To see the other types of publications on this topic, follow the link: Outcoupling.

Journal articles on the topic 'Outcoupling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Outcoupling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brückner, R., V. G. Lyssenko, S. Hofmann, and K. Leo. "Lasing of Tamm states in highly efficient organic devices based on small-molecule organic semiconductors." Faraday Discuss. 174 (2014): 183–201. http://dx.doi.org/10.1039/c4fd00094c.

Full text
Abstract:
We discuss approaches to increase the light outcoupling efficiency in organic microcavity (MC) lasers and organic light-emitting diodes (OLEDs). We find that the introduction of metals into the cavities leads to additional Tamm-plasmon polariton modes, while the corrugation of metal contacts, such as perforated μ-size holes or a periodic array of metal stripes, leads to 2D confinement of the cavity modes, which in turn reduces the lasing threshold in MCs. Furthermore, we elucidate light loss mechanisms in OLEDs and reveal how external dielectric layers and periodic gratings can be used to enhance outcoupling from the OLED cavity.
APA, Harvard, Vancouver, ISO, and other styles
2

Löhle, Andreas, Holger Cartarius, Daniel Haag, Dennis Dast, Jörg Main, and Günter Wunner Wunner. "STABILITY OF BOSE-EINSTEIN CONDENSATES IN A PT-SYMMETRIC DOUBLE-δ POTENTIAL CLOSE TO BRANCH POINTS." Acta Polytechnica 54, no. 2 (April 30, 2014): 133–38. http://dx.doi.org/10.14311/ap.2014.54.0133.

Full text
Abstract:
A Bose-Einstein condensate trapped in a double-well potential, where atoms are incoupled to one side and extracted from the other, can in the mean-field limit be described by the nonlinear Gross-Pitaevskii equation (GPE) with a <em>PT</em> symmetric external potential. If the strength of the in- and outcoupling is increased two <em>PT</em> broken states bifurcate from the <em>PT</em> symmetric ground state. At this bifurcation point a stability change of the ground state is expected. However, it is observed that this stability change does not occur exactly at the bifurcation but at a slightly different strength of the in-/outcoupling effect. We investigate a Bose-Einstein condensate in a <em>PT</em> symmetric double-δ potential and calculate the stationary states. The ground state’s stability is analysed by means of the Bogoliubov-de Gennes equations and it is shown that the difference in the strength of the in-/outcoupling between the bifurcation and the stability change can be completely explained by the norm-dependency of the nonlinear term in the Gross-Pitaevskii equation.
APA, Harvard, Vancouver, ISO, and other styles
3

Lien, Der-Hsien, Jeong Seuk Kang, Matin Amani, Kevin Chen, Mahmut Tosun, Hsin-Ping Wang, Tania Roy, et al. "Engineering Light Outcoupling in 2D Materials." Nano Letters 15, no. 2 (January 26, 2015): 1356–61. http://dx.doi.org/10.1021/nl504632u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, D. H., K. Inada, L. Zhao, T. Komino, N. Matsumoto, J. C. Ribierre, and C. Adachi. "Organic light emitting diodes with horizontally oriented thermally activated delayed fluorescence emitters." Journal of Materials Chemistry C 5, no. 5 (2017): 1216–23. http://dx.doi.org/10.1039/c6tc04786f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Dongxiang, Qizan Chen, Baiquan Liu, and Ying Qiu. "Emergence of Flexible White Organic Light-Emitting Diodes." Polymers 11, no. 2 (February 22, 2019): 384. http://dx.doi.org/10.3390/polym11020384.

Full text
Abstract:
Flexible white organic light-emitting diodes (FWOLEDs) have considerable potential to meet the rapidly growing requirements of display and lighting commercialization. To achieve high-performance FWOLEDs, (i) the selection of effective flexible substrates, (ii) the use of transparent conducting electrodes, (iii) the introduction of efficient device architectures, and iv) the exploitation of advanced outcoupling techniques are necessary. In this review, recent state-of-the-art strategies to develop FWOLEDs have been summarized. Firstly, the fundamental concepts of FWOLEDs have been described. Then, the primary approaches to realize FWOLEDs have been introduced. Particularly, the effects of flexible substrates, conducting electrodes, device architectures, and outcoupling techniques in FWOLEDs have been comprehensively highlighted. Finally, issues and ways to further enhance the performance of FWOLEDs have been briefly clarified.
APA, Harvard, Vancouver, ISO, and other styles
6

Qi, Hui, Shujie Wang, Xiaohong Jiang, Yan Fang, Aqiang Wang, Huaibin Shen, and Zuliang Du. "Research progress and challenges of blue light-emitting diodes based on II–VI semiconductor quantum dots." Journal of Materials Chemistry C 8, no. 30 (2020): 10160–73. http://dx.doi.org/10.1039/d0tc02272a.

Full text
Abstract:
The latest progress of blue light-emitting diodes based on II–VI semiconductor QDs was reviewed, covering the synthesis of blue QDs, device structures, carrier transport materials, interface regulation, and light outcoupling technology.
APA, Harvard, Vancouver, ISO, and other styles
7

Yokoyama, Daisuke, Tatsuki Sasaki, Yasutaka Suzuki, Takefumi Abe, Kaori Tsuruoka, Tatsuya Miyajima, Toshifumi Kakiuchi, et al. "Active refractive index control using a stably evaporable perfluororesin for high-outcoupling-efficiency organic light-emitting diodes." Journal of Materials Chemistry C 9, no. 34 (2021): 11115–25. http://dx.doi.org/10.1039/d1tc02478g.

Full text
Abstract:
A significant enhancement of outcoupling efficiency of OLEDs is demonstrated by the active refractive index control of amorphous organic semiconductors using a stably evaporable perfluororesin, which forms a nano-sized phase-separation structure.
APA, Harvard, Vancouver, ISO, and other styles
8

Murano, Sven, Domagoj Pavicic, Mauro Furno, Carsten Rothe, Tobias W. Canzler, Andreas Haldi, Falk Löser, Omrane Fadhel, Francois Cardinali, and Oliver Langguth. "51.2: Outcoupling Enhancement Mechanism Investigation on Highly Efficient PIN OLEDs using Crystallizing Evaporation Processed Organic Outcoupling Layers." SID Symposium Digest of Technical Papers 43, no. 1 (June 2012): 687–90. http://dx.doi.org/10.1002/j.2168-0159.2012.tb05875.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Shujie, Chenran Li, Yang Xiang, Hui Qi, Yan Fang, Aqiang Wang, Huaibin Shen, and Zuliang Du. "Light extraction from quantum dot light emitting diodes by multiscale nanostructures." Nanoscale Advances 2, no. 5 (2020): 1967–72. http://dx.doi.org/10.1039/d0na00150c.

Full text
Abstract:
Green emitting QLEDs based on multiscale grid/wrinkle outcoupling nanostructures yield a maximum EQE of 21.3% and current efficiency of 88.3 cd A−1, which are 1.7 times those of the standard device.
APA, Harvard, Vancouver, ISO, and other styles
10

Hwang, Ha, Yong Sub Shim, Junhee Choi, Dong Jun Lee, Jae Geun Kim, Ju Sung Lee, Young Wook Park, and Byeong-Kwon Ju. "Nano-arrayed OLEDs: enhanced outcoupling efficiency and suppressed efficiency roll-off." Nanoscale 10, no. 41 (2018): 19330–37. http://dx.doi.org/10.1039/c8nr03198c.

Full text
Abstract:
Organic light-emitting diodes (OLEDs) with an enhanced outcoupling efficiency and a suppressed efficiency roll-off were fabricated by inserting a nanosize pixel-defining layer (nPDL) that defines the OLED emission region as an array of nanoholes.
APA, Harvard, Vancouver, ISO, and other styles
11

Matveenko, A. N., O. A. Shevchenko, V. G. Tcheskidov, and N. A. Vinokurov. "Electron outcoupling scheme for the Novosibirsk FEL." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 603, no. 1-2 (May 2009): 38–41. http://dx.doi.org/10.1016/j.nima.2008.12.228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jou, Jwo-Huei, Sudhir Kumar, Abhishek Agrawal, Tsung-Han Li, and Snehashis Sahoo. "Approaches for fabricating high efficiency organic light emitting diodes." Journal of Materials Chemistry C 3, no. 13 (2015): 2974–3002. http://dx.doi.org/10.1039/c4tc02495h.

Full text
Abstract:
Highly efficient OLEDs are extremely demanded for the design of highly competitive energy-saving displays and lightings. In this article, we have systematically reviewed some most effective organic materials, eleven device architectural approaches, and outcoupling techniques to realize the high efficiency OLEDs.
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yun-Fei, Xiaofeng Liu, Jing Feng, Yu Xie, Fangchao Zhao, Xu-Lin Zhang, Qibing Pei, and Hong-Bo Sun. "Highly transparent and conductive metal oxide/metal/polymer composite electrodes for high-efficiency flexible organic light-emitting devices." Nanophotonics 9, no. 11 (July 12, 2020): 3567–73. http://dx.doi.org/10.1515/nanoph-2020-0214.

Full text
Abstract:
AbstractUltrathin metal films emerge as an innovative category of transparent electrodes in recent decades, holding great promises enabling the next-generation flexible organic light-emitting devices (OLEDs). Although metal thin films with polymer nucleation inducers have been extensively studied in OLEDs, satisfying the requirements of both superior optoelectrical and high optical outcoupling characteristics is still challenging. Here, we demonstrate a metal oxide/ultrathin Ag/polymer (MAP) composite electrode with low sheet resistance of 15.1 Ω/sq, high transmittance of 87.4% at 550 nm, and smooth morphology with surface roughness of 0.768 nm. Besides, the composite electrodes significantly enhance the outcoupling of the light trapped in OLEDs due to the relatively high-refractive index polymer. Flexible OLEDs with the MAP anodes exhibit over 2.3 times enhancement in efficiency to that of indium tin oxide (ITO)-based OLEDs. The flexible OLEDs can survive 1000 bending cycles at a bending radius of 8 mm with negligible decrease in electroluminescent performance.
APA, Harvard, Vancouver, ISO, and other styles
14

Emshary, Chasib A., Shaker I. Esa, and Arafat J. Almanea. "Model of the atom laser with Raman outcoupling." Journal of Laser Applications 23, no. 2 (May 2011): 022006. http://dx.doi.org/10.2351/1.3544220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ou, Qing-Dong, Lu-Hai Xu, Wen-Yue Zhang, Yan-Qing Li, Yi-Bo Zhang, Xin-Dong Zhao, Jing-De Chen, and Jian-Xin Tang. "Light outcoupling enhanced flexible organic light-emitting diodes." Optics Express 24, no. 6 (March 17, 2016): A674. http://dx.doi.org/10.1364/oe.24.00a674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Callens, Michiel Koen, Daisuke Yokoyama, and Kristiaan Neyts. "Anisotropic materials in OLEDs for high outcoupling efficiency." Optics Express 23, no. 16 (August 4, 2015): 21128. http://dx.doi.org/10.1364/oe.23.021128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nikolopoulos, Georgios M., P. Lambropoulos, and N. P. Proukakis. "Effects of interatomic collisions on atom-laser outcoupling." Journal of Physics B: Atomic, Molecular and Optical Physics 36, no. 13 (June 19, 2003): 2797–816. http://dx.doi.org/10.1088/0953-4075/36/13/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Graham, Robert, and Dan F. Walls. "Theory of strong outcoupling from Bose-Einstein condensates." Physical Review A 60, no. 2 (August 1, 1999): 1429–41. http://dx.doi.org/10.1103/physreva.60.1429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Agata, Kenichi, Shunsuke Murai, and Katsuhisa Tanaka. "Stick-and-play metasurfaces for directional light outcoupling." Applied Physics Letters 118, no. 2 (January 11, 2021): 021110. http://dx.doi.org/10.1063/5.0034115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Yu, and Rana Biswas. "High Light Outcoupling Efficiency from Periodically Corrugated OLEDs." ACS Omega 6, no. 13 (March 23, 2021): 9291–301. http://dx.doi.org/10.1021/acsomega.1c00903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Yungui, Bas Van der Zee, Gert‐Jan A. H. Wetzelaer, and Paul W. M. Blom. "Optical Outcoupling Efficiency in Polymer Light‐Emitting Diodes." Advanced Electronic Materials 7, no. 6 (May 7, 2021): 2100155. http://dx.doi.org/10.1002/aelm.202100155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Han Byul, Eun Hye Lee, Min Ho Sung, Si Hong Ryu, and Seong Eui Lee. "Enhanced Light Outcoupling on Photo-luminescent Devices with Microcavity." Journal of the Korean Institute of Electrical and Electronic Material Engineers 26, no. 5 (May 1, 2013): 391–96. http://dx.doi.org/10.4313/jkem.2013.26.5.391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Polubavkina, Yu S., N. V. Kryzhanovskaya, E. I. Moiseev, M. M. Kulagina, I. S. Mukhin, F. E. Komissarenko, Yu M. Zadiranov, et al. "Improved emission outcoupling from microdisk laser by Si nanospheres." Journal of Physics: Conference Series 741 (August 2016): 012158. http://dx.doi.org/10.1088/1742-6596/741/1/012158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Moon, Yoon-Jong, Ji-Hyun Kim, Jin-Woo Cho, Jin-Young Na, Tae-Il Lee, Donghyun Lee, Dukkyu Bae, Euijoon Yoon, and Sun-Kyung Kim. "Microstructured void gratings for outcoupling deep-trap guided modes." Optics Express 26, no. 10 (April 9, 2018): A450. http://dx.doi.org/10.1364/oe.26.00a450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, Ho-Nyeon, Hyun Jun Cho, and Doo Hoon Kim. "Organic Light-Emitting Diode Outcoupling Enhancement Using Buffer Layers." Molecular Crystals and Liquid Crystals 584, no. 1 (January 2013): 37–43. http://dx.doi.org/10.1080/15421406.2013.849427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

LLOYD, Savanna, Tatsuya TANIGAWA, Heisuke SAKAI, and Hideyuki MURATA. "Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency." IEICE Transactions on Electronics E102.C, no. 2 (February 1, 2019): 180–83. http://dx.doi.org/10.1587/transele.2018oms0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Tae-Woo, O. Ok Park, and Young Chul Kim. "Control of emission outcoupling in liquid-crystalline fluorescent polymer films." Organic Electronics 8, no. 4 (August 2007): 317–24. http://dx.doi.org/10.1016/j.orgel.2006.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tecimer, M., H. Jiang, S. Hallman, and L. Elias. "Variable height slot-outcoupling for the compact UH THz-FEL." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 528, no. 1-2 (August 2004): 146–51. http://dx.doi.org/10.1016/j.nima.2004.04.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Park, Jun-Hwan, Woo-Sung Chu, Min-Cheol Oh, Keunsoo Lee, Jaehyun Moon, Seung Koo Park, Hyunsu Cho, and Doo-Hee Cho. "Outcoupling Efficiency Analysis of OLEDs Fabricated on a Wrinkled Substrate." Journal of Display Technology 12, no. 8 (August 2016): 801–7. http://dx.doi.org/10.1109/jdt.2016.2533617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Ying-Ying, Hai-Juan Yu, Ling Zhang, and Xue-Chun Lin. "Theoretical investigation of a highly efficient nanograting for outcoupling XUV." Laser Physics Letters 10, no. 7 (June 11, 2013): 075302. http://dx.doi.org/10.1088/1612-2011/10/7/075302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fan, Yang, Xia Lin, Zhou Xiao-Ji, Ma Xiu-Quan, and Chen Xu-Zong. "Strong Outcoupling from Spin-2 87 Rb Bose–Einstein Condensates." Chinese Physics Letters 22, no. 7 (June 16, 2005): 1596–99. http://dx.doi.org/10.1088/0256-307x/22/7/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kitamura, Akitoshi, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Improved Light Outcoupling in Organic Electroluminescent Devices with Random Dots." Japanese Journal of Applied Physics 44, no. 1B (January 24, 2005): 613–16. http://dx.doi.org/10.1143/jjap.44.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Brodeur, Julien, Romain Arguel, Soroush Hafezian, Fábio Barachati, and Stéphane Kéna-Cohen. "Nearly 40% outcoupling efficiency in OLEDs with all-metal electrodes." Applied Physics Letters 113, no. 4 (July 23, 2018): 041105. http://dx.doi.org/10.1063/1.5039983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Passaro, Vittorio M. N., and Mario N. Armenise. "High-efficiency GaAs-based waveguide gratings for polarization-insensitive outcoupling." Journal of the Optical Society of America A 11, no. 12 (December 1, 1994): 3220. http://dx.doi.org/10.1364/josaa.11.003220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Eriksson, N., M. Hagberg, and A. Larsson. "Highly efficient grating-coupled surface-emitters with single outcoupling elements." IEEE Photonics Technology Letters 7, no. 12 (December 1995): 1394–96. http://dx.doi.org/10.1109/68.477260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Shufen, Zhonghai Jie, Zhenyuan Zhao, Gang Cheng, Zhijun Wu, Yi Zhao, Baofu Quan, Shiyong Liu, Xue Li, and Wenfa Xie. "Improved light outcoupling for top-emitting organic light-emitting devices." Applied Physics Letters 89, no. 4 (July 24, 2006): 043505. http://dx.doi.org/10.1063/1.2236224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Smith, L. H., J. A. E. Wasey, and W. L. Barnes. "Light outcoupling efficiency of top-emitting organic light-emitting diodes." Applied Physics Letters 84, no. 16 (April 19, 2004): 2986–88. http://dx.doi.org/10.1063/1.1712036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kryzhanovskaya, N., Yu Polubavkina, E. Moiseev, M. Maximov, V. Zhurikhina, S. Scherbak, A. Lipovskii, et al. "Enhanced light outcoupling in microdisk lasers via Si spherical nanoantennas." Journal of Applied Physics 124, no. 16 (October 28, 2018): 163102. http://dx.doi.org/10.1063/1.5046823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yamae, Kazuyuki, Hiroya Tsuji, Varutt Kittichungchit, Yuko Matsuhisa, Shintarou Hayashi, Nobuhiro Ide, and Takuya Komoda. "51.4: High-Efficiency White OLEDs with Built-up Outcoupling Substrate." SID Symposium Digest of Technical Papers 43, no. 1 (June 2012): 694–97. http://dx.doi.org/10.1002/j.2168-0159.2012.tb05877.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Dong-Young, Chung Sock Choi, Sung-Min Lee, Kyung Cheol Choi, Gee Sung Chae, Sung Hoon Joo, Jung Soo Park, and Joong Hwan Yang. "P.109: Improvement of the Outcoupling Efficiency of Blue OLEDs." SID Symposium Digest of Technical Papers 44, no. 1 (June 2013): 1397–99. http://dx.doi.org/10.1002/j.2168-0159.2013.tb06503.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jang, Ji-Hyang, Kyung-Jo Kim, Jin-Hun Kim, and Min-Cheol Oh. "Outcoupling Enhancement of OLED using Microlens Array and Diffractive Grating." Hankook Kwanghak Hoeji 18, no. 6 (December 25, 2007): 441–46. http://dx.doi.org/10.3807/hkh.2007.18.6.441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cho, Hyun-Jun, and Ho-Nyeon Lee. "OLED Light Outcoupling Enhancement by Extracting Surface Plasmon Polariton Energy." Molecular Crystals and Liquid Crystals 601, no. 1 (September 22, 2014): 159–64. http://dx.doi.org/10.1080/15421406.2014.940795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yuan, Di, Yaozhen Guo, Bo Liu, Jun Zhao, Zhichao Zhu, Chuanwei Cheng, Hong Chen, et al. "Directional light outcoupling enhancement of scintillators via hollow microlens arrays." Journal of Luminescence 232 (April 2021): 117862. http://dx.doi.org/10.1016/j.jlumin.2020.117862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Szenes, András, Dávid Vass, Balázs Bánhelyi, and Mária Csete. "Active Individual Nanoresonators Optimized for Lasing and Spasing Operation." Nanomaterials 11, no. 5 (May 17, 2021): 1322. http://dx.doi.org/10.3390/nano11051322.

Full text
Abstract:
Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems’ smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core–shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core–shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved.
APA, Harvard, Vancouver, ISO, and other styles
45

Mongelli, Guy Francis. "The Estimation of Enhanced Outcoupling for OLEDs with Isotropically Scattering Materials." International Journal of Chemistry, Mathematics and Physics 3, no. 1 (2019): 9–11. http://dx.doi.org/10.22161/ijcmp.3.1.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Moiseev, Eduard I., Natalia Kryzhanovskaya, Yulia S. Polubavkina, Mikhail V. Maximov, Marina M. Kulagina, Yury M. Zadiranov, Andrey A. Lipovskii, et al. "Light Outcoupling from Quantum Dot-Based Microdisk Laser via Plasmonic Nanoantenna." ACS Photonics 4, no. 2 (February 6, 2017): 275–81. http://dx.doi.org/10.1021/acsphotonics.6b00552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Hyun Soo, Seong Il Moon, Dong Eui Hwang, Ki Won Jeong, Chang Kyo Kim, Dae-Gyu Moon, and Chinsoo Hong. "Novel fabrication method of microlens arrays with High OLED outcoupling efficiency." Optics & Laser Technology 77 (March 2016): 104–10. http://dx.doi.org/10.1016/j.optlastec.2015.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Backlund, J., J. Bengtsson, and A. Larsson. "Waveguide hologram for outcoupling and simultaneous focusing into multiple arbitrary positions." IEEE Photonics Technology Letters 10, no. 9 (September 1998): 1286–88. http://dx.doi.org/10.1109/68.705618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Agrawal, Mukul, Yiru Sun, Stephen R. Forrest, and Peter Peumans. "Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors." Applied Physics Letters 90, no. 24 (June 11, 2007): 241112. http://dx.doi.org/10.1063/1.2748859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cheng, Yu-Hung, Jia-Lin Wu, Chien-Hong Cheng, Kao-Chih Syao, and Ming-Chang M. Lee. "Enhanced light outcoupling in a thin film by texturing meshed surfaces." Applied Physics Letters 90, no. 9 (February 26, 2007): 091102. http://dx.doi.org/10.1063/1.2709920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography