Journal articles on the topic 'Orthopedic implants Composite materials. Biomedical materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Orthopedic implants Composite materials. Biomedical materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Prashar, Gaurav, and Hitesh Vasudev. "Thermal Sprayed Composite Coatings for Biomedical Implants: A Brief Review." Journal of Thermal Spray and Engineering 2, no. 1 (2020): 50–55. http://dx.doi.org/10.52687/2582-1474/213.
Full textBatool, Syeda Ammara, Abdul Wadood, Syed Wilayat Hussain, Muhammad Yasir, and Muhammad Atiq Ur Rehman. "A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges." Surfaces 4, no. 3 (August 4, 2021): 205–39. http://dx.doi.org/10.3390/surfaces4030018.
Full textValente, Karolina Papera, Alexandre Brolo, and Afzal Suleman. "From Dermal Patch to Implants—Applications of Biocomposites in Living Tissues." Molecules 25, no. 3 (January 24, 2020): 507. http://dx.doi.org/10.3390/molecules25030507.
Full textPrakash, P. Shakti, S. J. Pawar, and R. P. Tewari. "Synthesis, characterization, and coating of forsterite (Mg2SiO4) based material over medical implants: A review." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 6 (April 18, 2017): 1227–40. http://dx.doi.org/10.1177/1464420717705151.
Full textGomzyak, V. I., V. A. Demina, E. V. Razuvaeva, N. G. Sedush, and S. N. Chvalun. "BIODEGRADABLE POLYMER MATERIALS FOR MEDICAL APPLICATIONS: FROM IMPLANTS TO ORGANS." Fine Chemical Technologies 12, no. 5 (October 28, 2017): 5–20. http://dx.doi.org/10.32362/2410-6593-2017-12-5-5-20.
Full textGayle, Jessica, and Anil Mahapatro. "Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings." Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science) 9, no. 1 (September 24, 2019): 3–27. http://dx.doi.org/10.2174/2352094909666190228113315.
Full textPavlov, O. D., V. V. Pastukh, and M. Yu Karpinsky. "The problem of using composite biodegradable implants for the treatment of bone fractures (literature review)." TRAUMA 22, no. 2 (June 15, 2021): 5–16. http://dx.doi.org/10.22141/1608-1706.2.22.2021.231952.
Full textCamposaragna, M., F. Casolo, M. Cocetta, G. Maraschi, and G. Vrespa. "Mechanical properties and shock absorption of dental implants equipped with abutments made of composite materials." Journal of Biomechanics 39 (January 2006): S201. http://dx.doi.org/10.1016/s0021-9290(06)83727-9.
Full textAherwar, Amit, Amit Singh, and Amar Patnaik. "Study on mechanical and wear characterization of novel Co30Cr4Mo biomedical alloy with added nickel under dry and wet sliding conditions using Taguchi approach." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 7 (April 5, 2016): 535–54. http://dx.doi.org/10.1177/1464420716638112.
Full textQin, Wen, Jing Ma, Qian Liang, Jingdan Li, and Bin Tang. "Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti–6Al–4V alloy as orthopedic/dental implants." Journal of the Mechanical Behavior of Biomedical Materials 122 (October 2021): 104659. http://dx.doi.org/10.1016/j.jmbbm.2021.104659.
Full textCao, Jianfei, Yue Lu, Hechun Chen, Lifang Zhang, and Chengdong Xiong. "Bioactive poly(etheretherketone) composite containing calcium polyphosphate and multi-walled carbon nanotubes for bone repair: Mechanical property and in vitro biocompatibility." Journal of Bioactive and Compatible Polymers 33, no. 5 (June 28, 2018): 543–57. http://dx.doi.org/10.1177/0883911518783214.
Full textChong, Alexander C. M., Forrest Miller, McKee Buxton, and Elizabeth A. Friis. "Fracture Toughness and Fatigue Crack Propagation Rate of Short Fiber Reinforced Epoxy Composites for Analogue Cortical Bone." Journal of Biomechanical Engineering 129, no. 4 (January 19, 2007): 487–93. http://dx.doi.org/10.1115/1.2746369.
