Journal articles on the topic 'Otto-cycle engine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Otto-cycle engine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sasaki, Senichi. "Dual-Fuel Engine, Otto Cycle and Diesel Cycle." Journal of The Japan Institute of Marine Engineering 44, no. 6 (2009): 978. http://dx.doi.org/10.5988/jime.44.978.
Full textDiskin, David, and Leonid Tartakovsky. "Efficiency at Maximum Power of the Low-Dissipation Hybrid Electrochemical–Otto Cycle." Energies 13, no. 15 (August 1, 2020): 3961. http://dx.doi.org/10.3390/en13153961.
Full textOh, Jungmo, Kichol Noh, and Changhee Lee. "A Theoretical Study on the Thermodynamic Cycle of Concept Engine with Miller Cycle." Processes 9, no. 6 (June 16, 2021): 1051. http://dx.doi.org/10.3390/pr9061051.
Full textPandit, Tanmoy, Pritam Chattopadhyay, and Goutam Paul. "Non-commutative space engine: A boost to thermodynamic processes." Modern Physics Letters A 36, no. 24 (August 10, 2021): 2150174. http://dx.doi.org/10.1142/s0217732321501741.
Full textSchiffgens, H. J., H. Endres, H. Wackertapp, and E. Schrey. "Concepts for the Adaptation of SI Gas Engines to Changing Methane Number." Journal of Engineering for Gas Turbines and Power 116, no. 4 (October 1, 1994): 733–39. http://dx.doi.org/10.1115/1.2906880.
Full textArabaci, Emre. "Performance analysis of a novel six-stroke otto cycle engine." Thermal Science, no. 00 (2020): 144. http://dx.doi.org/10.2298/tsci190926144a.
Full textNaaktgeboren, Christian. "An air-standard finite-time heat addition Otto engine model." International Journal of Mechanical Engineering Education 45, no. 2 (February 8, 2017): 103–19. http://dx.doi.org/10.1177/0306419016689447.
Full textChicurel, R. "A modified Otto cycle engine for fuel economy." Applied Energy 38, no. 2 (January 1991): 105–16. http://dx.doi.org/10.1016/0306-2619(91)90069-a.
Full textWilli, M. L., and B. G. Richards. "Design and Development of a Direct Injected, Glow Plug Ignition-Assisted, Natural Gas Engine." Journal of Engineering for Gas Turbines and Power 117, no. 4 (October 1, 1995): 799–803. http://dx.doi.org/10.1115/1.2815467.
Full textSharke, Paul. "Otto or Not, Here it Comes." Mechanical Engineering 122, no. 06 (June 1, 2000): 62–66. http://dx.doi.org/10.1115/1.2000-jun-4.
Full textGonca, Guven. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)." Energy 109 (August 2016): 152–59. http://dx.doi.org/10.1016/j.energy.2016.04.049.
Full textPeña, Francisco J., Oscar Negrete, Natalia Cortés, and Patricio Vargas. "Otto Engine: Classical and Quantum Approach." Entropy 22, no. 7 (July 9, 2020): 755. http://dx.doi.org/10.3390/e22070755.
Full textZhao, Yingru, Bihong Lin, and Jincan Chen. "Optimum Criteria on the Important Parameters of an Irreversible Otto Heat Engine With the Temperature-Dependent Heat Capacities of the Working Fluid." Journal of Energy Resources Technology 129, no. 4 (April 26, 2007): 348–54. http://dx.doi.org/10.1115/1.2794770.
Full textJohal, Ramandeep S., and Venu Mehta. "Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics." Entropy 23, no. 9 (September 1, 2021): 1149. http://dx.doi.org/10.3390/e23091149.
Full textDehelean, Nicolae Mircea, and Liana Maria Dehelean. "A Mechanism for Self-Starting Thermal Engine." Applied Mechanics and Materials 162 (March 2012): 29–36. http://dx.doi.org/10.4028/www.scientific.net/amm.162.29.
Full textEspinosa, Luis F., and Petros Lappas. "Mathematical Modelling Comparison of a Reciprocating, a Szorenyi Rotary, and a Wankel Rotary Engine." Nonlinear Engineering 8, no. 1 (January 28, 2019): 389–96. http://dx.doi.org/10.1515/nleng-2017-0082.
Full textEbrahim, Rahim. "Performance Analysis of an Otto Engine with Ethanol and Gasoline Fuels." Applied Mechanics and Materials 110-116 (October 2011): 267–72. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.267.
Full textKossov, E. E., V. V. Asabin, A. G. Silyuta, A. N. Zhuravlev, and L. E. Kossova. "Some aspects of the use of natural gas motor fuel in diesel locomotives." VNIIZHT Scientific Journal 79, no. 5 (November 10, 2020): 301–9. http://dx.doi.org/10.21780/2223-9731-2020-79-5-301-309.
Full textGeorgiou, Demos P., Nikolaos G. Theodoropoulos, and Kypros F. Milidonis. "Ideal Thermodynamic Cycle Analysis for the Meletis-Georgiou Vane Rotary Engine Concept." Journal of Thermodynamics 2010 (July 5, 2010): 1–9. http://dx.doi.org/10.1155/2010/130692.
Full textHuang, Zhao-Ming, Kai Shen, Li Wang, Wei-Guo Chen, and Jin-Yuan Pan. "Experimental study on the effects of the Miller cycle on the performance and emissions of a downsized turbocharged gasoline direct injection engine." Advances in Mechanical Engineering 12, no. 5 (May 2020): 168781402091872. http://dx.doi.org/10.1177/1687814020918720.
Full textNimsiriwangso, Atip, Paul Barnes, Omid Doustdar, Miroslaw L. Wyszynski, Gasim Mohamed, Maisara Mohyeldin, and Miroslaw Kowalski. "6-Stroke Engine: Thermodynamic Modelling and Design for Testing." Journal of KONES 26, no. 2 (June 1, 2019): 93–106. http://dx.doi.org/10.2478/kones-2019-0037.
Full textCullen, Barry, and Jim McGovern. "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine." Energy 35, no. 2 (February 2010): 1017–23. http://dx.doi.org/10.1016/j.energy.2009.06.025.
Full textVorobyov, S. A., and P. A. Razumov. "Algorithm for using hydrogen fuel in wheeled vehicles." Вестник гражданских инженеров 17, no. 3 (2020): 168–72. http://dx.doi.org/10.23968/1999-5571-2020-17-3-168-172.
Full textGambino, M., R. Cericola, P. Corbo, and S. Iannaccone. "Carbonyl Compounds and PAH Emissions From CNG Heavy-Duty Engine." Journal of Engineering for Gas Turbines and Power 115, no. 4 (October 1, 1993): 747–49. http://dx.doi.org/10.1115/1.2906769.
Full textHasanpour Omam, Sadegh. "Exhaust waste energy recovery using Otto-ATEG-Stirling engine combined cycle." Applied Thermal Engineering 183 (January 2021): 116210. http://dx.doi.org/10.1016/j.applthermaleng.2020.116210.
Full textWu, Chih, Paul V. Puzinauskas, and Jung S. Tsai. "Performance analysis and optimization of a supercharged Miller cycle Otto engine." Applied Thermal Engineering 23, no. 5 (April 2003): 511–21. http://dx.doi.org/10.1016/s1359-4311(02)00239-9.
Full textBertinatto, Rovian, Leandro Friedrich, Reinaldo Aparecido Bariccatti, Samuel Nelson Melegari de Souza, Flavio Gurgacz, and Felix Augusto Pazuch. "Analysis of lubricant oil contamination and degradation and wear of a biogas-fed otto cycle engine." Acta Scientiarum. Technology 39, no. 4 (September 15, 2017): 409. http://dx.doi.org/10.4025/actascitechnol.v39i4.29458.
Full textEbrahim, Rahim, Mahmoud Reza Tadayon, Farshad Tahmasebi Gandomkari, and Kamyar Mahbobian. "Effect of Ethanol-Air Equivalence Ratio on Performance of an Endoreversible Otto Engine." Applied Mechanics and Materials 110-116 (October 2011): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.273.
Full textŻmudka, Zbigniew, Stefan Postrzednik, and Grzegorz Przybyła. "Inverse Problem of Selection of the Theoretical Cycle for the Real Cycle of Internal Combustion Engine." Journal of KONES 26, no. 2 (June 1, 2019): 197–204. http://dx.doi.org/10.2478/kones-2019-0050.
Full textCakir, Mehmet. "The numerical thermodynamic analysis of Otto-Miller Cycle (OMC)." Thermal Science 20, no. 1 (2016): 363–69. http://dx.doi.org/10.2298/tsci150623131c.
Full textHwang, Soon-kyu, and Byung-gun Jung. "Methane Number Control of Fuel Gas Supply System Using Combined Cascade/Feed-Forward Control." Journal of Marine Science and Engineering 8, no. 5 (April 28, 2020): 307. http://dx.doi.org/10.3390/jmse8050307.
Full textClucas, D. M., and J. K. Raine. "A New Wobble Drive with Particular Application in a Stirling Engine." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 208, no. 5 (September 1994): 337–46. http://dx.doi.org/10.1243/pime_proc_1994_208_136_02.
Full textDobrucali, Erinc. "The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine." Energy 103 (May 2016): 119–26. http://dx.doi.org/10.1016/j.energy.2016.02.160.
Full textPeña, Francisco J., Oscar Negrete, Gabriel Alvarado Barrios, David Zambrano, Alejandro González, Alvaro S. Nunez, Pedro A. Orellana, and Patricio Vargas. "Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach." Entropy 21, no. 5 (May 20, 2019): 512. http://dx.doi.org/10.3390/e21050512.
Full textWang, Hao, Guo Xing Wu, and Ji Kang Zhong. "Performance Analysis and Parametric Optimum Criteria of a Micro Nano Scaled Otto Engine Cycle." Advanced Materials Research 308-310 (August 2011): 752–61. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.752.
Full textHutchinson, Harry. "Heavy-duty LNG." Mechanical Engineering 124, no. 05 (May 1, 2002): 59. http://dx.doi.org/10.1115/1.2002-may-5.
Full textMello, Pedro, Fabiano Wildner, Giovanni Souza de Andrade, Renato Cataluña, and Rosângela da Silva. "Combustion time of the oxygenated and non-oxygenated fuels in an Otto cycle engine." Journal of the Brazilian Society of Mechanical Sciences and Engineering 36, no. 2 (October 27, 2013): 403–10. http://dx.doi.org/10.1007/s40430-013-0094-y.
Full textSiahaan, Herbert Hasudungan, Armansyah H Tambunan, Desrial, and Soni Solistia Wirawan. "Rancang Bangun dan Pengujian Penghalang Heliks sebagai Pencampur Udara-Biogas pada Motor Otto." Jurnal Keteknikan Pertanian 8, no. 3 (March 5, 2021): 89–96. http://dx.doi.org/10.19028/jtep.08.3.89-96.
Full textOliveira, B. L. N., E. F. Jaguaribe, A. F. Bezerra, A. S. Rumão, and B. L. C. Queiroga. "A DIESEL ENGINE CONVERTED INTO OTTO CYCLE ENGINE: THE INFLUENCE OF THE SPARK ADVANCE ON ITS PERFORMANCE AND ON NOx EMISSIONS." Revista de Engenharia Térmica 12, no. 1 (June 30, 2013): 37. http://dx.doi.org/10.5380/reterm.v12i1.62027.
Full textHuleihil, Mahmoud. "Effects of Pressure Drops on the Performance Characteristics of Air Standard Otto Cycle." Physics Research International 2011 (July 27, 2011): 1–7. http://dx.doi.org/10.1155/2011/496057.
Full textInsinga, Andrea R. "The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle." Entropy 22, no. 9 (September 22, 2020): 1060. http://dx.doi.org/10.3390/e22091060.
Full textNunes, M. A. A., R. C. Silva, A. B. S. Oliveira, and G. C. Peron. "DYNAMICAL SIMULATION OF A VALVETRAIN MECHANISM: AN ENGINEERING EDUCATION APPROACH." Revista de Engenharia Térmica 12, no. 1 (June 30, 2013): 17. http://dx.doi.org/10.5380/reterm.v12i1.62013.
Full textNie, Wenjie, Qinghong Liao, ChunQiang Zhang, and Jizhou He. "Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics." Energy 35, no. 12 (December 2010): 4658–62. http://dx.doi.org/10.1016/j.energy.2010.09.039.
Full textQueiroga, B. L. C., E. F. Jaguaribe, M. S. J. Gonçalves, B. L. N. Oliveira, and A. S. Rumão. "CONVERSION OF TURBOCHARGED DIESEL ENGINE TO OPERATE SOLELY WITH HYDROUS ETHANOL." Revista de Engenharia Térmica 12, no. 1 (June 30, 2013): 41. http://dx.doi.org/10.5380/reterm.v12i1.62028.
Full textChen, Lingen, Yanlin Ge, Chang Liu, Huijun Feng, and Giulio Lorenzini. "Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid." Entropy 22, no. 4 (March 31, 2020): 397. http://dx.doi.org/10.3390/e22040397.
Full textKovalov, Serhii. "DEVELOPMENT OF THE COMBUSTION CHAMBER OF GAS ENGINE, CONVERTED ON THE BASIS OF DIESELS D-120 OR D-144 ENGINES TO WORK FOR ON LIQUEFIED PETROLEUM GAS." Avtoshliakhovyk Ukrayiny, no. 3 (259) ’ 2019 (October 17, 2019): 2–8. http://dx.doi.org/10.33868/0365-8392-2019-3-259-2-8.
Full textRumão, A. S., E. F. Jaguaribe, A. F. Bezerra, B. L. N. Oliveira, and B. L. C. Queiroga. "ELECTRICITY GENERATION FROM BIOMASS GASIFICATION." Revista de Engenharia Térmica 13, no. 1 (June 30, 2014): 28. http://dx.doi.org/10.5380/reterm.v13i1.62065.
Full textShao, Yude, Sangdeuk Yoon, and Hokeun Kang. "Dynamic simulation of fuel tank aging for LNG‐fueled ship apparatus in an X‐DF Otto cycle engine." Energy Science & Engineering 7, no. 6 (September 26, 2019): 3005–19. http://dx.doi.org/10.1002/ese3.475.
Full textPlohberger, D. C., T. Fessl, F. Gruber, and G. R. Herdin. "Advanced Gas Engine Cogeneration Technology for Special Applications." Journal of Engineering for Gas Turbines and Power 117, no. 4 (October 1, 1995): 826–31. http://dx.doi.org/10.1115/1.2815471.
Full textMarques, Adriano da S., Monica Carvalho, Álvaro A. V. Ochoa, Ronelly J. Souza, and Carlos A. C. dos Santos. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit." Energies 13, no. 20 (October 16, 2020): 5417. http://dx.doi.org/10.3390/en13205417.
Full text