Journal articles on the topic 'Orthonormal basis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Orthonormal basis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Toda, Hiroshi, and Zhong Zhang. "Orthonormal basis of wavelets with customizable frequency bands." International Journal of Wavelets, Multiresolution and Information Processing 14, no. 06 (2016): 1650050. http://dx.doi.org/10.1142/s0219691316500508.
Full textToda, Hiroshi, and Zhong Zhang. "Orthonormal wavelet basis with arbitrary real dilation factor." International Journal of Wavelets, Multiresolution and Information Processing 14, no. 03 (2016): 1650010. http://dx.doi.org/10.1142/s0219691316500107.
Full textTipton, James. "Classification of polynomials and an orthonormal basis construction on the associated basin of attraction." Gulf Journal of Mathematics 20 (June 14, 2025): 81–95. https://doi.org/10.56947/gjom.v20i.2813.
Full textHecht, K. T., R. Le Blanc, and D. J. Rowe. "Canonical orthonormal Wigner supermultiplet basis." Journal of Physics A: Mathematical and General 20, no. 2 (1987): 257–75. http://dx.doi.org/10.1088/0305-4470/20/2/013.
Full textGuo, Xunxiang. "g-Bases in Hilbert Spaces." Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/923729.
Full textEl Amrani, Abdelkhalek, Mohamed Rossafi, and Tahar El krouk. "K-Riesz bases and K-g-Riesz bases in Hilbert C∗-module." Proyecciones (Antofagasta) 42, no. 5 (2023): 1241–60. http://dx.doi.org/10.22199/issn.0717-6279-5713.
Full textZelditch, Steve. "Quantum ergodicity of random orthonormal bases of spaces of high dimension." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2007 (2014): 20120511. http://dx.doi.org/10.1098/rsta.2012.0511.
Full textWOJDYŁŁO, PIOTR. "CHARACTERIZATION OF WILSON SYSTEMS FOR GENERAL LATTICES." International Journal of Wavelets, Multiresolution and Information Processing 06, no. 02 (2008): 305–14. http://dx.doi.org/10.1142/s0219691308002367.
Full textGHOBBER, SAIFALLAH. "SHAPIRO’S UNCERTAINTY PRINCIPLE IN THE DUNKL SETTING." Bulletin of the Australian Mathematical Society 92, no. 1 (2015): 98–110. http://dx.doi.org/10.1017/s000497271500026x.
Full textLemma, D. T., M. Ramasamy, and M. Shuhaimi. "System Identification using Orthonormal Basis Filters." Journal of Applied Sciences 10, no. 21 (2010): 2516–22. http://dx.doi.org/10.3923/jas.2010.2516.2522.
Full textChung, Young-Bok, and Heui-Geong Na. "ORTHONORMAL BASIS FOR THE BERGMAN SPACE." Honam Mathematical Journal 36, no. 4 (2014): 777–86. http://dx.doi.org/10.5831/hmj.2014.36.4.777.
Full textBodin, Per, Lars F. Villemoes, and Bo Wahlberg. "Selection of Best Orthonormal Rational Basis." SIAM Journal on Control and Optimization 38, no. 4 (2000): 995–1032. http://dx.doi.org/10.1137/s036301299732818x.
Full textKAMADA, M., K. TORAICHI, Y. IKEBE, and R. MORI. "Orthonormal basis for spline signal spaces." International Journal of Systems Science 20, no. 1 (1989): 157–70. http://dx.doi.org/10.1080/00207728908910113.
Full textAgora, Elona, Jorge Antezana, and Mihail N. Kolountzakis. "Tiling functions and Gabor orthonormal basis." Applied and Computational Harmonic Analysis 48, no. 1 (2020): 96–122. http://dx.doi.org/10.1016/j.acha.2018.02.005.
Full textFricain, Emmanuel, and Rishika Rupam. "Asymptotically orthonormal basis and Toeplitz operators." Journal of Mathematical Analysis and Applications 474, no. 2 (2019): 944–60. http://dx.doi.org/10.1016/j.jmaa.2019.01.081.
Full textWOJDYŁŁO, PIOTR. "WILSON SYSTEM FOR TRIPLE REDUNDANCY." International Journal of Wavelets, Multiresolution and Information Processing 09, no. 01 (2011): 151–67. http://dx.doi.org/10.1142/s0219691311003980.
Full textWojdyłło, Piotr. "Symmetric Wilson systems." International Journal of Wavelets, Multiresolution and Information Processing 17, no. 05 (2019): 1950036. http://dx.doi.org/10.1142/s021969131950036x.
