Academic literature on the topic 'Otras series de Dirichlet'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Otras series de Dirichlet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Otras series de Dirichlet"

1

Aron, Richard M., Frédéric Bayart, Paul M. Gauthier, Manuel Maestre, and Vassili Nestoridis. "Dirichlet approximation and universal Dirichlet series." Proceedings of the American Mathematical Society 145, no. 10 (2017): 4449–64. http://dx.doi.org/10.1090/proc/13607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Geleta, Hunduma Legesse. "Dirichlet-Power Series." Journal of Analysis & Number Theory 5, no. 1 (2017): 41–48. http://dx.doi.org/10.18576/jant/050107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allouche, J. P., M. Mendès France, and J. Peyrière. "Automatic Dirichlet Series." Journal of Number Theory 81, no. 2 (2000): 359–73. http://dx.doi.org/10.1006/jnth.1999.2487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balanzario, Eugenio P. "Evaluation of Dirichlet Series." American Mathematical Monthly 108, no. 10 (2001): 969. http://dx.doi.org/10.2307/2695419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Good, A. "Dirichlet and Poincaré series." Glasgow Mathematical Journal 27 (October 1985): 39–56. http://dx.doi.org/10.1017/s0017089500006066.

Full text
Abstract:
The study of modular forms has been deeply influenced by famous conjectures and hypotheses concerningwhere T(n) denotes Ramanujan's function. The fundamental discriminant Δ is a cusp form of weight 12 with respect to the modular group. Its associated Dirichlet seriesdefines an entire function of s and satisfies the functional equationThe most penetrating statements that have been made on T(n) and LΔ(s)are:Of these four problems only A1 has been established so far. This was done by Deligne [1] using methods from algebraic geometry and number theory. While B1 trivially holds with ε > 1/2, it
APA, Harvard, Vancouver, ISO, and other styles
6

Balanzario, Eugenio P. "Evaluation of Dirichlet Series." American Mathematical Monthly 108, no. 10 (2001): 969–71. http://dx.doi.org/10.1080/00029890.2001.11919830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vaughan, R. C. "Zeros of Dirichlet series." Indagationes Mathematicae 26, no. 5 (2015): 897–909. http://dx.doi.org/10.1016/j.indag.2015.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Onozuka, Tomokazu. "The multiple Dirichlet product and the multiple Dirichlet series." International Journal of Number Theory 13, no. 08 (2017): 2181–93. http://dx.doi.org/10.1142/s1793042117501184.

Full text
Abstract:
First, we define the multiple Dirichlet product and study the properties of it. From those properties, we obtain a zero-free region of a multiple Dirichlet series and a multiple Dirichlet series expression of the reciprocal of a multiple Dirichlet series.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiarong, Yu. "The lower orders of Dirichlet and random Dirichlet series." Wuhan University Journal of Natural Sciences 1, no. 1 (1996): 1–8. http://dx.doi.org/10.1007/bf02827568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peter, Manfred. "Dirichlet series associated with polynomials." Acta Arithmetica 84, no. 3 (1998): 245–78. http://dx.doi.org/10.4064/aa-84-3-245-278.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Otras series de Dirichlet"

1

Narayanan, Sridhar. "Selberg's conjectures on Dirichlet series." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55517.

Full text
Abstract:
In this thesis we introduce the Rankin-Selberg hypothesis in the Selberg Class to obtain a non-vanishing theorem on line $ Re(s)=1$ for a certain sub-class of functions in this class. We also prove that the Selberg's Conjectures imply the $S sb{K}$-primitivity of $ zeta sb{K}.$
APA, Harvard, Vancouver, ISO, and other styles
2

Brevig, Ole Fredrik. "The Sidon Constant for Ordinary Dirichlet Series." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20688.

Full text
Abstract:
We obtain the asymptotic formula of the Sidon constant for ordinary Dirichlet series using the Bohnenblust--Hille inequality and estimates on smooth numbers. We moreover give precise estimates for the error term.
APA, Harvard, Vancouver, ISO, and other styles
3

Nawaz, Daud. "The Dirichlet Series To The Riemann Hypothesis." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27028.