Full textSavich, V. V. "Criteria for selecting powder composite materials for orthopedic implants." Powder Metallurgy and Metal Ceramics 48, no. 3-4 (March 2009): 216–24. http://dx.doi.org/10.1007/s11106-009-9109-8.
Full textLiu, Xiangji, Yihang Ma, Minjiang Chen, Jiansong Ji, Yuhang Zhu, Qingsan Zhu, Min Guo, and Peibiao Zhang. "Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration." Journal of Materials Chemistry B 9, no. 33 (2021): 6691–702. http://dx.doi.org/10.1039/d1tb01080h.
Full textBai, Gong, Chen, Sun, Zhang, Cai, Zhu, and Xie. "Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications." Metals 9, no. 9 (September 12, 2019): 1004. http://dx.doi.org/10.3390/met9091004.
Full textSchildhauer, T. A., E. Peter, G. Muhr, and M. Köller. "Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials." Journal of Biomedical Materials Research Part A 88A, no. 2 (February 2009): 332–41. http://dx.doi.org/10.1002/jbm.a.31850.
Full textQiu, Hongjin, Jian Yang, Pradeep Kodali, Jason Koh, and Guillermo A. Ameer. "A citric acid-based hydroxyapatite composite for orthopedic implants." Biomaterials 27, no. 34 (December 2006): 5845–54. http://dx.doi.org/10.1016/j.biomaterials.2006.07.042.
Full textGao, Qiang, Tao Feng, Danni Huang, Peng Liu, Peng Lin, Yan Wu, Zhaoming Ye, Jian Ji, Peng Li, and Wei Huang. "Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes." Biomaterials Science 8, no. 1 (2020): 278–89. http://dx.doi.org/10.1039/c9bm01396b.
Full textQiu, Hongjin, Jian Yang, Pradeep Kodali, Jason Koh, and Guillermo A. Ameer. "Erratum to “A citric acid-based hydroxyapatite composite for orthopedic implants”." Biomaterials 28, no. 11 (April 2007): 2068. http://dx.doi.org/10.1016/j.biomaterials.2007.01.009.
Full textLee, Sangmin, Yun-Young Chang, Jinkyu Lee, Sajeesh Kumar Madhurakkat Perikamana, Eun Mi Kim, Yang-Hun Jung, Jeong-Ho Yun, and Heungsoo Shin. "Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration." Biomaterials Science 8, no. 12 (2020): 3404–17. http://dx.doi.org/10.1039/d0bm00566e.
Full textLi, Xuan, Linyuan Han, Xiaokai Liu, Chenglin Chu, Jia Ju, Jing Bai, and Xiaobo Zhang. "A study on the impact behaviors of Mg wires/PLA composite for orthopedic implants." Journal of Materials Science 54, no. 23 (August 28, 2019): 14545–53. http://dx.doi.org/10.1007/s10853-019-03955-1.
Full textMoraes, Carla, Camila Q. M. Bruna, Cristiane de Lion Botero Couto Lope, and Kazuko U. Graziano. "Research: Recovery of Microorganisms in Nonsterile, Reusable, Loaned Orthopedic Implants." Biomedical Instrumentation & Technology 53, no. 5 (September 1, 2019): 351–54. http://dx.doi.org/10.2345/0899-8205-53.5.351.
Full textJeong, Woon-Jo. "A Study on the Deposition of Hydroxyapatite Nano Thin Films Fabricated by Radio-Frequency Magnetron Sputtering for Biomedical Applications." Journal of Nanoscience and Nanotechnology 20, no. 7 (July 1, 2020): 4114–19. http://dx.doi.org/10.1166/jnn.2020.17582.
Full textIbrahim, Mahmoud Z., Ahmed A. D. Sarhan, Farazila Yusuf, and M. Hamdi. "Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article." Journal of Alloys and Compounds 714 (August 2017): 636–67. http://dx.doi.org/10.1016/j.jallcom.2017.04.231.
Full textChoudhury, Dipankar, Juergen Lackner, Robert A. Fleming, Josh Goss, Jingyi Chen, and Min Zou. "Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants." Journal of the Mechanical Behavior of Biomedical Materials 68 (April 2017): 51–61. http://dx.doi.org/10.1016/j.jmbbm.2017.01.023.
Full textGritsch, Lukas, Eloïse Perrin, Jean-Marc Chenal, Yann Fredholm, Anthony LB Maçon, Jérôme Chevalier, and Aldo R. Boccaccini. "Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds." Applied Materials Today 22 (March 2021): 100923. http://dx.doi.org/10.1016/j.apmt.2020.100923.
Full textShanmuganantha, Lohashenpahan, Azmi Baharudin, Abu Bakar Sulong, Roslinda Shamsudin, and Min Hwei Ng. "Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review." Materials 14, no. 2 (January 7, 2021): 277. http://dx.doi.org/10.3390/ma14020277.
Full textShanmuganantha, Lohashenpahan, Azmi Baharudin, Abu Bakar Sulong, Roslinda Shamsudin, and Min Hwei Ng. "Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review." Materials 14, no. 2 (January 7, 2021): 277. http://dx.doi.org/10.3390/ma14020277.
Full textSlizovskiy, G. B., V. E. Gunther, I. I. Kuzhelivskiy, L. A. Sitko, and M. A. Fedorov. "Surgical Correction of Child Planovalgus Deformity by Porous TiNi-based Implants." KnE Materials Science 2, no. 1 (July 17, 2017): 486. http://dx.doi.org/10.18502/kms.v2i1.842.
Full textRen, Fuzeng, Weiwei Zhu, and Kangjie Chu. "Fabrication and evaluation of bulk nanostructured cobalt intended for dental and orthopedic implants." Journal of the Mechanical Behavior of Biomedical Materials 68 (April 2017): 115–23. http://dx.doi.org/10.1016/j.jmbbm.2017.01.039.
Full textZhao, Changhong, Xiuzhen Lu, Carl Zanden, and Johan Liu. "The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior." Biomedical Materials 10, no. 1 (February 10, 2015): 015019. http://dx.doi.org/10.1088/1748-6041/10/1/015019.
Full textJackson, Nicolette, Michel Assad, Derick Vollmer, James Stanley, and Madeleine Chagnon. "Histopathological Evaluation of Orthopedic Medical Devices: The State-of-the-art in Animal Models, Imaging, and Histomorphometry Techniques." Toxicologic Pathology 47, no. 3 (January 17, 2019): 280–96. http://dx.doi.org/10.1177/0192623318821083.
Full textWu, Kailun, Bin Li, and Jiong Jiong Guo. "Fatigue Crack Growth and Fracture of Internal Fixation Materials in In Vivo Environments—A Review." Materials 14, no. 1 (January 1, 2021): 176. http://dx.doi.org/10.3390/ma14010176.
Full textLiu, Chen, Zheng Ren, Yongdong Xu, Song Pang, Xinbing Zhao, and Ying Zhao. "Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review." Scanning 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/9216314.
Full textCao, Jian, Zhongxing Liu, Limin Zhang, Jinlong Li, Haiming Wang, and Xiuhui Li. "Advance of Electroconductive Hydrogels for Biomedical Applications in Orthopedics." Advances in Materials Science and Engineering 2021 (January 22, 2021): 1–13. http://dx.doi.org/10.1155/2021/6668209.
Full textParvinkal, Singh, and Kumar Pardeep. "An overview of biomedical materials and techniques for better functional performance, life, sustainability and biocompatibility of orthopedic implants." Indian Journal of Science and Technology 11, no. 28 (July 1, 2018): 1–7. http://dx.doi.org/10.17485/ijst/2018/v11i28/130789.
Full textMorozova, Oksana, and Edwin Gevorkyan. "CURRENT STATE OF APPLIENCE ZIRCONIUM DIOXIDE IN BIOENGINEERING." Technology transfer: fundamental principles and innovative technical solutions 4 (November 30, 2020): 39–42. http://dx.doi.org/10.21303/2585-6847.2020.001509.
Full textTayebi, Morteza, Davood Bizari, and Zabihollah Hassanzade. "Investigation of mechanical properties and biocorrosion behavior of in situ and ex situ Mg composite for orthopedic implants." Materials Science and Engineering: C 113 (August 2020): 110974. http://dx.doi.org/10.1016/j.msec.2020.110974.
Full textParcharoen, Yardnapar, Preecha Termsuksawad, and Sirinrath Sirivisoot. "Improved Bonding Strength of Hydroxyapatite on Titanium Dioxide Nanotube Arrays following Alkaline Pretreatment for Orthopedic Implants." Journal of Nanomaterials 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9143969.
Full textSadati, Mahzad, Sadegh Ghofrani, and Ali Abouei Mehrizi. "Investigation of porous cells interface on elastic property of orthopedic implants: Numerical and experimental studies." Journal of the Mechanical Behavior of Biomedical Materials 120 (August 2021): 104595. http://dx.doi.org/10.1016/j.jmbbm.2021.104595.
Full textRikhari, Bhavana, S. Pugal Mani, and N. Rajendran. "Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications." Journal of Materials Science 55, no. 12 (January 24, 2020): 5211–29. http://dx.doi.org/10.1007/s10853-019-04228-7.
Full textStevanovic, Milena, Marija Djosic, Ana Jankovic, Kyong Rhee, and Vesna Miskovic-Stankovic. "Electrophoretically deposited hydroxyapatite-based composite coatings loaded with silver and gentamicin as antibacterial agents." Journal of the Serbian Chemical Society 84, no. 11 (2019): 1287–304. http://dx.doi.org/10.2298/jsc190821092s.
Full textHamweendo, Agripa, Lebogang Moloisane, and Ionel Botef. "Bio-Mechanical Compatibility Assessment of Titanium-Nickel Alloy Fabricated Using Cold Spray Process." Materials Science Forum 828-829 (August 2015): 351–56. http://dx.doi.org/10.4028/www.scientific.net/msf.828-829.351.
Full textAhirwar, Harbhajan, Yubin Zhou, Chinmaya Mahapatra, Seeram Ramakrishna, Prasoon Kumar, and Himansu Sekhar Nanda. "Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials." Coatings 10, no. 3 (March 12, 2020): 264. http://dx.doi.org/10.3390/coatings10030264.
Full textBartolomeu, F., J. Fonseca, N. Peixinho, N. Alves, M. Gasik, F. S. Silva, and G. Miranda. "Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants." Journal of the Mechanical Behavior of Biomedical Materials 99 (November 2019): 104–17. http://dx.doi.org/10.1016/j.jmbbm.2019.07.023.
Full textYao, Chang, and Thomas J. Webster. "Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopedic Applications." Journal of Nanoscience and Nanotechnology 6, no. 9 (September 1, 2006): 2682–92. http://dx.doi.org/10.1166/jnn.2006.447.
Full textTéllez-Martínez, Jorge Sergio, Luis Olmos, Víctor Manuel Solorio-García, Héctor Javier Vergara-Hernández, Jorge Chávez, and Dante Arteaga. "Processing and Characterization of Bilayer Materials by Solid State Sintering for Orthopedic Applications." Metals 11, no. 2 (January 23, 2021): 207. http://dx.doi.org/10.3390/met11020207.
Full textMohamed, Aya, Hans-Georg Breitinger, and Ahmed M. El-Aziz. "Effect of pH on the degradation kinetics of a Mg–0.8Ca alloy for orthopedic implants." Corrosion Reviews 38, no. 6 (November 18, 2020): 489–95. http://dx.doi.org/10.1515/corrrev-2020-0008.
Full textRadda'a, Namir S., Wolfgang H. Goldmann, Rainer Detsch, Judith A. Roether, Luis Cordero-Arias, Sannakaisa Virtanen, Tomasz Moskalewicz, and Aldo R. Boccaccini. "Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants." Surface and Coatings Technology 327 (October 2017): 146–57. http://dx.doi.org/10.1016/j.surfcoat.2017.07.048.
Full textHanawa, Takao. "Recent Development of New Alloys for Biomedical Use." Materials Science Forum 512 (April 2006): 243–48. http://dx.doi.org/10.4028/www.scientific.net/msf.512.243.
Full text