Full textFricain, Emmanuel, and Javad Mashreghi. "Orthonormal polynomial basis in local Dirichlet spaces." Acta Scientiarum Mathematicarum 87, no. 34 (2021): 595–613. http://dx.doi.org/10.14232/actasm-021-465-4.
Full textVasileiou, Panagiotis N., Konstantinos Maliatsos, Evangelos D. Thomatos, and Athanasios G. Kanatas. "Reconfigurable Orthonormal Basis Patterns Using ESPAR Antennas." IEEE Antennas and Wireless Propagation Letters 12 (2013): 448–51. http://dx.doi.org/10.1109/lawp.2013.2255254.
Full textWahlberg, Bo. "Orthonormal basis functions models: A transformation analysis." IFAC Proceedings Volumes 32, no. 2 (1999): 4123–28. http://dx.doi.org/10.1016/s1474-6670(17)56703-8.
Full textVan Den Hof, Paul M. J., Peter S.C. Heuberger, and József Bokor. "System identification with generalized orthonormal basis functions." Automatica 31, no. 12 (1995): 1821–34. http://dx.doi.org/10.1016/0005-1098(95)00074-4.
Full textLiao, Jian Quan, Xing Min Li, and Jin Xun Wang. "Orthonormal basis of the octonionic analytic functions." Journal of Mathematical Analysis and Applications 366, no. 1 (2010): 335–44. http://dx.doi.org/10.1016/j.jmaa.2009.10.002.
Full textWardani, Irma Budi, and Hartanto Sunardi. "ORTONORMALISASI VEKTOR BASIS DENGAN PROSES GRAM SCHMIDT." Buana Matematika : Jurnal Ilmiah Matematika dan Pendidikan Matematika 5, no. 2: (2016): 1–8. http://dx.doi.org/10.36456/buanamatematika.v5i2:.391.
Full textLeleury, Zeth A. "SISTEM ORTONORMAL DALAM RUANG HILBERT." BAREKENG: Jurnal Ilmu Matematika dan Terapan 8, no. 2 (2014): 19–26. http://dx.doi.org/10.30598/barekengvol8iss2pp19-26.
Full textMarino, Guiseppe, and Paolamaria Pietramala. "An Unconventional Orthonormal Basis Provides an Unexpected Counterexample." Mathematics Magazine 66, no. 5 (1993): 309. http://dx.doi.org/10.2307/2690507.
Full textNamiki, Ryo. "Non-Gaussian Entangled States and Entangled Orthonormal Basis." Journal of the Physical Society of Japan 79, no. 1 (2010): 013001. http://dx.doi.org/10.1143/jpsj.79.013001.
Full textHughes, John F., and Tomas Moller. "Building an Orthonormal Basis from a Unit Vector." Journal of Graphics Tools 4, no. 4 (1999): 33–35. http://dx.doi.org/10.1080/10867651.1999.10487513.
Full textMarino, Giuseppe, and Paolamaria Pietramala. "An Unconventional Orthonormal Basis Provides an Unexpected Counterexample." Mathematics Magazine 66, no. 5 (1993): 309–11. http://dx.doi.org/10.1080/0025570x.1993.11996151.
Full textAkçay, Hüseyin, and Brett Ninness. "Orthonormal basis functions for modelling continuous-time systems." Signal Processing 77, no. 3 (1999): 261–74. http://dx.doi.org/10.1016/s0165-1684(99)00039-0.
Full textBodin, Per. "Selection of local discriminant generalized orthonormal rational basis." IFAC Proceedings Volumes 32, no. 2 (1999): 4147–52. http://dx.doi.org/10.1016/s1474-6670(17)56707-5.
Full textHon, Y. C., and T. Wei. "An orthonormal basis functions method for moment problems." Engineering Analysis with Boundary Elements 26, no. 10 (2002): 855–60. http://dx.doi.org/10.1016/s0955-7997(02)00032-2.
Full textTiels, Koen, and Johan Schoukens. "Wiener system identification with generalized orthonormal basis functions." Automatica 50, no. 12 (2014): 3147–54. http://dx.doi.org/10.1016/j.automatica.2014.10.010.
Full textde Vries, D. K., and P. M. J. Van den Hof. "Frequency domain identification with generalized orthonormal basis functions." IEEE Transactions on Automatic Control 43, no. 5 (1998): 656–69. http://dx.doi.org/10.1109/9.668831.
Full textHeuberger, P. S. C., P. M. J. Van den Hof, and O. H. Bosgra. "A generalized orthonormal basis for linear dynamical systems." IEEE Transactions on Automatic Control 40, no. 3 (1995): 451–65. http://dx.doi.org/10.1109/9.376057.
