Academic literature on the topic 'Osmotic processes in cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Osmotic processes in cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Osmotic processes in cells"

1

Hildebrandt, Jan-Peter, Rüdiger Gerstberger, and Marion Schwarz. "In vivo and in vitro induction of c-fos in avian exocrine salt gland cells." American Journal of Physiology-Cell Physiology 275, no. 4 (October 1, 1998): C951—C957. http://dx.doi.org/10.1152/ajpcell.1998.275.4.c951.

Full text
Abstract:
Osmotic stress in ducklings ( Anas platyrhynchos) results in salt secretion and adaptive cell proliferation and differentiation in the nasal glands. We investigated whether osmotic stress in vivo or muscarinic ACh receptor activation in vitro changed the expression levels of the cellular protooncogene products Fos and Jun, which may play a role in the initiation of the adaptive processes. Using Fos- and Jun-specific polyclonal antisera in Western blot experiments, we demonstrated that Jun is constitutively expressed in nasal gland tissue, whereas Fos is not detectable in tissue from unstressed (naive) animals. Under conditions of osmotic stress imposed by replacing the drinking water of the animals with a 1% NaCl solution, Jun protein remains constant in nasal gland tissue, whereas Fos protein is transiently upregulated. Treatment of cultured nasal gland tissue with muscarinic agonists results in a transcriptionally regulated expression of Fos in an atropine-sensitive manner. Immunohistochemical experiments show that Fos accumulation occurs in the nuclei of the secretory cells. These results indicate that the activation of the c- fos gene induced by muscarinic ACh receptor-mediated signaling pathways may play an important role in the initiation of adaptive growth and differentiation processes in nasal glands of osmotically stressed ducklings.
APA, Harvard, Vancouver, ISO, and other styles
2

Aslankoohi, Elham, Bo Zhu, Mohammad Naser Rezaei, Karin Voordeckers, Dries De Maeyer, Kathleen Marchal, Emmie Dornez, Christophe M. Courtin, and Kevin J. Verstrepen. "Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation." Applied and Environmental Microbiology 79, no. 23 (September 20, 2013): 7325–33. http://dx.doi.org/10.1128/aem.02649-13.

Full text
Abstract:
ABSTRACTThe behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinctSaccharomyces cerevisiaestrains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion ofHOG1and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.
APA, Harvard, Vancouver, ISO, and other styles
3

Dumas, Sébastien J., Elda Meta, Mila Borri, Jermaine Goveia, Katerina Rohlenova, Nadine V. Conchinha, Kim Falkenberg, et al. "Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation." Journal of the American Society of Nephrology 31, no. 1 (December 9, 2019): 118–38. http://dx.doi.org/10.1681/asn.2019080832.

Full text
Abstract:
BackgroundRenal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown.MethodsWe inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo.ResultsWe identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration.ConclusionsThis study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Hui, and Jian-Guo Jiang. "Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity." Environmental Reviews 18, NA (December 2010): 309–19. http://dx.doi.org/10.1139/a10-014.

Full text
Abstract:
The salinization and water deficit of soil are widespread environmental problems in limiting plant survival, growth, and productivity. However, some plants could adopt some strategies to resist salinity and drought stresses. Among these strategies, the mechanism of osmotic adjustment could help plants and algae to avoid ion toxicity and maintain water uptake in both stresses by accumulating large quantities of osmolytes. Two types of osmolytes, organic solutes and inorganic ions, play a key role in osmotic adjustment. Different osmolytes and their osmotic adjustment actions are different according to their distribution in different plants. Organic solutes, known as compatible solutes, include amino acids, glycerol, sugars, and other low molecular weight metabolites, serve a function in cells to lower or balance the osmotic potential of intracellular and extracellular ions in resistance to osmotic stresses. Inorganic ions for osmotic adjustment are mainly Na+, K+, Ca2+, and Cl–. Inorganic ions make great contribution in osmotic adjustment by ion transport processes with related ion antiporters and ion channels. The aim of this review is to integrate recent data on the mechanisms of osmotic adjustment by osmolytes in plants and algae, and to illustrate the variety of related molecular mechanisms, to introduce new concepts and techniques into this research field. Genetic manipulation including the application of transgenic techniques in plants provides promising strategies to elevate the tolerance capability of plants under osmotic stress conditions.
APA, Harvard, Vancouver, ISO, and other styles
5

Bownik, Adam, and Zofia Stępniewska. "Ectoine as a promising protective agent in humans and animals." Archives of Industrial Hygiene and Toxicology 67, no. 4 (December 1, 2016): 260–65. http://dx.doi.org/10.1515/aiht-2016-67-2837.

Full text
Abstract:
Abstract Ectoine is a compatible water molecule-binding solute (osmoprotectant) produced by several bacterial species in response to osmotic stress and unfavourable environmental conditions. This amino acid derivative can accumulate inside cells at high concentrations without interfering with natural processes and can protect the cell against radiation or osmotic stress. This brief review presents the current state of knowledge about the effects of ectoine on animals and focuses on its practical use for enzyme stabilisation, human skin protection, anti-inflammatory treatment, inhibitory effects in neurodegenerative diseases, and other therapeutic potential in human or veterinary medicine.
APA, Harvard, Vancouver, ISO, and other styles
6

Hohmann, Stefan. "Osmotic Stress Signaling and Osmoadaptation in Yeasts." Microbiology and Molecular Biology Reviews 66, no. 2 (June 2002): 300–372. http://dx.doi.org/10.1128/mmbr.66.2.300-372.2002.

Full text
Abstract:
SUMMARY The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
APA, Harvard, Vancouver, ISO, and other styles
7

Wyse, Joseph W., Robert S. Franco, Robin Barker, Mary Anne Yacko, and D. Allan Butterfield. "Membrane processes associated with the osmotic-pulse incorporation of inositol hexaphosphate." Biochimica et Biophysica Acta (BBA) - Biomembranes 1022, no. 1 (February 1990): 87–92. http://dx.doi.org/10.1016/0005-2736(90)90403-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Logotetis, Stilijanos, Panagiotis Tataridis, Anastasios Kanelis, and Elijas Nerancis. "The effect of preconditioning cells under osmotic stress on high alcohol production." Zbornik Matice srpske za prirodne nauke, no. 124 (2013): 405–14. http://dx.doi.org/10.2298/zmspn1324405l.

