Academic literature on the topic 'Orthopedic implants Composite materials. Biomedical materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orthopedic implants Composite materials. Biomedical materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Orthopedic implants Composite materials. Biomedical materials"

1

Prashar, Gaurav, and Hitesh Vasudev. "Thermal Sprayed Composite Coatings for Biomedical Implants: A Brief Review." Journal of Thermal Spray and Engineering 2, no. 1 (2020): 50–55. http://dx.doi.org/10.52687/2582-1474/213.

Full text
Abstract:
The implant materials used currently in field of cardiovascular and orthopedics surgery dearth in osteoconductivity. Different surface modification techniques are used, developed and investigated over the years to enhance the osteoconductivity of biomaterials like metals, polymer and ceramics. Although implants made up of metals are strong mechanically but have low bonding ability due to bio-inert nature.To overcome the limitations and to accomplish the desired purpose, composite coatings consisting of bioactive are developed on the metallic biomaterials. In general bio-inert ceramics like yttria stabilized zirconia (ysz), titania, and alumina may be incorporated into hydroxyapatite (HA) matrix to develop composite coatings with improved mechanical properties over the years. The composite coatings developed by thermal spraying have shown promising approach to have good mechanical and biological properties in comparison with single-component and/or monolayer coatings. The strategy to use composite coatings is adopted widely by the professionals/scientists in the area of biomaterials for development and production of materials in order to repair and regeneration of the human tissue. In this article, commercially used thermal spraying techniques used for deposition of composite coatings for biomedical implants are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Batool, Syeda Ammara, Abdul Wadood, Syed Wilayat Hussain, Muhammad Yasir, and Muhammad Atiq Ur Rehman. "A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges." Surfaces 4, no. 3 (August 4, 2021): 205–39. http://dx.doi.org/10.3390/surfaces4030018.

Full text
Abstract:
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being used to deposit multifunctional coatings (i.e., bioactive, antibacterial, and biocompatible coatings). Recently, EPD was used to architect multi-structured coatings to improve mechanical and biological properties along with the controlled release of drugs/metallic ions. The key characteristics of EPD coatings in terms of inorganic bioactivity and their angiogenic potential coupled with antibacterial properties are the key elements enabling advanced applications of EPD in orthopedic applications. In the emerging field of EPD coatings for hard tissue and soft tissue engineering, an overview of such applications will be presented. The progress in the development of EPD-based polymeric or composite coatings, including their application in orthopedic and targeted drug delivery approaches, will be discussed, with a focus on the effect of different biologically active ions/drugs released from EPD deposits. The literature under discussion involves EPD coatings consisting of chitosan (Chi), zein, polyetheretherketone (PEEK), and their composites. Moreover, in vitro and in vivo investigations of EPD coatings will be discussed in relation to the current main challenge of orthopedic implants, namely that the biomaterial must provide good bone-binding ability and mechanical compatibility.
APA, Harvard, Vancouver, ISO, and other styles
3

Valente, Karolina Papera, Alexandre Brolo, and Afzal Suleman. "From Dermal Patch to Implants—Applications of Biocomposites in Living Tissues." Molecules 25, no. 3 (January 24, 2020): 507. http://dx.doi.org/10.3390/molecules25030507.

Full text
Abstract:
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas—bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
4

Prakash, P. Shakti, S. J. Pawar, and R. P. Tewari. "Synthesis, characterization, and coating of forsterite (Mg2SiO4) based material over medical implants: A review." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 6 (April 18, 2017): 1227–40. http://dx.doi.org/10.1177/1464420717705151.

Full text
Abstract:
Biocompatible metallic alloys (stainless steel, Ti-alloy, Co–Cr alloys, etc.) have been frequently used for various biomedical implants. Being biocompatible, complications like implant corrosion, body inflammation, organ pain, local infection, and cytotoxicity cannot be avoided. Hydroxyapatite, a common biomaterial, is used in the form of powders, coatings, and composites for biomedical applications. But poor adhesion, poor load-bearing capacity, high dissolution, poor wear resistance, natural fragility, etc. are the few hindrances in the use of hydroxyapatite coating over implants. Hence, there is a need to focus on the development of alternative biomaterials and their coatings for metallic (orthopedic, dental, metallic stents, pacemakers, etc.) implants. To avoid various complexities and to improve the biocompatibility of metal implants, the coating of forsterite and its composites are being used nowadays. Techniques like dip coating, plasma spraying, and electrophoretic deposition are employed for such coatings. In this paper, a review based on methods of preparation of forsterite has been done. For the preparation of forsterite powder, various studies have reported the sintering temperature range to be 800–1450 ℃ and the crystallite size from 10 nm to 100 µm. The forsterite and its composites coating over Ti-alloy and stainless steel have also been reported. This paper also compares the mechanical and biological properties of forsterite and hydroxyapatite. It has been observed that the mechanical properties (hardness, fracture toughness, Young’s modulus, and compressive strength), and biological properties (biocompatibility and bioactivity) of forsterite are favorable for the biomedical implant coating.
APA, Harvard, Vancouver, ISO, and other styles
5

Gomzyak, V. I., V. A. Demina, E. V. Razuvaeva, N. G. Sedush, and S. N. Chvalun. "BIODEGRADABLE POLYMER MATERIALS FOR MEDICAL APPLICATIONS: FROM IMPLANTS TO ORGANS." Fine Chemical Technologies 12, no. 5 (October 28, 2017): 5–20. http://dx.doi.org/10.32362/2410-6593-2017-12-5-5-20.

Full text
Abstract:
Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(α-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-ε-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group.
APA, Harvard, Vancouver, ISO, and other styles
6

Gayle, Jessica, and Anil Mahapatro. "Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings." Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science) 9, no. 1 (September 24, 2019): 3–27. http://dx.doi.org/10.2174/2352094909666190228113315.

Full text
Abstract:
Background:Magnesium and magnesium alloys are currently being explored for biodegradable metallic implants. Magnesium’s biocompatibility, low density, and mechanical properties could offer advantages in the development of low-bearing orthopedic prosthesis and cardiovascular stent materials.Objective:Magnesium’s susceptibility to corrosion and increased hydrogen evolution in vivo compromises the success of its potential applications. Various strategies have been pursued to control and subsequently evaluate degradation.Methods:This review provides a broad overview of magnesium-based implant materials. Potential coating materials, coating techniques, corrosion testing, and characterization methods for coated magnesium alloys are also discussed.Results:Various technologies and materials are available for coating magnesium to control and evaluate degradation. Polymeric, ceramic, metallic, and composite coatings have successfully been coated onto magnesium to control its corrosion behaviour. Several technologies are available to carry out the coatings and established methodologies exist for corrosion testing. A few magnesium-based products have emerged in international (European Union) markets and it is foreseen that similar products will be introduced in the United States in the near future.Conclusion:Overall, many coated magnesium materials for biomedical applications are predominantly in the research stage with cardiac stent materials and orthopaedic prosthesis making great strides.
APA, Harvard, Vancouver, ISO, and other styles
7

Pavlov, O. D., V. V. Pastukh, and M. Yu Karpinsky. "The problem of using composite biodegradable implants for the treatment of bone fractures (literature review)." TRAUMA 22, no. 2 (June 15, 2021): 5–16. http://dx.doi.org/10.22141/1608-1706.2.22.2021.231952.

Full text
Abstract:
Diseases and injuries of the musculoskeletal system rank second among the causes of injuries and third among the diseases that lead to disability of the adult population. Orthopedic implants have a special place in both clinical practice and the biomedical industry. The implants capable of biodegrading in the case of their implantation into the human body are of the greatest interest. The concept of biodegra-dable implants appeared through the formation and development of the use of suture materials that are absorbed in the body. Subsequently, this type of material began to be used in the treatment of fractures, because in many cases, bone fragments need only temporary support with a fixator, until they fuse. Implantable internal fixation devices for fracture repair using polyglycolic acid (PGA), polylactic acid (PLA), and a copolymer of lactic acid and glycolide (PLGA) became popular. However, the mechanical properties of highly porous skeletons were relatively weak compared to those required for bone engineering. In the process of creating an optimal polymeric biodegradable material, it is necessary to overcome the contradiction between strength and biodegradation. PGA, providing high strength of fixation, degrade too quickly, and PLGA, having high crystallinity, slightly degrade, at the same time conceding on the durability of both PGA and biostable materials. Scientists are now working hard to develop composites from calcium phosphate and polymer, in particular hydroxyapatite and tricalсium phosphate (TCP). TCP with three polymorphic modifications, in particular α-TCP, β-TCP, and α'-TCP, is a well-known bioceramic substance for bone repair. β-TKP is attracting increasing attention due to its excellent biocompatibility, bioactivity, and biodegradability. The composite materials based on bioactive ceramics mainly refer to materials with additional advantages, such as biodegradable polymers and ceramics. At the same time, these composites are biocompatible, osteoconductive, mechanical strength and have osteogenic characteristics. At the same time, thanks to new manufacturing technologies that have emerged in recent years, these compo-site materials are the most promising in the field of bone defect repair. The treatment of fractures with implants is increasingly associated with composite materials. Biomaterials must have certain mechanical properties: biocompatibility, biodegradation, controlled rate biodegradation, good mechanical strength, and bioactivity. Biomaterials used in the treatment of bone fractures have to disintegrate over time, and the addition of nanofillers can slow down the rate of decay of the biodegradable composite.
APA, Harvard, Vancouver, ISO, and other styles
8

Camposaragna, M., F. Casolo, M. Cocetta, G. Maraschi, and G. Vrespa. "Mechanical properties and shock absorption of dental implants equipped with abutments made of composite materials." Journal of Biomechanics 39 (January 2006): S201. http://dx.doi.org/10.1016/s0021-9290(06)83727-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aherwar, Amit, Amit Singh, and Amar Patnaik. "Study on mechanical and wear characterization of novel Co30Cr4Mo biomedical alloy with added nickel under dry and wet sliding conditions using Taguchi approach." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 7 (April 5, 2016): 535–54. http://dx.doi.org/10.1177/1464420716638112.

Full text
Abstract:
This paper investigates the effect of nickel particulate on mechanical behavior and sliding wear performance of novel Co30Cr4Mo alloy for orthopedic hip implant application with and without an introduction of distilled water (i.e. both dry and wet conditions) medium. The mechanical behavior is examined by the micro-hardness tester and the compression testing machine, while the wear performance is analyzed through a pin-on-disc tribometer where the samples slide against a counter disc made up of hardened alloy steel (EN-31) under different operating conditions at room temperature. Scanning electron microscope, atomic force microscopy, and X-ray diffraction are used to examine the surface morphology, worn surface profile, and cross-sectional microstructure of the fabricated alloy (Co30Cr4Mo) composite. In this study, at the beginning, steady state experimental analysis is carried out to find the volumetric wear loss and friction coefficient by varying the sliding velocity and normal load, respectively. After obtaining the steady state results, the Taguchi design of experiment has been conducted followed by statistical analysis of variance to identify the significant factor setting for obtaining better performance output. From the analysis, it is found that by increasing the nickel wt.%, the hardness and the compression strength of the fabricated alloy composites are increased. Furthermore, the fabricated alloy composite with 1 wt.% Ni shows the better wear resistance under different operating conditions in both dry and wet media. This study will give an idea for hip implant application but not direct replacement of human joints. In future, this study may be extended in more detail for biomedical applications for replacement of either human hip implant or animal implant, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Wen, Jing Ma, Qian Liang, Jingdan Li, and Bin Tang. "Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti–6Al–4V alloy as orthopedic/dental implants." Journal of the Mechanical Behavior of Biomedical Materials 122 (October 2021): 104659. http://dx.doi.org/10.1016/j.jmbbm.2021.104659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Orthopedic implants Composite materials. Biomedical materials"

1

Fang, Liming. "Processing of HA/UHMWPE for orthopaedic applications /." View abstract or full-text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20FANG.

Full text
Abstract:
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 128-138). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
2

Bell, Bryan Frederick Jr. "Functionally graded, multilayer diamondlike carbon-hydroxyapatite nanocomposite coatings for orthopedic implants." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bell, Bryan Frederick. "Functionally graded, multilayer diamondlike carbon-hydroxyapatite nanocomposite coatings for orthopedic implants." Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131058/unrestricted/bell%5Fbryan%5Ff%5F200405%5Fms.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Flanigan, Kyle Yusef. "Synthesis of HAP nano rods and processing of nano-size ceramic reinforced poly (L) lactic acid composites /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wong, Kai-lun, and 黄棨麟. "Strontium-substituted hydroxyapatite reinforced polyetheretherketone biomaterials in orthopaedic implants." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42182505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wong, Kai-lun. "Strontium-substituted hydroxyapatite reinforced polyetheretherketone biomaterials in orthopaedic implants." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42182505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Hsuan-chen. "Porous bioceramic and biomaterial for bone implants /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yeung, Che-yan, and 楊芷茵. "Antibacterial properties and biocompatibility of novel peptide incorporated titanium alloy biomaterials for orthopaedic implants." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hdl.handle.net/10722/197133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leung, Kit-ying. "Anti-bacteria plasma-treated metallic surface for orthopaedics use." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41633994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bedi, Rajwant Singh. "Anticorrosion and biocompatible Zeolite based coatings for tissue regeneration on metallic bioimplants." Diss., UC access only, 2009. http://proquest.umi.com/pqdweb?index=9&did=1800212961&SrchMode=2&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1270057484&clientId=48051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Orthopedic implants Composite materials. Biomedical materials"

1

European Conference on Biomaterials (5th 1985 Paris, France. Biological and biomechanical performance of biomaterials: Proceedings of the Fifth European Conference on Biomaterials, Paris, France, September 4-6, 1985. Amsterdam: Elsevier, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orthopaedic biomaterials in research and practice. New York: Churchill Livingstone, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International, ASM, ed. Biomaterials in orthopaedic surgery. Materials Park, Ohio: ASM International, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calandrelli, Luigi. Biodegradable composites for bone regeneration. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tancred, David Christopher. A new bone replacement material. Dublin: University College Dublin, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cyclic plasticity and low cycle fatigue life of metals. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

D, Jamison Russel, and Gilbertson L. N, eds. Composite materials for implant applications in the human body: Characterization and testing. Philadelphia, PA: ASTM, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

M, Williams J., Nichols M. F, Zingg Walter 1924-, and Materials Research Society, eds. Biomedical materials. Pittsburgh, Pa: Materials Research Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Lei. Nanotechnology-Enhanced Orthopedic Materials: Fabrications, Applications and Future Trends. Elsevier Science & Technology, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Black, Jonathan, Kevin L. Ong, and Scott Lovald. Orthopaedic Biomaterials in Research and Practice. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Orthopedic implants Composite materials. Biomedical materials"

1

Rabeeh, Bakr M. "Borate Glass Nano Fiber/Whiskers in a Hybrid Orthopedic Composite Implants for Wound Healing and Bone Regeneration." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 1567–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marques de Castro, Moara, Débora Ribeiro Lopes, and Leonardo Viana Dias. "Mg-Based Composites for Biomedical Applications." In Magnesium Alloys [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95079.

Full text
Abstract:
Magnesium (Mg) is a promising material for producing temporary orthopedic implants, since it is a biodegradable and biocompatible metal which density is very similar to that of the bones. Another benefit is the small strength mismatch when compared to other biocompatible metals, what alleviates stress-shielding effects between bone and the implant. To take advantage of the best materials properties, it is possible to combine magnesium with bioactive ceramics and tailor composites for medical applications with improved biocompatibility, controllable degradation rates and the necessary mechanical properties. To properly insert bioactive reinforcement into the metallic matrix, the fabrication of these composites usually involves at least one high temperature step, as casting or sintering. Yet, recent papers report the development of Mg-based composites at room temperature using severe plastic deformation. This chapter goes through the available data over the development of Mg-composites reinforced with bioactive ceramics, presenting the latest findings on the topic. This overview aims to identify the major influence of the processing route on matrix refinement and reinforcement dispersion, which are critical parameters to determine mechanical and corrosion properties of biodegradable Mg-based composites.
APA, Harvard, Vancouver, ISO, and other styles
3

GLORIA, A., R. DE SANTIS, L. AMBROSIO, and F. A. CAUS. "Composite materials for spinal implants." In Biomedical Composites, 178–200. Elsevier, 2010. http://dx.doi.org/10.1533/9781845697372.2.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gloria, A., T. Russo, R. De Santis, and L. Ambrosio. "Composite materials for spinal implants." In Biomedical Composites, 139–61. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-08-100752-5.00007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Choudhury, Dipankar, Taposh Roy, and Ivan Krupka. "Surface Modifications and Tribological Effect in Orthopedics Implants." In Processing Techniques and Tribological Behavior of Composite Materials, 193–217. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7530-8.ch008.

Full text
Abstract:
In this chapter, the authors illustrate advantages and disadvantages of several surface modification techniques on orthopedics implants. The number of hip and knee replacement procedures per year is one of the highest in medical surgery, and there are many approaches engaged to improve the acceptability of these prosthesis to be suitable for young patients. Surface modification is one of them that has been utilized owing to its potential impacts. A critical review on the major tribological and biological outcomes of these modifications is exclusively described. A few interesting results of recent investigations have been explained for future trends in biotribological effect in orthopedic implants.
APA, Harvard, Vancouver, ISO, and other styles
6

Karaman, Ozan. "Mineralized Nanofibers for Bone Tissue Engineering." In Biomedical Engineering, 461–75. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3158-6.ch020.

Full text
Abstract:
The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
7

Parwez, Khalid, Arun A. Bhagwath, Asif Zawed, Bhagwan Rekadwad, and Suman V. Budihal. "Carbon Nanotubes Integrated Hydroxyapatite Nano-Composite for Orthopaedic and Tissue Engineering Applications." In Sol Gel and other Fabrication Methods of Advanced Carbon Materials [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97428.

Full text
Abstract:
The reassessment of the literature stipulates that an increasing amount of research in exploring the Hydroxyapatite Carbon Nanotubes (HA-CNT) system for orthopedic application. Chemical precipitation, CNT functionalization, and spray drying are the routinely used methods for CNT dispersal in HA matrix for the application such as bone tissue engineering, nanostructured scaffolds, dental regeneration, myocardial regeneration, and skin regeneration. Although mechanical strength and biocompatibility is a substantial concern for the fabrication of structures. Developing composite and bioceramic scaffolding with different natural and synthetic biomaterials are the futuristic approach in the biomedical engineering field. The problems such as biocompatibility, biodegradability, and mechanical resistance can be solved by combining natural, and artificial biomaterials. The natural biomaterials, such as collagen, cellulose, chitosan, have a close resemblance to the natural extracellular matrix (ECM). These materials are biocompatible, biodegradable. The artificial biomaterials, such as Poly Vinyl Pyrrolidone (PVP), Poly Capro Lactone (PCL), Poly Ethylene Glycol (PEG), and Poly Lactic Acid (PLA) are also the material of choice for the fabrication of the composite materials. Additional effort is necessary to fabricate biocompatible composite scaffolding for tissue engineering. Moreover, vascularization, differentiation, cellular proliferation, and cells to scaffold interaction are the foremost challenges in the area of tissue engineering that remains to overcome.
APA, Harvard, Vancouver, ISO, and other styles
8

Tlotleng, Monnamme, Esther T. Akinlabi, Mukul Shukla, and Sisa Pityana. "Application of Laser Assisted Cold Spraying Process for Materials Deposition." In Surface Engineering Techniques and Applications, 177–221. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5141-8.ch006.

Full text
Abstract:
The Laser-Assisted Cold Spraying (LACS) process is a hybrid technique that uses laser and cold spray mechanism to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic. The supersonic effects can be achieved by passing a highly compressed Nitrogen gas (˜30 bars) through de Laval supersonic nozzle. LACS is a surface coating technique that is desirable in rapid prototyping and manufacturing, particularly for biomedical applications. Current world research reveals that the capability of the LACS regarding the enhancement of surface properties of coating titanium alloys with hydroxyapatite will be essential for fabricating scaffolds for bone implants using Laser Engineered Net Shaping (LENS) technique. In this chapter, coatings of composite powders made of titanium and hydroxyapatite deposited on Ti-6Al-4V substrate by LACS technology are presented. These coatings were successfully characterised by means of X-Ray Diffraction (XRD) and optical microscopy for their phases, composition, and microstructure, respectively. The results of the produced LACS coatings compare well with those obtained with traditional thermal spray and cold spray techniques, respectively. In addition, the XRD results were found to be similar to the precursor powders, which indicated that no phase transformation occurred to HAP. Coatings comprising of other crystalline phases of HAP are less bio-integrable and fail quicker within the human body fluids environments.
APA, Harvard, Vancouver, ISO, and other styles
9