Full textDaubechies, Ingrid, Stéphane Jaffard, and Jean-Lin Journé. "A Simple Wilson Orthonormal Basis with Exponential Decay." SIAM Journal on Mathematical Analysis 22, no. 2 (1991): 554–73. http://dx.doi.org/10.1137/0522035.
Full textDhanuk, B. B., K. Pudasainee, H. P. Lamichhane, and R. P. Adhikari. "Dirac Delta Function from Closure Relation of Orthonormal Basis and its Use in Expanding Analytic Functions." Journal of Nepal Physical Society 6, no. 2 (2020): 158–63. http://dx.doi.org/10.3126/jnphyssoc.v6i2.34872.
Full textXin, Jianguo, and Wei Cai. "A Well-Conditioned Hierarchical Basis for Triangular H(curl)-Conforming Elements." Communications in Computational Physics 9, no. 3 (2011): 780–806. http://dx.doi.org/10.4208/cicp.220310.030610s.
Full textZhang, Yingchao, Yuntao Jia, and Yingzhen Lin. "An $ {\varepsilon} $-approximate solution of BVPs based on improved multiscale orthonormal basis." AIMS Mathematics 9, no. 3 (2024): 5810–26. http://dx.doi.org/10.3934/math.2024282.
Full textSaito, Naoki, and Yiqun Shao. "eGHWT: The Extended Generalized Haar–Walsh Transform." Journal of Mathematical Imaging and Vision 64, no. 3 (2022): 261–83. http://dx.doi.org/10.1007/s10851-021-01064-w.
Full textYu, Miao, Youyi Wang, Wanli Wang, and Yongtao Wei. "Continuous-Time Subspace Identification with Prior Information Using Generalized Orthonormal Basis Functions." Mathematics 11, no. 23 (2023): 4765. http://dx.doi.org/10.3390/math11234765.
Full textTóth, R., P. S. C. Heuberger, and P. M. J. Van den Hof. "An LPV identification Framework Based on Orthonormal Basis Functions." IFAC Proceedings Volumes 42, no. 10 (2009): 1328–33. http://dx.doi.org/10.3182/20090706-3-fr-2004.00221.
Full textNouri, B., R. Achar, and M. S. Nakhla. "$z$-Domain Orthonormal Basis Functions for Physical System Identifications." IEEE Transactions on Advanced Packaging 33, no. 1 (2010): 293–307. http://dx.doi.org/10.1109/tadvp.2009.2019965.
Full textHeuberger, P. S. C., P. M. J. Van den Hof, and O. H. Bosgra. "Modelling Linear Dynamical Systems through Generalized Orthonormal Basis Functions." IFAC Proceedings Volumes 26, no. 2 (1993): 19–22. http://dx.doi.org/10.1016/s1474-6670(17)48214-0.
Full textde Hoog, Thomas J., Zoltán Szabó, Peter S. C. Heuberger, Paul M. J. Van den Hof, and József Bokor. "Minimal partial realization from generalized orthonormal basis function expansions." Automatica 38, no. 4 (2002): 655–69. http://dx.doi.org/10.1016/s0005-1098(01)00247-3.
Full textAkçay, Hüseyin. "Discrete-time system modelling in with orthonormal basis functions." Systems & Control Letters 39, no. 5 (2000): 365–76. http://dx.doi.org/10.1016/s0167-6911(99)00116-4.
Full textKibangou, Alain Y., Gérard Favier, and Moha M. Hassan. "Generalized orthonormal basis selection for expanding quadratic volterra filters." IFAC Proceedings Volumes 36, no. 16 (2003): 1077–82. http://dx.doi.org/10.1016/s1474-6670(17)34902-9.
Full textBlomqvist, A., and G. Fanizza. "Identification of rational spectral densities using orthonormal basis functions." IFAC Proceedings Volumes 36, no. 16 (2003): 1327–32. http://dx.doi.org/10.1016/s1474-6670(17)34944-3.
Full textHeuberger, P. S. C., Z. Szabó, T. J. de Hoog, P. M. J. Van den Hof, and J. Bokor. "Realization algorithms for expansions in generalized orthonormal basis functions." IFAC Proceedings Volumes 32, no. 2 (1999): 4153–58. http://dx.doi.org/10.1016/s1474-6670(17)56708-7.
Full textKrommweh, Jens. "An Orthonormal Basis of Directional Haar Wavelets on Triangles." Results in Mathematics 53, no. 3-4 (2009): 323–31. http://dx.doi.org/10.1007/s00025-008-0343-z.
Full textDaubechies, Ingrid, Stéphane Jaffard, and Jean-Lin Journé. "Erratum: A Simple Wilson Orthonormal Basis with Exponential Decay." SIAM Journal on Mathematical Analysis 22, no. 3 (1991): 878. http://dx.doi.org/10.1137/0522056.
Full text