Full text
Abstract:
This paper focuses on the research into the influence of salt on physiology of the yeast, Saccharomyces cerevisiae. Specifically, the work focused on how NaCl affected the growth, viability and fermentation performance of this yeast in laboratory-scale experiments. One of the main findings of the research presented involved the influ?ence of salt ?preconditioning? of yeasts which represents a method of pre-culturing of cells in the presence of salt in an attempt to improve subsequent fermentation performance. Such an approach resulted in preconditioned yeasts having an improved capability to ferment high-sugar containing media (up to 60% w/v of glucose) with increased cell viability and with increased levels of produced ethanol (higher than 20% in vol.). Salt-preconditioning was most likely influencing the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol which act to improve cells? ability to withstand osmostress and ethanol toxicity. The industrial-scale trials using salt-preconditioned yeasts verified the benefit of the physiological engineering approach to practical fermentations. Overall, this research has demonstrated that a relatively simple method designed to adapt yeast cells physiologically - by salt-preconditioning - can have distinct advantages for al?cohol fermentation processes.
APA, Harvard, Vancouver, ISO, and other styles
9

Strange, K. "Regulation of solute and water balance and cell volume in the central nervous system." Journal of the American Society of Nephrology 3, no. 1 (July 1992): 12–27. http://dx.doi.org/10.1681/asn.v3112.

Full text
Abstract:
The mammalian brain is composed of four distinct fluid compartments: blood, cerebral spinal fluid, interstitial fluid surrounding glial cells and neurons, and intracellular fluid. Maintenance of the ionic and osmotic composition and volume of these fluids is crucial for the normal functioning of the brain. Small changes in intracellular or extracellular solute composition can dramatically alter neuronal signaling and information processing. Because of the rigid confines of the skull and complex brain architecture, changes in total brain volume can cause devastating neurological damage. As a result, it is not surprising to find that the composition and volume of brain intracellular and extracellular fluids are controlled tightly under both normal conditions and in various disease states. Osmotic and ionic balance in the central nervous system is regulated by solute and water transport across the blood-brain barrier, the choroid plexus, and the plasma membrane of glial cells and neurons. Despite its clinical and physiological significance, however, little is known about the underlying cellular and molecular mechanisms by which the central nervous system's osmotic and ionic balance is maintained. In this review, the current understanding of osmoregulation in the mammalian brain and its role in various disease processes such as hyponatremia, renal failure, and hypernatremia will be summarized. A detailed understanding of brain osmoregulatory processes represents a fundamental physiological problem and is required for the treatment of numerous disease states, particularly those encountered in the practice of nephrology.
APA, Harvard, Vancouver, ISO, and other styles
10

Schmidt, Flávio Luis, Hulda Noemi Mamani Chambi, and Julia Delgado Arid. "Dehydrated melon containing antioxidants and calcium from grape juice." Functional Foods in Health and Disease 6, no. 11 (November 30, 2016): 718. http://dx.doi.org/10.31989/ffhd.v6i11.281.

Full text
Abstract:
Background: Grape juice has a high antioxidant potential, capable of fighting oxidative processes in the body. The juice is mainly marketed in its concentrated form, which has a high content of glucose and fructose. The juice concentrate may then be used as an osmotic agent to dehydrated fruit with a relatively short shelf-life at room temperature, such as melon. The osmotic dehydration process can also be combined with conventional drying in order to further reduce the water activity (aw) of the product. Finally, the antioxidant-rich melon meets the consumers’ demand for foods which contain ingredients that may impart health benefits. Results: Melon dehydrated by osmotic process at 200, 400 and 600 mbar, using grape juice concentrate (GJC), showed no significant differences in physical characteristics (aw, °Brix, and moisture content). Higher efficiency was observed when dehydration was performed at 200 mbar. After osmotic dehydration with GJC, both plasmolysis of the melon cells and an increase in intercellular spaces were observed by optical microscopy, with no negative impact on the mechanical properties (True stress, Hencky’s strain and deformability modulus). Calcium present in GJC was impregnated into the melon matrix, thus contributing with the mineral composition and mechanical properties of the final product. No significant differences were observed for the antioxidant capacity of melon dehydrated both with GJC and GJC followed by air-drying at 50 and 70°C. This demonstrates that it is possible to combine the two processes to obtain a product with intermediate moisture without decreasing its antioxidant capacity. The samples scored above the acceptable limit (>5) varying between like slightly to like moderately, resulting in a purchase intent with average scores between 3 (maybe/maybe not buy) and 4 (probably would buy).Conclusions: A product with intermediate water activity, acidic, firm, high antioxidant capacity, rich in calcium and in naturally occurring sugars, and potential sensory acceptance can be obtained using grape juice concentrate in the osmotic dehydration process, followed by air-drying process.Keywords: osmotic dehydration, air-drying, fruit juice, optical microscopy, antioxidants, calcium.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Osmotic processes in cells"

1

Kovářová, Klára. "Pozorování vlivu vnějšího prostředí na živé buňky holografickým mikroskopem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232197.

Full text
Abstract:
Subject of this master's thesis is the observation of influence of external environment on the living cells with the use of multimodal holographic microscope. The theoretical part is summarising the development of the holographic microscopy at IPE FME BUT. The theoretical part also describes multimodal holographic microscope, which allows non-invasive observing of living cells. The thesis also covers construction of the microscope, basic working instructions and the hologram processing method. The main subject of the thesis is the research on the topic of chemotaxis and osmotic processes in the cells. Experiments were designed for the purpose of this thesis to cover topics mentioned above. The experimental part of the thesis deals with cultivation of the cells, preparation of the sample and observation chambers and processing of the data. This part later focuses directly on the laboratory measurements. In all experiments, cells K2 (full name LW13K2) were observed.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdel-Ghany, Yasser S. "Osmotic processes as targets for drug design /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487779439847767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Williamson, Sarah. "Relationship between food structure and drying processes." Thesis, Loughborough University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Warczok, Justyna. "Concentration of Osmotic Dehydration Solutions using Membrane Separation Processes." Doctoral thesis, Universitat Rovira i Virgili, 2005. http://hdl.handle.net/10803/8534.

Full text
Abstract:
El procesado de alimentos conlleva, en mayoría de los casos, la generación de subproductos o residuos que pueden ser reutilizados o revalorizados mediante la utilización de técnicas de separación por membrana. Estas técnicas ofrecen la posibilidad de tratar las soluciones en condiciones de operación muy suaves, y no comportan en mayoría de las ocasiones, una alteración de los componentes a recuperar. Actualmente, las técnicas de separación por membrana, debido a su alta calidad y relativamente bajos costes, se encuentran completamente integradas en la mayoría de procesos productivos que requieren de una etapa de separación. Sin embargo, la investigación en el área de las técnicas de separación por membrana sigue abriendo nuevos campos de aplicación, que surgen con la mejora de las condiciones tecnológicas de los equipos y la posibilidad de obtener nuevas membranas adaptables a necesidades específicas.

En concreto, en este proyecto se utilizaron técnicas de separación por membranas para concentrar soluciones de azúcar procedentes de deshidratación osmótica (en adelante OD). El principal objetivo fue estudiar el potencial de varias técnicas de separación, haciendo hincapié en los flujos obtenidos durante la reconcentración y en la calidad de la solución reconcentrada.

La deshidratación osmótica es un tratamiento que permite una eliminación parcial del agua en un alimento y/o la incorporación de solutos de una manera controlada, respetando la calidad inicial del producto. El proceso consiste en introducir los alimentos en una solución hipertónica, controlando las condiciones de operación para favorecer, en mayor o menor grado la incorporación de solutos y la deshidratación del alimento. La aplicación de OD puede resultar en la mejora de las propiedades nutricionales y funcionales de los alimentos y en la reducción de la energía requerida para la deshidratación. El principal problema de la aplicación industrial de la OD radica en la gestión de la solución procedente del proceso. La reutilización de esta solución plantea una doble ventaja: primero desde el punto de vista ambiental, ya que se elimina un efluente del proceso que a menudo no puede ser vertido directamente, y segundo el ahorro económico que representa la recuperación de las materias primas que muchas veces contienen solutos de importante valor económico.

Los métodos de separación por membrana utilizados para recuperar las soluciones de OD fueron los siguientes: nanofiltración, osmosis directa y destilación osmótica por membranas. La nanofiltración (NF) presenta altos niveles de retención y un menor gasto de energía que la osmosis inversa, y en la industria azucarera se aplica como uno de los pasos en la clarificación y concentración de jarabes. En los procesos de contactores de membranas: osmosis directa (DO) y destilación osmótica por membranas (OMD), a diferencia de los procesos basados en el tamizaje, el flujo depende solamente de la diferencia de potencial osmótico. Las únicas presiones hidráulicas requeridas son las necesarias para bombear la solución de azúcar y la solución osmótica hasta la superficie de la membrana. Estas características hacen que estos procesos presenten como muy prometedores para la reconcentración de soluciones de azúcar de concentraciones elevadas.

Los experimentos de filtración se llevaron a cabo utilizando plantas piloto diseñadas y construidas expresamente para el presente proyecto. Durante todos los procesos de separación por membranas, se empleó como solución modelo una solución de sacarosa a diferentes concentraciones (5-60 ºBrix), debido a que las soluciones aplicadas en la deshidratación osmótica de frutas son habitualmente soluciones de azucares (sacarosa, glucosa o jarabes).

Durante los experimentos de NF se evaluó el funcionamiento de las membranas planas: Desal5 DK (GE- Osmonics), MPF-34 (Koch Membrane), NFT-50 (DSS) y tubulares: MPT-34 (Koch Membrane) y AFC 80 (PCIMembranes). Además de la solución de azúcar de diferentes concentraciones (5-20 ºBrix), se concentraron zumos de pera y manzana.


La reconcentración mediante osmosis directa se realizó utilizando dos modos de operación: off-site e on-site. En el modo off-site, la reconcentración por ósmosis directa se llevó a cabo en una planta de filtración provista de un módulo plano o tubular, dependiendo de la membrana. En el módulo se llevó a cabo la concentración. En el modo on-site, la deshidratación se realizaba conjuntamente con la reconcentración de la solución osmótica. La solución de reconcentración de la osmosis directa en off-site (offsiteDO) fue NaCl, mientras la solución de reconcentración de la osmosis directa on-site (on-site DO) fue una solución de sacarosa más concentrada que la solución osmótica (60 para una solución osmótica de 40 y 68 para una solución de 50 ºBrix). Para garantizar el flujo de agua entre las dos soluciones y altas retenciones de azúcar durante la off-site DO, se utilizaron membranas de NF planas (Desal5-DK y MPF-34) y tubulares (MPT-34 y AFC80). La reconcentración por osmosis directa on-site se levó a cabo empleando una membrana de microfiltración (Durapore, Millipore), ya que la solución de reconcentración (SS) es la misma que la solución osmótica y la alta viscosidad de la SS restringe mucho el flujo de agua si se utiliza una membrana más densa.

En la deshidratación por membranas (OMD) se utilizaron membranas hidrófobas (11806, Sartorius) que presentan una retención teórica del 100 %. Se comparó el rendimiento de dos soluciones de reconcentración: NaCl y CaCl2.

Con el fin de obtener información referente a la influencia de las propiedades de las membranas sobre el desarrollo del proceso de concentración de las soluciones procedentes de la deshidratación osmótica, se realizó un estudio detallado de las propiedades de las membranas aplicadas mediante AFM, SEM, FTIR, ángulo de contacto y medidas de potencial zeta. Con la finalidad de generar soluciones osmóticas para someterlas a reconcentración, y también para disponer de productos procedentes de deshidratación osmótica con soluciones frescas que pudieran compararse con aquellas procedentes de OD con solución reconcentrada, se deshidrataron diferentes lotes de manzana (Granny Smith) con soluciones de sacarosa de 40, 50 y 60 ºBrix. Estas pruebas permitieron determinar también el tímelo de operación para una máxima pérdida de agua con relativamente poca impregnación de las manzanas. Después de cada experimento se analizaron los siguientes parámetros: concentración de azúcar, pH, absorbancia a 420 nm de las soluciones y humedad de las manzanas.

La nanofiltración, aplicada en la primera fase del presente estudio, resultó ser viable solamente para la reconcentración de soluciones de concentraciones hasta 24 ºBrix. El aumento de la temperatura de 25 hasta 35 ºC para las dos membranas tubulares ocasionó un incremento del flujo de permeado, y el mismo efecto tuvo el aumento de presión transmembranaria de 8 a 12 bar.

Se comprobó que el factor más importante para la eficacia del proceso es disponer de una membrana que combine altos flujos y retenciones durante el proceso. La deposición de las partículas de sacarosa y/o los zumos se caracterizó mediante SEM y la topología de la capa filtrante de la membrana se identificó usando AFM. La topología de la capa filtrante de las membranas era diferente para cada una de ellas, a pesar de que todas estaban preparadas con el mismo material (poliamida). En las imágenes de los cortes transversales de las membranas realizados con SEM, se observaron los cambios en la estructura de las membranas producidos por la aplicación de presión durante los experimentos y las altas temperaturas empleadas durante su acondicionamiento. Gracias a las imágenes de SEM se pudo verificar también la eficacia del proceso de acondicionamiento de membranas.

A diferencia de NF, tanto la ósmosis directa como la destilación osmótica por membrana permiten la reconcentración de soluciones concentradas de sacarosa (hasta60 ºBrix). La eficacia de estas dos últimas técnicas se evaluó en unción de los flujos de agua obtenidos.

El sistema de ósmosis directa on-site propuesto para la reconcentración de las soluciones de OD permitió reutilizar las soluciones osmóticas como mínimo cuatro veces. Para la solución osmótica de 40 ºBrix la humedad de las manzanas fue similar utilizando solución fresca o reconcentrada. En cambio, una solución osmótica de 50 ºBrix, la pérdida de agua de las manzanas fue mayor cuando la deshidratación osmótica se llevó a cabo con reconcentración on-site de la solución osmótica. Los análisis de concentración de azúcar de las soluciones osmóticas y de la solución de reconcentración indican que la membrana elegida para los experimentos facilita el transporte óptimo de solutos y agua entre las dos soluciones. Además, el sistema de reconcentración por membrana propuesto es muy sencillo y de bajo coste porque no requiere presurización.

La osmosis directa en off-site proporcionó flujos mucho mayores que los obtenidos con el sistema on-site (1.3 kg/m2h para la solución osmótica de 50 ºBrix respecto a 0.0023 kg/m2h durante on-site DO para la misma solución). Sin embargo, el transporte de solutos de la solución de reconcentración hacía la solución osmótica puede ser considerado un obstáculo para su aplicación a escala industrial.

Los flujos de agua más elevados fueron obtenidos utilizando la OMD (2.01 kg/m2h para la solución osmótica de 50 ºBrix y con CaCl2 con la solución de reconcentración). Otra gran ventaja de este proceso es la retención de solutos que proporciona, hecho confirmado por los análisis realizados.

El estudio sobre el transporte durante los procesos de contactores de membranas indicó que la viscosidad es la propiedad limitante para la solución osmótica y la actividad de agua/alta presión osmótica como la propiedad más importante a la hora de elegir una solución de reconcentración. Para todos los procesos de separación aplicados, el aumento de la concentración de azúcar de la solución osmótica comporta una disminución notable del flujo de agua.

El desarrollo de un posible proceso de deshidratación osmótica con una etapa de reconcentración de la solución osmótica mediante procesos con contactores de membrana ha permitido calcular el área requerida para realizar la reconcentración: 3.6,9.7, 1608 m2 para OMD, off-site DO e on-site DO, respectivamente.

Las conclusiones del trabajo confirman la posibilidad de utilizar procesos por membrana para realizar la reconcentración de soluciones osmóticas. No obstante se ha constatado que técnicas más tradicionales basadas en diferencias de presión (NF) no son
APA, Harvard, Vancouver, ISO, and other styles
5

Mokni, Nadia. "Deformation and flow driven by osmotic processes in porous materials." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/6279.