P. V., Rajesh. "MOORA-Driven Decision Making to Select the Optimal Specimen of Organic CMCs." In Advances in Civil and Industrial Engineering, 48–73. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7206-1.ch005.

Full text
Abstract:
Bone grafting or bone implant is a typical procedure in surgery in which a missing or broken bone is replaced in order to treat bone fractures that pose a significant health risk to the patients. Several research works have been carried out in the past few years regarding various composite materials used in bone implants, their fabrication methods, and evaluation of their physical, mechanical, chemical, and thermal properties. The use of ceramic powders and ceramic-based composites in biomedical applications are steadily increasing over years mainly due to their advantages like high compressive strength, excellent hardness, etc. In this research work, organic ceramic matrix composites with varying proportions of conch shell and sea sponge are fabricated using powder metallurgy technique and their physicomechanical properties such as density, porosity, water absorption, and micro-hardness are evaluated. Finally, optimization of process parameters is done using multi-objective optimization based on ratio analysis (MOORA) to select the best possible specimen of CMCs.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Orthopedic implants Composite materials. Biomedical materials"

1

Zhang, Qingwei, Vadym Mochalin, Ioannis Neitzel, Yury Gogotsi, Peter I. Lelkes, and Jack Zhou. "The Study on PLLA-Nanodiamond Composites for Surgical Fixation Devices." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38287.

Full text
Abstract:
Biopolymers have a great potential in biomedical engineering, having been used as scaffolds for hard and soft tissues, such as bone and blood vessels for many years. More recently biopolymers have also found applications in surgical fixation devices. Compared with conventional metal fixation devices, bone grafts and organ substitutes, biopolymer products have advantages of no long-term implant palpability or temperature sensitivity, predictable degradation to provide progressive bone loading and no stress shielding, all of which leads to a better bone healing, reduced patient trauma and cost, elimination of second surgery for implant removal, and fewer complications from infections. However lack of initial fixation strength and bioactivity are two major concerns which limited more widespread applications of biopolymers in orthopedic surgery. Nanodiamond is attractive for its use in reinforcement of composite materials due to their outstanding mechanical, chemical and biological properties. Nanotechnology shows us many innovations and it is generally accepted view that many could be further developed and applied in tissue engineering. In this work, we conduct poly(L-lactic acid) (PLLA) and octadecylamine functionalized nanodiamond (ND-ODA) composite research to optimize the polymer/ND interface, thus to reinforce the mechanical strength. Composites comprising PLLA matrix with embedded ND-ODA were prepared by mixing PLLA/chloroform solution with chloroform suspension of nanodiamonds at concentrations of 0–10 by weight percent. The dispersion of ND-ODA was observed by transmission electron microscopy (TEM). TEM micrographs show that ND-ODA can disperse uniformly in PLLA till 10% wt. Nanoindentation result shows the mechanical strength of ND-ODA/PLLA composites improving following increasing the concentration of ND-ODA in composites. The noncytotoxicity of ND-ODA was demonstrated on 7F2 Osteoblasts. To test the usefulness of ND-ODA/PLLA composites as scaffolds for supporting cell growth, 7F2 Osteoblasts were cultured on scaffolds for 6 days. The attachment and proliferation of 7F2 on all scaffolds were assessed by fluorescent nuclear staining with Hoechst 33258 and Alamar BlueTM assay. The results showed that the adding ND-ODA does small influence cell growth, which indicates the composites have good biocompatibility. The morphology of 7F2 cells growing on all ND-ODA/PLLA composite scaffolds was determined by SEM, which confirms the Osteoblasts spread on the scaffolds. All these results combined suggest that ND-ODA/PLLA might provide a novel composite suitable for surgical fixation devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Ponder, Robert I., Mohsen Safaei, and Steven R. Anton. "Validation of Impedance-Based Structural Health Monitoring in a Simulated Biomedical Implant System." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8012.