Full text
Abstract:
This paper examines the Riemann zeta-function and its relation to the prime distribution. In this work, I present the journey from the Dirichlet series to the Riemann hypothesis. Furthermore, I discuss the prime counting function, the Riemann prime counting function and the Riemann explicit function for distribution of primes. This paper explains that the non-trivial zeros of the zeta-function are the key to understand the prime distribution.
APA, Harvard, Vancouver, ISO, and other styles
4

MATSUMOTO, Kohji, and Hirofumi TSUMURA. "Generalized multiple Dirichlet series and generalized multiple polylogarithms." Institute of Mathematics Polish Academy of Sciences, 2006. http://hdl.handle.net/2237/9366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karlsson, Jonas. "Modular forms and converse theorems for Dirichlet series." Thesis, Linköping University, Applied Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19446.

Full text
Abstract:
<p>This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are:</p><ul><li>"An exten
APA, Harvard, Vancouver, ISO, and other styles
6

MATSUMOTO, KOHJI, and SHIGEKI EGAMI. "CONVOLUTIONS OF THE VON MANGOLDT FUNCTION AND RELATED DIRICHLET SERIES." World Scientific Publishing, 2007. http://hdl.handle.net/2237/20354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olsen, Jan-Fredrik. "Boundary Properties of Modified Zeta Functions and Function Spaces of Dirichlet Series." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5712.

Full text
Abstract:
Ordinary Dirichlet series, of which the Riemann zeta function is the most important, play a prominent role in classical analysis and number theory, and in modern mathematics. It is well-known that the Riemann zeta function has a single pole at the point s=1. The present thesis investigates both the behaviour of various zeta functions near this point and the function spaces of ordinary Dirichlet series they can be said to generate. Chapter 1 gives a comprehensive overview of the thesis and offers brief surveys of related results. Chapter 2 introduces a new scale of function spaces of Dirichlet
APA, Harvard, Vancouver, ISO, and other styles
8

Saad, Eddin Sumaia. "On two problems concerning the Laurent-Stieltjes coefficients of Dirichlet L-series." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10032/document.

Full text
Abstract:
Dans cette thèse, nous donnons des majorations explicites pour les constantes de Laurent-Stieltjes des séries L de Dirichlet dans deux cas différents. Ces constantes sont les coefficients qui interviennent dans le développement en série de Laurent des séries L de Dirichlet. Cette thèse est composée de trois parties : [A] Dans la première partie, nous donnons, à partir d'une idée due à Matsuoka pour la fonction zêta de Riemann, des majorations explicites de ces coefficients d'ordre élevé lorsque le conducteur du caractère de Dirichlet est fixé. Nous prolongeons la formule de Matsuoka aux foncti
APA, Harvard, Vancouver, ISO, and other styles
9

Belt, Dustin David. "Topics on the Spectral Theory of Automorphic Forms." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1423.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Virtanen, Henri. "On the mean square of quadratic Dirichlet L-functions at 1 /." Helsinki : Suomalainen Tiedeakatemia, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=018603100&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Otras series de Dirichlet"

1

Queffélec, Hervé, and Martine Queffélec. Diophantine Approximation and Dirichlet Series. Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-61-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Queffélec, Hervé, and Martine Queffélec. Diophantine Approximation and Dirichlet Series. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9351-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shimura, Goro. Elementary Dirichlet Series and Modular Forms. Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-72474-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1886, Riesz Marcel b., ed. The general theory of Dirichlet's series. Dover Publications, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

R, Balasubramanian. Zeros of Dirichlet L-functions. Dept. of Mathematics, University of Toronto, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berndt, Bruce C. Hecke's theory of modular forms and Dirichlet series. World Scientific, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Solomon, Friedberg, Goldfeld Dorian, and SpringerLink (Online service), eds. Multiple Dirichlet Series, L-functions and Automorphic Forms. Birkhäuser Boston, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andrianov, A. N. Introduction to Siegel modular forms and Dirichlet series. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

M, Apostol Tom. Modular functions and Dirichlet series in number theory. 2nd ed. Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Introduction to Siegel modular forms and Dirichlet series. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Otras series de Dirichlet"

1

Rivat, Joël. "Dirichlet Series." In Lecture Notes in Mathematics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74908-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rassias, Michael Th. "Dirichlet series." In Problem-Solving and Selected Topics in Number Theory. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0495-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laurinčikas, Antanas. "Dirichlet Series and Dirichlet Polynomials." In Limit Theorems for the Riemann Zeta-Function. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2091-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bump, Daniel. "Introduction: Multiple Dirichlet Series." In Multiple Dirichlet Series, L-functions and Automorphic Forms. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murty, M. Ram. "Sieving Using Dirichlet Series." In Current Trends in Number Theory. Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-09-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phadia, Eswar G. "Dirichlet and Related Processes." In Springer Series in Statistics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32789-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacob, Niels, and René L. Schilling. "Extended L p Dirichlet Spaces." In International Mathematical Series. Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1341-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shorey, Tarlok Nath. "The Dirichlet Series and the Dirichlet Theorem on Primes in Arithmetic Progressions." In Infosys Science Foundation Series. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9097-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cioranescu, Doina, Alain Damlamian, and Georges Griso. "Strongly oscillating nonhomogeneous Dirichlet condition." In Series in Contemporary Mathematics. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3032-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andrianov, Anatoli. "Dirichlet Series of Modular Forms." In Universitext. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78753-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Otras series de Dirichlet"

1

Chernov, V. M. "Tauber theorems for Dirichlet series and fractals." In Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.546905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Queffélec, Hervé. "Composition operators in the Dirichlet series setting." In Perspectives in Operator Theory. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

EHM, W. "SOME REMARKS ON HARDY FUNCTIONS ASSOCIATED WITH DIRICHLET SERIES." In Proceedings of the Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810809_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wanchun, Lu. "On Generalized Order of Vector Dirichlet Series of Fast Growth." In 2nd International Conference on Modelling, Identification and Control. Atlantis Press, 2015. http://dx.doi.org/10.2991/mic-15.2015.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

EGAMI, SHIGEKI, and KOHJI MATSUMOTO. "CONVOLUTIONS OF THE VON MANGOLDT FUNCTION AND RELATED DIRICHLET SERIES." In Proceedings of the 4th China-Japan Seminar. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770134_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reddy, G. Sudhaamsh Mohan, S. Srinivas Rau, and B. Uma. "A note on Dirichlet series connected to Ld(1)Ld(2)−I." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0014601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sinoara, Roberta A., Ricardo B. Scheicher, and Solange O. Rezende. "Evaluation of latent dirichlet allocation for document organization in different levels of semantic complexity." In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8280939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagano, Masatoshi, Tomoaki Nakamura, Takayuki Nagai, Daichi Mochihashi, Ichiro Kobayashi, and Masahide Kaneko. "Sequence Pattern Extraction by Segmenting Time Series Data Using GP-HSMM with Hierarchical Dirichlet Process." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Espinoza-Molina, Daniela, Reza Bahmanyar, Mihai Datcu, Ricardo Diaz-Delgado, and Javier Bustamante. "Land-cover evolution class analysis in Image Time Series of Landsat and Sentinel-2 based on Latent Dirichlet Allocation." In 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2017. http://dx.doi.org/10.1109/multi-temp.2017.8035261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

García Jiménez, Miguel, and Alejandro Martínez Rico. "Ayahuasca: riesgos y beneficios de una droga cada vez más extendida." In 22° Congreso de la Sociedad Española de Patología Dual (SEPD) 2020. SEPD, 2020. http://dx.doi.org/10.17579/sepd2020p142.

Full text
Abstract:
Introducción: ayahuasca es una bebida indígena de la región amazónica cuyo efecto psicoactivo se consigue al cocer y mezclar sus dos componentes, hojas de Psychotria viridis (rica en DMT, agonista 5-HT2A/2C) y el tallo de Banisteriopsis caapi (rica en IMAOs, que evitan la inactivación del anterior). Tras ingerirla aparecen alucinaciones visuales, náuseas y vómitos, seguidos de una sensación de introspección o revivencia de traumas entre otras (esto concuerda con los hallazgos obtenidos en estudios electrofisiológicos y de imagen). Objetivo: recabar la información existente en la bibliografía a
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!