Full text
Abstract:
En el caso del almacenamiento de los residuos radioactivos los flujos osmóticos pueden ser relevantes y requieren un análisis en detalle. El residuo nuclear bituminizado (BW) será almacenado mediante contenedores en cavidades excavadas en la Boom Clay, que es una arcilla marina que presenta propiedades favorables para limitar y retrasar la migración de los contaminantes radioactivos. La interacción entre los dos materiales es un proceso acoplado químico-hidro-mecánico y depende de la respuesta hidromecánica de la Boom Clay y del BW. En condiciones de almacenamiento, el contacto del BW, que contienen cantidades importantes de NaNO3, con el agua subterránea induce la hidratación por gradientes osmóticos y el consiguiente hinchamiento, además de la difusión de la sal disuelta hacia la Boom Clay. Se pueden distinguir dos tipos de afecciones: la perturbación geomecánica causada por el hinchamiento del BW y el aumento de presión en el BW y cambio de las distribución de tensiones en la roca, y la perturbación físico química por la migración de grandes cantidades de sales. El objetivo de esta tesis es: (i) Mejorar la comprensión de los procesos que controlan la absorción de agua y el consecuente hinchamiento del BW que contengan sales (NaNO3), y (ii) Investigar los posibles efectos de la concentración de fluidos de los poros sobre el hinchamiento, la compresibilidad y comportamiento de corte de la Boom Clay. En primer lugar, se ha desarrollado una formulación para el análisis de la deformación inducida por la disolución de sales en medio poroso con contacto con agua. Las ecuaciones planteadas incluyen los flujos acoplados de agua y soluto. Se presenta también un trabajo teórico que ayuda a la comprensión del comportamiento mecánico del BW. Se considera este material como una mezcla de bitumen y cristales de NaNO3. Se ha desarrollado un modelo elasto-viscoplástico que describe el comportamiento de fluencia del BW considerando el comportamiento de fluencia de sus constituyentes. El modelo constitutivo elasto-viscoplástico ha sido implementado en el programa CODE_BRIGHT. Los resultados se han comparado con observaciones experimentales. Se ha estudiado el comportamiento a largo plazo del BW en contacto con agua al simular ensayos de hinchamiento por absorción de agua bajo condiciones confinadas. El análisis numérico ha demostrado ser capaz de proporcionar una representación satisfactoria de los principales patrones observados en su comportamiento. En lo que respecta al segundo objetivo de la tesis, se ha propuesto una formulación para el análisis de las deformaciones inducidas por procesos osmóticos en un medio poroso de doble estructura. Esta formulación distingue dentro del material un nivel micro-estructural y otro macro-estructural con cambios químicos que tienen un efecto significativo en la micro-estructura. Se han obtenido las ecuaciones básicas que describen los flujos acoplados de agua y solutos y el transporte de sus componentes a través de los macroporos así como las ecuaciones de balance de masa para agua y soluto en los macroporos y microporos. La formulación propuesta ha sido aplicada particularmente para analizar cualitativamente el efecto de la succión osmótica sobre el hinchamiento de los suelos arcillosos. Se han analizado los efectos a corto y largo plazo. Se ha investigado también la influencia del aumento de la concentración del fluido en los poros sobre las propiedades geotécnicas y el comportamiento de la Boom Clay no saturada. Se ha llevado a cabo un programa sistemático de investigación experimental, con control de succión osmótica y matricial, con el fin de investigar el efecto del incremento de la concentración del fluido de poros sobre la resistencia de corte y el cambio volumétrico bajo condiciones edométricas. Se ha observado, que bajo condiciones parcialmente saturadas, un cambio en la salinidad provoca una disminución en la compresibilidad y en la resistencia de corte del material.
For deep storage of high-level nuclear waste osmotic flows can be significant and so require a careful analysis. In Belgium, The bituminized nuclear waste (BW) named Eurobitum contained in metallic drums will be placed inside a tunnel or a shaft excavated in the Boom Clay, which is 100 m thick marine clay presenting favourable properties to limit and delay the migration of the leached radionuclides over extended periods of time. In Geological disposal conditions, contact of the bituminized radioactive waste which contains high amounts of highly soluble salt (NaNO3) with groundwater will result in water uptake and swelling of the waste and in subsequent diffusion of the dissolved salt through the host clay formation. Basically, two types of disturbance can be distinguished: A geo-mechanical perturbation, caused by the swelling of the waste and the increase of the pressure in and around the waste and a physico-chemical perturbation by the release of large amounts of NaNO3 and other soluble salts. In this context the aim of this thesis is: (i) to improve the understanding of the processes controlling the water uptake and the subsequent swelling of bituminized waste containing soluble salts (NaNO3), and (ii) to investigate of the possible effects of the increase of pore fluid concentration on swelling, compressibility and shear behaviour of Boom Clay. A formulation has been proposed for the analysis of deformation induced by dissolution of salts in porous media in contact with water. The equations include the effect of coupled transport phenomena and the formulation has been included as an extension in the coupled THM program CODE_BRIGHT. A theoretical and experimental work aiming at understanding the mechanical behaviour of the Bituminized Waste has been presented.This material is considered for this purpose as a mixture of bitumen and crystals of NaNO3. An elasto-viscoplastic model has been developed that describes the creep behaviour of BW considering the constituents' creep behaviour. The elasto-viscoplastic constitutive model has been implemented into CODE_BRIGHT. The modelling results have been compared with the experimental data. The impact of osmotic forces on the swelling of the material has been investigated by simulating water uptake swelling tests under confined conditions and comparing the predictions with experimental results. The numerical analysis has proven to be able to furnish a satisfactory representation of the main observed patterns of the behaviour. In regard to the second objective of this thesis, a formulation has been proposed for the analysis of deformations induced by osmotic processes in double structure porous media. The formulation is based on the distinction within the material of a microstructural and a macrostructural levels with chemical changes having a significant effect on the microstructure. A macroscopic description of the system is provided. Then the basic equations describing coupled flows of water and solutes and the transport of its components through macropores and mass balance equations for water and solute in macro and micro pores have been obtained. The proposed formulation has been particularly applied to analyze qualitatively the effect of osmotic suction on swelling of clayey soils. Transient and long term effects have been analyzed. The influence of pore fluid concentration on the geotechnical properties and behavior of Boom Clay under partially saturated conditions has been investigated. A systematic experimental research program involving osmotic suction and matric suction controlled experiments has been carried to investigate the effect of the increase of pore fluid concentration on shear strength and on the volume change behaviour under odometer stress state conditions. It has been observed that under partially saturated conditions a change in salinity causes a decrease in compressibility and shear strength.
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, James Anthony. "Swelling-activated transport of diverse solutes in mammalian cells." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O'Farrell, Caroline L. "Osmotic Tolerance and Volume Regulation in Cultured Cells of the Oyster Pathogen Perkinsus marinus." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539617697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ho, Cheuk Hin. "Effects of osmotic stress on molecular responses of gill cells from Japanese eels, Anguilla Japonica." HKBU Institutional Repository, 2021. https://repository.hkbu.edu.hk/etd_oa/885.

Full text
Abstract:
Japanese eels (Anguilla japonicas) are snakelike fishes living in waters in the Asian region. In contrast to most fishes which are stenohalines that can only live in waters with a narrow range of salinity, Japanese eels are classified as euryhalines that can habitat in a broad range of salinity. As the lifecycle of Japanese eels consists of stages across fresh and seawater districts, a well-developed osmoregulation mechanism is needed to balance the intra- and extra- cellular osmolarity of the fishes throughout the seawater acclimation process. While fish gills are one of the organs that separating the ambient water and the inner body fluid of the fish, the fish gills of the Japanese eels have been studied as one of the most crucial organs for osmoregulation purposes. Yet, the osmoregulation and survival strategies of Japanese eels under hyperosmotic stress has not been fully elucidated. In chapter 2, this study has performed a transcriptome study on the ex vivo gill filament model of the Japanese eel to profile the molecular responses after a hypertonic treatment of 4 hours or 8 hours. The experiment is aimed to mimic the gill cells exposed to seawater in the seawater acclimation process of Japanese eels. A profile of differential expressed genes (DEGs) has been revealed that 577 DEGs were commonly upregulated and 711 DEGs were commonly downregulated in both 4- and 8-hours hypertonic treatment. Functional analysis and annotation have been processed with these DEGs, including Ingenuity Canonical Pathways analysis and gene ontology. These analyses have revealed that the cellular homeostasis of the gill cells has been disrupted and cell death responses has been induced by osmotic stress. The results have raises a concern that the maintenance of cellular viability and a cell death regulation mechanism are needed for the fishes to survive in the early stage of seawater acclimation. In chapter 3, this chapter demonstrated that gill cells in Japanese eels are susceptible to apoptosis when they are exposed to hyperosmotic treatments in both in vitro gill cell and the ex vivo gill filament model. To maintain the viability of the gills cells, two inhibitors of apoptosis, XIAP, and survivin, were seen to be expressed in gills cells. The expression of XIAP and survivin were upregulated by dexamethasone, which is an agonist mimicking the effect of cortisol on fishes in seawater acclimation. Meanwhile, the expression levels of the apoptosis executor, caspase 3, were downregulated. These data suggested that with the regulation of cortisol express in the fishes, XIAP and survivin are effective apoptosis regulators in the gill cells of Japanese eels. The study has demonstrated the molecular responses of the gills of Japanese eels exposed to hyperosmotic stress at the transcriptional level and post-translational level by using transcriptome studies and protein study respectively. The study has paved cell death regulation to be another the key field to study in understanding the ability of salinity tolerance in euryhalines.
APA, Harvard, Vancouver, ISO, and other styles
9

Gulliksson, Magdalena. "Mast cell activation in response to osmotic and immunological stimulation with focus on release of eicosanoid mediators /." Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-091-6/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stüwe, David [Verfasser], and Jan G. [Akademischer Betreuer] Korvink. "Inkjet processes for crystalline silicon solar cells." Freiburg : Universität, 2015. http://d-nb.info/1122646984/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Osmotic processes in cells"

1

Cells and life processes. North Mankato, Minn: Smart Apple Media, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cells and life processes. London: Evans, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Somervill, Barbara A. Animal cells and life processes. Chicago, Ill: Heinemann Library, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Animal cells and life processes. Chicago, Ill: Heinemann Library, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Somervill, Barbara A. Plant cells and life processes. Chicago, Ill: Heinemann Library, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Somervill, Barbara A. Plant cells and life processes. Chicago, Ill: Heinemann Library, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meijer, Jan Jacob. Effects of hydrodynamic and chemical/osmotic stress on plant cells in a stirred bioreactor. [Delft]: [Technische Universiteit Delft], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koval, Thomas M., ed. Stress-Inducible Processes in Higher Eukaryotic Cells. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stolten, Detlef, and Bernd Emonts. Fuel cells science and engineering: Materials, processes, systems and technology. Weinheim, Germany: Wiley-VCH, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Symposium, on Materials and Processes for Lithium Batteries (1988 Chicago Ill ). Proceedings of the Symposium on Materials and Processes for Lithium Batteries. Pennington, NJ (10 S. Main St., Pennington 08534-2896): Battery Division, Electrochemical Society, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Osmotic processes in cells"

1

Yao, Z., and M. Le Maguer. "Mass Transfer in Osmotic Processes." In Developments in Food Engineering, 349–51. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hejnowicz, Zygmunt. "Plants as Mechano-Osmotic Transducers." In Mechanical Integration of Plant Cells and Plants, 241–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19091-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neuhofer, Wolfgang, and Franz-X. Beck. "Response of Renal Medullary Cells to Osmotic Stress." In Contributions to Nephrology, 21–34. Basel: KARGER, 2005. http://dx.doi.org/10.1159/000086041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sapala, Aleksandra, and Richard S. Smith. "Osmotic Treatment for Quantifying Cell Wall Elasticity in the Sepal of Arabidopsis thaliana." In Plant Stem Cells, 101–12. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bressloff, Paul C. "Transport Processes in Cells." In Interdisciplinary Applied Mathematics, 343–437. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08488-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hohman, Thomas C., Deborah Carper, Sarmila Dasgupta, and Masayuki Kaneko. "Osmotic Stress Induces Aldose Reductase in Glomerular Endothelial Cells." In Enzymology and Molecular Biology of Carbonyl Metabolism 3, 139–52. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5901-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Law, R. O. "The Volume Responses of Brain Cells During Osmotic Stress." In Neurochemistry, 943–48. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5405-9_157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raju, Ravali, Shikha Sharma, and Wei-Shou Hu. "Stem cell culture processes." In Stem Cells in Regenerative Medicine, 355–74. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118846193.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Flügge, Ulf-Ingo, Andreas Weber, and Karsten Fischer. "Transport Processes in Plant Cells." In Photosynthesis: from Light to Biosphere, 4339–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khoualdia, Basma, Samia Benali Aoun, and Ahmed Hannachi. "Mass Transfer During Combined Processes of Osmotic Dehydration and Blanching." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1353–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_394.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Osmotic processes in cells"

1

Chakraborty, Nilay, and Gloria Elliott. "Towards Anhydrous Preservation: Osmotic Analysis of Cell Drying." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193109.

Full text
Abstract:
Dry preservation involves removing water from a sample so that molecular mobility is decreased and degradative biochemical processes are slowed. Recently this approach has been explored as an energy-efficient alternative to cryopreservation of mammalian cells. Hurdles to the successful dry preservation of cells include quantification problems associated with non-uniform dehydration processes and the high sensitivity of mammalian cells to osmotic stress.
APA, Harvard, Vancouver, ISO, and other styles
2

Yoshimori, Takashi, Masaki Fukagawa, and Hiroshi Takamatsu. "Effect of Cell-to-Surface Interaction on Freeze Tolerance and Osmotic Response of Cells." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192404.

Full text
Abstract:
Cryopreservation of tissues and organs, including artificial organs, could be one of the important steps in the medical service that brings the progress in the tissue engineering to realization. In this case, high viability of cryopreserved cells is critical to recovery after transplantation. In contrast, in the cryosurgery, which is expected to expand its application as a minimally invasive treatment of cancer, malignant cells should be destructed completely to prevent from recurrence. The appropriate freeze-thaw protocol is therefore needed to be established for cryopreservation or cryosurgery depending on specific type of tissues and organs. Although it is determined empirically, the underlying mechanism of cell injury by freezing has been explored for a long time to give a scientific basis of the process. The experiments with a cell suspension showed that the cell injury during slow freezing to a relatively higher sub-zero temperature was attributed to the mechanical stress from the extracellular ice, while the effect of elevated concentration of solutes became more crucial to cell damage at lower temperatures [1]. However, there are some studies that indicates the difference in the freeze tolerance between cell suspensions and attached monolayers, some of which indicated higher susceptibility of monolayers to freezing than cell suspension [2] and the other suggested reverse [3,4]. The goal of our study is thus to validate the difference in freezing injury between isolated cells and tissues that are more important in aforementioned applications and clarify the mechanism. We used cells adhered to a surface as a first simple model of cells in tissues. The cells adhered on a surface at low number density were used to highlight the effect of cell-to-surface interaction without cell-to-cell interactions. In the present study we first demonstrate that the survival of cells adhered on a surface is lower than those in the suspension after a freeze-thaw manipulation. Then the osmotic response to concentration increase was examined to clarify if the extent of dehydration is different between these two types of cells. The cells were observed by a laser confocal scanning microscope that allows real-time 3-D observation.
APA, Harvard, Vancouver, ISO, and other styles
3

Sitaula, Ranjan, and Sankha Bhowmick. "Modeling of Osmotic Injury in Bovine Sperm During Desiccation." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19325.

Full text
Abstract:
Although desiccation preservation offers promise as an alternative method for the preservation of mammalian cells, there has been limited success in achieving survival at very low water content [1]. Osmotic injury is one of the major damage factors during cellular dehydration. During the drying process, cells experience increased extracellular hypertonic environment as a result of evaporation of water. This factor coupled with the limited permeability of cell membranes leads to irreversible cellular damage. In the current study, we have studied the effect of hypertonic osmolality and exposure time on bovine sperm motility. The goal was to develop a theoretical osmotic damage model to predict motility loss during dehydration. Modeling was performed by using a first order rate equation. Motility data from the hypertonic exposure experiments were used to determine the first order reaction parameters and the cumulative osmotic damage (COD), which provided a measure of the extent of osmotic damage. The parameters were then used to predict motility of natural convection desiccation process. Experimental drying data was compared to the predicted data to determine the extent of osmotic damage.
APA, Harvard, Vancouver, ISO, and other styles
4

Scherr, Thomas F., Shelby Pursley, W. Todd Monroe, and Krishnaswamy Nandakumar. "Distributions During Cryoprotective Agent Loading in a Microchannel." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14691.

Full text
Abstract:
Cryopreservation of cells and tissues is critical to long term storage and off the shelf availability of biomaterials for a variety of disciplines[1]. Typical cryopreservation protocols aim to remove intracellular water by exposing the sample to a cryoprotective agent (CPA) to create an osmotic pressure gradient[2]. While CPAs are useful in preventing cell damage due to intracellular ice formation, the dehydration process can induce harmful osmotic shock[3].
APA, Harvard, Vancouver, ISO, and other styles
5

Katkov, Igor I. "Bi-Phasic Reverse Movement of Permeable Solute(s) in Cells is Predicted by the Relativistic Permeability Approach." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80008.

Full text
Abstract:
Ternary systems water — impermeable solute (“salts”) — permeable solute have been widely used in cryopreservation of biological cells where the permeable solute is the cryoprotective agent (CPA). The cell membrane is considered “leaky”’ to CPA so the osmotic process is described by a system of two coupled non-linear equations: the osmotic equation (1.1) that drives water against the gradient of total osmotic pressure of both solutes, and the diffusion equation (1.2), which drives the permeable solute towards its gradient across membrane. In case of the “classical” system one permeable solute + impermeable entities (“salts”), the third equation (Boyle-van’t Hoff law (1.3) that states the constant amount of the impermeable components inside the cell (3) is added: (1.1)dWdt=-LpRTYf-Y+Zf-Z(1.2)dXdt=PsAYf-Y(1.3)WZ=WisoZiso=W0Z0=WfZf=const where W is the cell water volume, t is the time, Lp is the hydraulic conductivity, R is the gas constant, T is the temperature, A is the surface area, Y and Z are the osmolalities of permeable and impermeable solutes respectively, X ≡ WY is the intracellular amount (“number of osmoles”) of the permeable solute, Ps is the solute membrane permeability. Subscript “iso” refers to the isosmotic values, “0” is the values at time zero, and “f” refers to the final (equilibrium, extracellular) values. The water permeability can be considered as LpRT.
APA, Harvard, Vancouver, ISO, and other styles
6

Gong, Liangquan, Weiping Ding, Sijie Sun, Gang Zhao, and Dayong Gao. "Reducing the Osmotic Damage of RBCs During the Removal of CPAs From Cryopreserved Blood by the Dilution-Concentration Method: Extended Dilution Region." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14112.

Full text
Abstract:
In this work, the dilution-concentration method proposed in our previous work is optimized to reduce the osmotic damage of red blood cells during the process of removing cryoprotective agents from cryopreserved blood. In the optimization, the dilution region i.e. the tubing length from the dilution point to the concentration point is extended so that the negative accumulation effect of the volume change of red blood cells can be allivated. By doing this, the volume maximum of red blood cells experienced during the removal of cryoprotective agents can be decreased and thereby the osmotic damage of red blood cells can be reduced.
APA, Harvard, Vancouver, ISO, and other styles
7

Verma, Atul, and Ranga Pitchumani. "Effect of Membrane Properties on Dynamic Behavior of Polymer Electrolyte Membrane Fuel Cells." In ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fuelcell2013-18209.

Full text
Abstract:
Understanding the performance of proton exchange membrane (PEM) fuel cells is critical to the water management in the fuel cell system. Low-humidity operating conditions present a complex interaction between dynamic behavior and water transport owing to different time scales of water transport mechanisms in the transient process. Toward understanding the effects of membrane properties on the dynamic behavior, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting the unit cell to step change in current. The objective is to elucidate the complex interaction between cell voltage response and water transport dynamics for various membrane properties, where the performance is critically related water content of the membrane. Detailed computational fluid dynamics (CFD) simulations are carried out to show that step increase in current density leads to anode dryout due to electro-osmotic drag, and investigate its dependence on variations in membrane properties.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Gang, and Dayong Gao. "Effect of CPA Transmembrane Flux on Cell Volume Change During Freezing and its Application in Biopreservation." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14231.

Full text
Abstract:
Theoretical models for prediction of cell dehydration during addition/removal of cryoprotective agents (CPAs) or during freezing sprung up like mushrooms. These models are powerful for qualitative analysis of “solution injury” or “osmotic injury”, and furthermore, optimization of the complex processes involved in cryopreservation.
APA, Harvard, Vancouver, ISO, and other styles
9

Cortes, Daniel H., Woojin M. Han, Lachlan J. Smith, and Dawn M. Elliott. "Extra-Fibrilar Matrix Properties of Human Annulus Fibrosus are Location and Age Dependent." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80536.

Full text
Abstract:
Aging and degeneration of the intervertebral discs are cell mediated processes that include biochemical, mechanical and structural changes. Although these processes are similar, disc degeneration is defined as an accelerated aging process that results in a detriment in the function of the disc. Biochemical changes include protein cross-linking, proteoglycan depletion and changes on collagen type. These compositional changes are related to changes in the mechanical properties of the disc and its tissues. For instance, it has been shown that an increase of protein cross-linking by glycation or genipin treatment causes an increase of the stiffness in disc tissues [1,2]. On the other hand, a decrease on the amount of proteoglycan has been shown to cause a decrease on tissue stiffness due to a reduction of the osmotic pressure [3,4]. However, during aging and degeneration, these two processes occur simultaneously with opposing effects on the mechanical properties of the tissue. Consequently, it is important to analyze these effects separately. Additionally, many multiphasic models for soft charged tissues, such articular cartilage and intervertebral disc, also consider the ionic phases separately from non-charged solids. Although multiphasic models for the disc have been used in the past, the mechanical properties of the non-charged extra-fibrillar matrix (EFM) have not been measured directly.
APA, Harvard, Vancouver, ISO, and other styles
10

Mendygarin, Yertay, Luis R. Rojas-Solórzano, Nurassyl Kussaiyn, Rakhim Supiyev, and Mansur Zhussupbekov. "Eulerian-Eulerian Multiphase Modeling of Blood Cells Segregation in Flow Through Microtubes." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70850.

Full text
Abstract:
Cardiovascular Diseases, the common name for various Heart Diseases, are responsible for nearly 17.3 million deaths annually and remain the leading global cause of death in the world. It is estimated that this number will grow to more than 23.6 million by 2030, with almost 80% of all cases taking place in low and middle income countries. Surgical treatment of these diseases involves the use of blood-wetted devices, whose relatively recent development has given rise to numerous possibilities for design improvements. However, blood can be damaged when flowing through these devices due to the lack of biocompatibility of surrounding walls, thermal and osmotic effects and most prominently, due to the excessive exposure of blood cells to shear stress for prolonged periods of time. This extended exposure may lead to a rupture of membrane of red blood cells, resulting in a release of hemoglobin into the blood plasma, in a process called hemolysis. Moreover, exposure of platelets to high shear stresses can increase the likelihood of thrombosis. Therefore, regions of high shear stress and residence time of blood cells must be considered thoroughly during the design of blood-contacting devices. Though laboratory tests are vital for design improvements, in-vitro experiments have proven to be costly, time-intensive and ethically controversial. On the other hand, simulating blood behavior using Computational Fluid Dynamics (CFD) is considered to be an inexpensive and promising tool to help predicting blood damage in complex flows. Nevertheless, current state-of-the-art CFD models of blood flow to predict hemolysis are still far from being fully reliable and accurate for design purposes. Previous work have demonstrated that prediction of hemolysis can be dramatically improved when using a multiphase (i.e., phases are plasma, red blood cells and platelets) model of the blood instead of assuming the blood as a homogeneous mixture. Nonetheless, the accurate determination of how the cells segregate becomes the critical issue in reaching a truthful prediction of blood damage. Therefore, the attempt of this study is to develop and validate a numerical model based on Granular Kinetic Theory (GKT) for solid phases (i.e., cells treated as particles) that provides an improved prediction of blood cells segregation within the flow in a microtube. Simulations were based on finite volume method using Eulerian-Eulerian modeling for treatment of three-phase (liquid-red blood cells and platelets) flow including the GKT to deal with viscous properties of the solid phases. GKT proved to be a good model to predict particle concentration and pressure drop by taking into account the contribution of collisional, kinetic and frictional effects in the stress tensor of the segregated solid phases. Preliminary results show that the improved segregated model leads to a better prediction of spatial distribution of blood cells. Simulations were performed using ANSYS FLUENT platform.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Osmotic processes in cells"

1

Fungura, Fadzai. Organic Solar Cells: Degradation Processes and Approaches to Enhance Performance. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1409195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smyrl, W. H., B. B. Owens, and H. S. White. Exploratory cell research and fundamental processes study in solid state electrochemical cells. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6396835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Layne, Scott P., and Micah Dembo. Quantifying the Kinetic Processes Associated with HIV Infection of Target Cells (AIDS). Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada249907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sopori, B. L. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lazo, John S., and Robert L. Rice. Protein Kinase C Processes and Their Relation to Apoptosis in Human Breast Carcinoma Cells. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada301315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dapkus, P. Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6690197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trichopoulos, Dimitrios. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada485736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, L. F. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/212711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trichopoulos, Dimitrios, Pagona Lagiou, Hans-Olov Adami, Anders Ekbom, Per Hall, and Chung-Cheng Hsieh. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada452223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trichopoulos, Dimitrios. Early Life Processes, Endocrine Mediators, and Number of Susceptible Cells in Relation to Breast Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada545085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography