Academic literature on the topic 'Oscillator flows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oscillator flows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oscillator flows"
Portillo, Daniel J., Eugene Hoffman, Matt Garcia, Elijah LaLonde, Christopher Combs, and R. Lyle Hood. "The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator." Fluids 7, no. 7 (July 21, 2022): 251. http://dx.doi.org/10.3390/fluids7070251.
Full textShardt, Orest, Hassan Masoud, and Howard A. Stone. "Oscillatory Marangoni flows with inertia." Journal of Fluid Mechanics 803 (August 19, 2016): 94–118. http://dx.doi.org/10.1017/jfm.2016.507.
Full textKovacic, Ivana, Matthew Cartmell, and Miodrag Zukovic. "Mixed-mode dynamics of certain bistable oscillators: behavioural mapping, approximations for motion and links with van der Pol oscillators." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2184 (December 2015): 20150638. http://dx.doi.org/10.1098/rspa.2015.0638.
Full textLUO, ALBERT C. J., and MOZHDEH S. FARAJI MOSADMAN. "SINGULARITY, SWITCHABILITY AND BIFURCATIONS IN A 2-DOF, PERIODICALLY FORCED, FRICTIONAL OSCILLATOR." International Journal of Bifurcation and Chaos 23, no. 03 (March 2013): 1330009. http://dx.doi.org/10.1142/s0218127413300097.
Full textVodinchar, Gleb. "Hereditary Oscillator Associated with the Model of a Large-Scale αω-Dynamo." Mathematics 8, no. 11 (November 19, 2020): 2065. http://dx.doi.org/10.3390/math8112065.
Full textSerrar, Abderrahim, Mohamed El Khlifi, and Azeddine Kourta. "Characterisation and comparison of unsteady actuators: a fluidic oscillator and a sweeping jet." International Journal of Numerical Methods for Heat & Fluid Flow 32, no. 4 (October 4, 2021): 1237–54. http://dx.doi.org/10.1108/hff-07-2021-0474.
Full textKHEIRANDISH, F., and M. AMOOSHAHI. "RADIATION REACTION AND QUANTUM DAMPED HARMONIC OSCILLATOR." Modern Physics Letters A 20, no. 39 (December 21, 2005): 3025–34. http://dx.doi.org/10.1142/s0217732305018384.
Full textMa, Zhao Wei, Tiang Jiang Hu, Han Zhou, Guang Ming Wang, and Dai Bing Zhang. "Modeling of Fish Adaptive Behaviors in Unsteady Flows." Applied Mechanics and Materials 461 (November 2013): 313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.461.313.
Full textBILLINGHAM, JOHN. "Modelling the response of a vibrating-element density meter in a two-phase mixture." Journal of Fluid Mechanics 340 (June 10, 1997): 343–60. http://dx.doi.org/10.1017/s0022112097005600.
Full textCang, Shijian, Yueyue Shan, and Zenghui Wang. "Conservative dynamics in a novel class of 3D generalized thermostatted systems." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 8 (August 2022): 083143. http://dx.doi.org/10.1063/5.0101570.
Full textDissertations / Theses on the topic "Oscillator flows"
Barbagallo, Alexandre. "Model reduction and closed-loop control of oscillator and noise-amplifier flows." Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Full textCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Salmon, Mathieu. "closed-loop control of finite amplitude perturbations : application to sub- and super-critical flow-bifurcations." Electronic Thesis or Diss., Paris, ENSAM, 2024. http://www.theses.fr/2024ENAME072.
Full textCurrent control optimisation methods struggle to stabilize a base flow in the case of finite amplitude perturbations. A boundary called edge of chaos separates into two regions the phase space of a flow which transitions subcritically to turbulence. The turbulent basin of attraction incorporates the perturbations whose energy is sufficient to trigger transition to turbulence, the laminar basin of attraction is the set of initial perturbations which are relaminarized. Such situation with two coexisting local attractors can also be encountered in flow cases outside the scope of transition to turbulence. A cylinder flow at Re = 100 exhibits a globally unstable base flow and a stable limit-cycle. Two basins of attraction emerge from the local stabilization of the base flow by a linear controller optimized on the linearized Navier-Stokes equations. We seek in this study to increase the basin of attraction of the base flow. The novelty of this work lies in the choice of the functional to be optimised with control. Indeed, the optimisation targets the energy of a perturbation located on the boundary of the two basins of attraction. We consider subcritical transition to turbulence using the well-known SSP model of Waleffe, a reduced-order model of the Navier-Stokes equations with only four degrees of freedom. The control methods elaboratored in this work are effective to induce a growth of the ”laminar” basin of attraction. In the cylinder flow, the robustness of an initial controller to finite amplitude perturbations is increased in a chosen direction of the phase space
Wang, Jianhong. "Oscillatory flows round combinations of cylinders." Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/13196.
Full textWybrow, M. F. "Oscillatory flows about elliptic and circular cylinders." Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389229.
Full textWijetunge, Janaka Jayasekera. "Velocity measurements in oscillatory and steady flows." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627385.
Full textAl-Asmi, Khalfan. "Vortex shedding in oscillatory flow." Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/842864/.
Full textDick, Jennifer Ellen. "Sediment transport in oscillatory flow." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235836.
Full textStephens, Gerard Groves. "Suspension polymerisation in oscillatory flow." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627184.
Full textTait, Nicole Lynn. "Recovery factors in zero-mean internal oscillatory flows." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA306233.
Full text"December 1995." Thesis advisor(s): Ashok Gopinath, Oscar Biblarz. Bibliography: p. 61. Also available online.
Krishna, Vikas. "Numerical simulation of vortex shedding in oscillatory flows." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25859.pdf.
Full textBooks on the topic "Oscillator flows"
G, Friedman, Simon T. W, and United States. National Aeronautics and Space Administration., eds. Fluid mechanics experiments in oscillatory flow. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textAmin, Norsarahaida. Oscillation-induced mean flows and heat transfer. Norwich: University of East Anglia, 1989.
Find full textCoward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Find full textT, Papageorgiou Demetrios, and Langley Research Center, eds. Stability of oscillatory two phase coutette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textCobbin, Adrian Matthew. Viscous forces on cylindrical bodies in attached turbulent oscillatory flows. Manchester: University of Manchester, 1996.
Find full textG, Allan Brian, and Institute for Computer Applications in Science and Engineering., eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Find full textG, Allan Brian, and Institute for Computer Applications in Science and Engineering., eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Find full textG, Allan Brian, Institute for Computer Applications in Science and Engineering., and Langley Research Center, eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: Institute for Computer Applications in Science and Engineering, Langley Research Center, 2000.
Find full textCirovic, Srdjan. Characterizing flow-induced oscillation in a mechanical trachea. Ottawa: National Library of Canada, 1996.
Find full textSarpkaya, Turgut. In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers. Monterey, Calif: Naval Postgraduate School, 1986.
Find full textBook chapters on the topic "Oscillator flows"
James, J., G. Joseph, A. Magaña, and B. Mena. "Oscillatory Granular Flows." In Progress and Trends in Rheology V, 276–77. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-51062-5_128.
Full textLi, Sicheng, and Jinjun Wang. "Frequency Effect on Properties of Turbulent/Non-turbulent Interface in Separated and Reattaching Flows Past an Oscillating Fence." In IUTAM Bookseries, 182–93. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_14.
Full textWesterhof, Nicolaas, Nikolaos Stergiopulos, and Mark I. M. Noble. "Oscillatory Flow Theory." In Snapshots of Hemodynamics, 41–43. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6363-5_8.
Full textWesterhof, Nicolaas, Nikolaos Stergiopulos, Mark I. M. Noble, and Berend E. Westerhof. "Oscillatory Flow Theory." In Snapshots of Hemodynamics, 47–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91932-4_8.
Full textHolzbecher, Ekkehard O. "Oscillatory Convection." In Modeling Density-Driven Flow in Porous Media, 129–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58767-2_7.
Full textBearman, P. W., X. W. Lin, and P. R. Mackwood. "Prediction of vortex-induced oscillation of cylinders in oscillatory flow." In Hydroelasticity in Marine Technology, 3–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203751503-2.
Full textMottaghi, Sohrob, Rene Gabbai, and Haym Benaroya. "Lagrangian Flow-Oscillator Models." In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 95–142. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_5.
Full textMottaghi, Sohrob, Rene Gabbai, and Haym Benaroya. "Eulerian Flow-Oscillator Models." In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 189–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_7.
Full textRibberink, Jan S., Jebbe J. van der Werf, and Tom O’Donoghue. "Sand motion induced by oscillatory flows: sheet flow and vortex ripples." In ERCOFTAC Series, 3–14. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6218-6_1.
Full textArwatz, Gilad, Ilan Fono, and Avi Seifert. "Suction and Oscillatory Blowing Actuator." In IUTAM Symposium on Flow Control and MEMS, 33–44. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6858-4_4.
Full textConference papers on the topic "Oscillator flows"
Shakouchi, Toshihiko. "Gas Absorption, Aeration, by Fluidic Oscillator Operated by Gas-Liquid Two-Phase Flow." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45132.
Full textChen, Chiko, Jing-Tang Yang, and Chien-Hung Ho. "A Novel Asymmetric Microfluidic Oscillator." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79269.
Full textMozgovoi, Yury D., and Sergei A. Khritkin. "Radiation of multibeam microwave generator on electron-oscillator flows." In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289678.
Full textMorimoto, Yuichiro, Kenji Kawamata, Haruki Madarame, and Koji Okamoto. "Bifurcation of Water Column Oscillator Behavior Simulating Reactor Safety System: 1st Report, Experiment." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32555.
Full textMozgovoi, Yury D., and Sergei A. Khritkin. "Phase focusing and synchronization of microwave generator with electron-oscillator flows." In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289645.
Full textCivrais, Clément H. B., Craig White, and René Steijl. "Influence of anharmonic oscillator model for flows over a cylindrical body." In 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0187445.
Full textGomez, Mateo, Mikhail N. Slipchenko, Steven F. Son, and Terrence R. Meyer. "Burst-Mode Noncollinear Optical Parametric Oscillator." In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.ltu5b.3.
Full textMudunuru, M. K., M. Shabouei, and K. B. Nakshatrala. "On Local and Global Species Conservation Errors for Nonlinear Ecological Models and Chemical Reacting Flows." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52760.
Full textFuchiwaki, Masaki, and Surya Raghu. "Flow Structure Formed by a Sweeping Jet Ejected Into a Main Flow." In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83045.
Full textLuo, Albert C. J., and Mehul T. Patel. "Complex Motions in a Periodically Forced Oscillator With Multiple Discontinuities." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34872.
Full textReports on the topic "Oscillator flows"
Ayoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, R. Tosi, C. Soriano, and R. Rosi. D5.5 Report on the application of multi-level Monte Carlo to wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.03.
Full textTelionis, D. P., and T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6908819.
Full textRestrepo, Juan M. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/953697.
Full textSeume, J., G. Friedman, and T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10181069.
Full textHowle, Laurens E. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada545931.
Full textInc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2002. http://dx.doi.org/10.55274/r0011168.
Full textSchilling, O., and M. Latini. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/15014460.
Full textRosa, M. P., and M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107760.
Full textLatini, M., and O. Schilling. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/875932.
Full textNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano, and R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Full text