases: orthogonal polynomials associated with symmetric measures related to each other by dϕ1(x) = c 1 + qx2 dϕ0(x) and orthogonal polynomials associated with measures related by (x − q) dϕ1(x) = c dϕ0(x). As examples, the results are applied to obtain informations regarding Sobolev orthogonal polynomials associated with symmetric measures as Gegenbauer and Hermite measures, and non-symmetrical measures such as Jacobi and Laguerre measures. For the L-orthogonal polynomials, we considered the study of two sequences of polynomials associated with strong positive measures dψ0 and dψ1 and related to each other by (z −κ) dψ1(z) = c dψ0(z). As a consequence of these properties, algorithms to generate any pair of coefficients of the recurrence relations, {αψ0 n , βψ0 n } or {αψ1 n , βψ1 n }, given the other, were given.
Martins, Fabiano Alan. "Polinômios para-ortogonais e análise de freqüência /." São José do Rio Preto : [s.n.], 2005. http://hdl.handle.net/11449/94292.
Full textBanca: Walter dos Santos Motta Junior
Banca: Eliana Xavier Linhares de Andrade
Resumo: O objetivo deste trabalho é estudar uma aplicação de polinômios conhecidos, como polinômios para-ortogonais, na solução do problema de análise de freqüência. Para isto, estudamos os polinômios de Szegö que são ortogonais no cýrculo unitário e que dão origem aos polinômios para-ortogonais. Estudamos casos especiais de polinômios para-ortogonais que, através de uma transformação do cýrculo unitário no intervalo [-1, 1], estão associados a certos polinômios ortogonais. Apresentamos também uma abordagem do problema de análise de freqüência utilizando esses polinômios ortogonais em [-1, 1].
Abstract: The purpose of this work is to study an application of some polynomials, known as para-orthogonal polynomials, in the solution of the frequency analysis problem. We study the Szeguo polynomials that are orthogonal polynomials on the unit circle and give origin to the para-orthogonal polynomials. We investigate some special cases of para-orthogonal polynomials that are associate with certain orthogonal polynomials on [-1, 1] through a transformation from the unit circle to the real interval [-1, 1]. We also present an approach of the frequency analysis problem using these orthogonal polynomials on [-1, 1].
Mestre
Kamioka, Shuhei. "Combinatorial Aspects of Orthogonal Polynomials and Discrete Integrable Systems." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/123829.
Full textHaq, Nazmus Saqeeb. "Orthogonal polynomials, perturbed Hankel determinants and random matrix models." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/21759.
Full textBalderrama, Cristina. "Orthogonal polynomials with hermitian matrix argument and associated semigroups." Angers, 2009. http://www.theses.fr/2009ANGE0035.
Full textIn this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one–dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d–dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d–dimensional Jacobi measure and obtain an analogous of Meyer's multiplier theorem in this setting. Sobolev Jacobi spaces are also studied
Mbuyi, Cimwanga Norbert. "Interlacing zeros of linear combinations of classical orthogonal polynomials." Thesis, University of Pretoria, 2009. http://hdl.handle.net/2263/25258.
Full textStoiciu, Mihai Simon Barry. "Zeros of random orthogonal polynomials on the unit circle /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-110242.
Full textZhang, Lun. "Global asymptotics of orthogonal polynomials via Riemann-Hilbert approach /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b23749453f.pdf.
Full text"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [95]-100)
Webb, Grayson. "Biorthogonal Polynomials." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140733.
Full textYahaya, Daud. "Polynomial interpolation on a triangular region." Thesis, University of St Andrews, 1994. http://hdl.handle.net/10023/13887.
Full textBracciali, Cleonice Fátima. "Some consequences of symmetry in strong Stieltjes distributions." Thesis, University of St Andrews, 1998. http://hdl.handle.net/10023/13881.
Full textAli, A. Hamid A. Hussain. "Some aspects of the Jacobian conjecture : the geometry of automorphisms of C2." Thesis, University of St Andrews, 1987. http://hdl.handle.net/10023/13878.
Full textKim, Yong Y. "Flexural-Torsional Coupled Vibration of Rotating Beams Using Orthogonal Polynomials." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/32616.
Full textMaster of Science
Wade, Jeremy. "Summability of Fourier orthogonal expansions and a discretized Fourier orthogonal expansion involving Radon projections for functions on the cylinder /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10245.
Full textTcheutia, Daniel Duviol [Verfasser]. "Algorithmic Methods for Mixed Recurrence Equations, Zeros of Classical Orthogonal Polynomials and Classical Orthogonal Polynomial Solutions of Three-Term Recurrence Equations / Daniel Duviol Tcheutia." Kassel : Universitätsbibliothek Kassel, 2019. http://d-nb.info/1195722036/34.
Full textCampetti, Marcos Henrique. "Polinômios ortogonais e L-ortogonais associados a medidas relacionadas /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/94202.
Full textBanca: Fernando Akira Kurokawa
Banca: Cleonice Fátima Bracciali
Resumo: O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb'em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.
Abstract: The main purpose of this work is to study some properties of two sequences of polynomials, {Pϕ0 n }∞ n=0 and {Pϕ1 n }∞ n=0, orthogonal, respectively, with respect to the related measures dϕ0 and dϕ1, and properties of two sequences of L-orthogonal polynomials, {Bψ0 n }∞ n=0 and {Bψ1 n }∞ n=0, when the associated measures, dψ0 and dψ1, are also related. For the orthogonal polynomials, we considered two cases: orthogonal polynomials associated with symmetric measures related to each other by dϕ1(x) = c 1 + qx2 dϕ0(x) and orthogonal polynomials associated with measures related by (x − q) dϕ1(x) = c dϕ0(x). As examples, the results are applied to obtain informations regarding Sobolev orthogonal polynomials associated with symmetric measures as Gegenbauer and Hermite measures, and non-symmetrical measures such as Jacobi and Laguerre measures. For the L-orthogonal polynomials, we considered the study of two sequences of polynomials associated with strong positive measures dψ0 and dψ1 and related to each other by (z −κ) dψ1(z) = c dψ0(z). As a consequence of these properties, algorithms to generate any pair of coefficients of the recurrence relations, {αψ0 n , βψ0 n } or {αψ1 n , βψ1 n }, given the other, were given.
Mestre
Barros, Michele Carvalho de. "Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/94284.
Full textBanca: Ana Paula Peron
Banca: Alagacone Sri Ranga
Resumo: Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas.
Abstract: Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials.
Mestre
Rafaeli, Fernando Rodrigo. "Zeros de polinomios ortogonais na reta real." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306958.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-15T04:39:55Z (GMT). No. of bitstreams: 1 Rafaeli_FernandoRodrigo_D.pdf: 1231425 bytes, checksum: 33a23775a69f9b2b36c516f7cfcb0d0f (MD5) Previous issue date: 2010
Resumo: Neste trabalho são obtidos resultados sobre o comportamento de zeros de polinômios ortogonais. Sabe-se que todos eles são reais e distintos e fazem papel importante de nós das mais utilizadas fórmulas de integração numérica, que são as fórmulas de quadratura de Gauss. São obtidos resultados sobre a localização e a monotonicidade dos zeros, considerados como funções dos correspondentes parâmetros, dos polinômios ortogonais clássicos. Apresentaremos também vários resultados que tratam da localização, monotonicidade e da assintótica de zeros de certas classes de polinômios ortogonais relacionados com as medidas clássicas
Abstract: Results concerning the behaviour of zeros of orthogonal polynomials are obtained. It is known that they are real and distinct and play as important role as node of the most frequently used rules for numerical integration, the Gaussian quadrature formulae. Result about the location and monotonicity of the zeros, considered as functions of parameters involved in the measure, are provided. We present various results that treat questions about location, monotonicity and asymptotics of zeros of certain classes of orthogonal polynomials with respect to measure that are closely related to the classical ones
Doutorado
Analise Aplicada
Doutor em Matemática Aplicada
Luo, Yu. "Studies on generalizations of the classical orthogonal polynomials where gaps are allowed in their degree sequences." Kyoto University, 2020. http://hdl.handle.net/2433/253419.
Full textJacq, Thomas Soler. "Asymptotic spectral analysis of growing graphs and orthogonal matrix-valued polynomials." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/143939.
Full textIn this work we focus on the spectral analysis of graphs via two studies: quantum probabilistic techniques and by orthogonal matrix-valued polynomials. In Chapter 1 we consider the adjacency matrix of a graph as a linear operator, and its quantum decomposition will allow a spectral analysis that will produce a central limit theorem for such graph. In Chapter 2, we consider a matrix-valued measure induced by orthogonal matrix-valued polynomials. Under certain conditions, it is possible to display an explicit expression for such measure. Some applications to combinatorics and graph theory are given when we restrict to the stochastic and 0-1 matrices. Up to our knowledge, the calculations and examples obtained in sections 0.3.2, 0.3.3, 2.4 and 2.5 are new.
Pinter, Ferenc J. "Perturbation of orthogonal polynomials on an arc of the unit circle /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487862399450495.
Full textSousa, Vítor Luís Pereira Morais de. "The Riemann-Hilbert method applied to the theory of orthogonal polynomials." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/3871.
Full textTakata, Tomohiro. "Certain multiple orthogonal polynomials and a discretization of the Bessel equation." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144354.
Full text0048
新制・課程博士
博士(理学)
甲第11975号
理博第2955号
新制||理||1442(附属図書館)
23788
UT51-2006-C655
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 上野 健爾, 教授 井川 満, 教授 河野 明
学位規則第4条第1項該当
Parra, Ferrada Ivan [Verfasser]. "Planar orthogonal polynomials and two dimensional Coulomb gases / Ivan Parra Ferrada." Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1224313127/34.
Full textNunes, Josiani Batista. "Limitantes para os zeros de polinômios gerados por uma relação de recorrência de três termos /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/94251.
Full textBanca: Alagacone Sri Ranga
Banca: Andre Piranhe da Silva
Resumo: Este trabalho trata do estudo da localização dos zeros dos polinômios gerados por uma determinada relação de recorrência de três termos. O objetivo principal é estudar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são explorados atravé do problema de autovalor associado a uma matriz de Hessenberg. As aplicações são consideradas para polinômios de Szeg"o fSng, alguns polinômios para- ortogonais ½Sn(z) + S¤n (z) 1 + Sn(0) ¾ e ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especialmente quando os coeficientes de reflexão são reais. Um outro caso especial considerado são os zeros do polinômio Pn(z) = n Xm=0 bmzm, onde os coeficientes bm; para m = 0; 1; : : : ; n, são complexos e diferentes de zeros.
Abstract: In this work we studied the localization the zeros of polynomials generated by a certain three term recurrence relation. The main objective is to study bounds, in terms of the coe±cients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications are considered to Szeg}o polynomials fSng, some para-orthogonal polyno- mials ½Sn(z) + S¤n (z) 1 + Sn(0) ¾and ½Sn(z) ¡ S¤n (z) 1 ¡ Sn+1(0) ¾, especially when the re°ection coe±cients are real. As another special case, the zeros of the polynomial Pn(z) = n Xm=0 bmzm, where the non-zero complex coe±cients bm for m = 0; 1; : : : ; n, were considered.
Mestre