Full text
Abstract:
Total Knee Replacement (TKR) is an important and in-demand procedure for the aging population of the United States. In recent decades, the number of TKR procedures performed has shown an increase. This pattern is expected to continue in the coming decades. Despite medical advances in orthopedic surgery, a high number of patients, approximately 20%, are dissatisfied with their procedure outcomes. Common causes that are suggested for this dissatisfaction include loosening of the implant components as well as infection. To eliminate loosening as a cause, it is necessary to determine the state of the implant both intra- and post-operatively. Previous research has focused on passively sensing the compartmental loads between the femoral and tibial components. Common methods include using strain gauges or even piezoelectric transducers to measure force. An alternative to this is to perform real-time structural health monitoring (SHM) of the implant to determine changes in the state of the system. A commonly investigated method of SHM, referred to as the electromechanical impedance (EMI) method, involves using the coupled electromechanical properties of piezoelectric transducers to measure the host structure’s condition. The EMI method has already shown promise in aerospace and infrastructure applications, but has seen limited testing for use in the biomechanical field. This work is intended to validate the EMI method for use in detecting damage in cemented bone-implant interfaces, with TKR being used as a case study to specify certain experimental parameters. An experimental setup which represents the various material layers found in a bone-implant interface is created with various damage conditions to determine the ability for a piezoelectric sensor to detect and quantify the change in material state. The objective of this work is to provide validation as well as a foundation on which additional work in SHM of orthopedic implants and structures can be performed.
APA, Harvard, Vancouver, ISO, and other styles
3

Salahshoor, M., and Y. B. Guo. "Contact Mechanics in Low Plasticity Burnishing of Biomedical Magnesium-Calcium Alloy." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41213.

Full text
Abstract:
Magnesium-Calcium (Mg-Ca) alloys are promising biomedical materials in manufacturing biodegradable orthopedic fixation implants. Low plastic burnishing (LPB) has emerged as an enabling manufacturing technique to produce superior surface integrity of orthopedic implants to increase corrosion resistance of Mg-Ca implants. The basic understanding on contact mechanics between burnishing ball and the workpiece is essential to understand process mechanics. The contact mechanics is further complicated by normal force reduction due to hydraulic pressure loss, the penetration depth, and elastic recovery. In this study, the measured rolling force shows maximum 23% reduction compared with the theoretical value. A 2D axisymmetric, semi-infinite FEM model has been developed to predict the amount of elastic recovery after burnishing. The dynamic mechanical behavior of the material is modeled using a user material subroutine of the internal state variable plasticity model. The simulated dent geometry agrees with the measured data in terms of dent profile and depth. Acoustic emission (AE) process monitoring signals are recorded and the likely correlation with predicted residual stress, plastic strain, and temperature distributions are studied to obtain an in-process monitoring tool.
APA, Harvard, Vancouver, ISO, and other styles
4

Modica, F., C. Pagano, V. Marrocco, and I. Fassi. "Micro-EDM Studies of the Fabrication of Customized Internal Fixation Devices for Orthopedic Surgery." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46489.

Full text
Abstract:
The fabrication of personalized implants, tailored on patient needs, is a key issue for the future of several surgical fields. The presence of a prototyping service inside the hospital would be an added value for improving clinical activity. In this context, micro-Electro Discharge Machining is exploited to customize fixation devices in orthopedic surgery. An overview of the main devices is carried out in order to identify the main characteristics and to define the common fixation system specifications. The experimentation includes a technological evaluation of the proper micro-EDM technology, chosen according to the final design of the components. Two materials are investigated for the device fabrication: titanium and Si3N4-TiN ceramic composite. An optimization of the main technological parameters is performed in order to maximize the material removal rate ensuring the accuracy of the micro-features required. Finally, a test case is selected in order to evaluate the entire fabrication process chain.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography