Academic literature on the topic 'Outdoor path loss models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Outdoor path loss models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Outdoor path loss models"

1

Abdullah, Saifuddin, and Dr Fuad Al-Najjar. "A Collective Statistical Analysis of Outdoor Path Loss Models." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 3, no. 1 (2012): 6–10. http://dx.doi.org/10.24297/ijct.v3i1a.2720.

Full text
Abstract:
This study encompasses nine path loss models (Erceg-Greenstein, Green-Obaidat, COST Hata, Hata Urban, Hata Rural, Hata Suburban, SUI, Egli and ECC-33) which were programmed on Python and studied for their results in an urban architecture (translated by higher attenuation variables) at 950 MHz and 1800 MHz. The results obtained showed that increasing the transmission antenna height with the increasing distance not only lowers down the path loss readings, but also shows that the standard deviation between the results of studied path loss models increases with the increasing transmission antenna height and increasing distance at both 950 MHz and 1800 MHz systems, especially when transmission antenna height crosses the GSM standard of 40 meters and cell-radius exceeds the limit of 20 kilometers. Moreover, it is also observed that at both 950 MHz and 1800 MHz, the path loss readings of all the models disperse from their collective mean between 1 and 10 Km, but tend converge afterwards (i.e. from 10 to 40 Km and onwards) towards their mean, which indicates that path loss readings of the urban models tend to follow either a single convergence point on large distances or reach their maximum threshold level (a level from which their readings cannot exceed or differ from each other significantly).
APA, Harvard, Vancouver, ISO, and other styles
2

Samimi, Mathew K., Theodore S. Rappaport, and George R. MacCartney. "Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications." IEEE Wireless Communications Letters 4, no. 4 (2015): 357–60. http://dx.doi.org/10.1109/lwc.2015.2417559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bian, Chengzhen, Weiping Li, Mingxu Wang, Xinyi Wang, Yi Wei, and Wen Zhou. "Path Loss Measurement of Outdoor Wireless Channel in D-band." Sensors 22, no. 24 (2022): 9734. http://dx.doi.org/10.3390/s22249734.

Full text
Abstract:
D-band (110–170 GHz) has received much attention in recent years due to its larger bandwidth. However, analyzing the loss characteristics of the wireless channel is very complicated at the millimeter-wave (MMW) band. Research on D-band wireless channels has been focused on indoor short-distance transmissions, with few studies looking at outdoor long-distance wireless channels. In this paper, we provide the design of the D-band outdoor long-distance transmission system, propose the outdoor line-of-sight (LOS) propagation measurements, and study the outdoor D-band propagation loss characteristics with distances up to 800 m. The path loss model uses the Floating Intercept (FI) and the Close-In (CI) model is established based on the least square method. In the CI model, the path loss exponent is greater than 2 and increases with frequency, while in the FI model, the path loss exponent has no apparent frequency dependence. The results show that D-band path loss in long-distance outdoor scenarios is greater than that in free space, indicating that the propagation condition is worse than in free space. The results show that both models have similar performance. Under this basis, the model with the smallest number of parameters would be the optimal choice. In addition, these results prospectively provide a theoretical model for designing and optimizing high frequency mm-wave propagation measurements at a distance of 200 m and beyond.
APA, Harvard, Vancouver, ISO, and other styles
4

Shalaby, Abdulrahman M., and Noor Shamsiah Othman. "The Effect of Rainfall on the UAV Placement for 5G Spectrum in Malaysia." Electronics 11, no. 5 (2022): 681. http://dx.doi.org/10.3390/electronics11050681.

Full text
Abstract:
In this paper, the influence of rainfall on the deployment of UAV as an aerial base station in the Malaysia 5G network is studied. The outdoor-to-outdoor and outdoor-to-indoor path loss models are derived by considering the user’s antenna height, rain attenuation, and the wall penetration loss at high frequencies. The problem of finding the UAV 3D placement is formulated with the objective to minimize the total path loss between the UAV and all users. The problem is solved by invoking two algorithms, namely Particle Swarm Optimization (PSO) and Gradient Descent (GD) algorithms. The performance of the proposed algorithms is evaluated by considering two scenarios to determine the optimum location of the UAV, namely outdoor-to-outdoor and outdoor-to-indoor scenarios. The simulation results show that, for the outdoor-to-outdoor scenario, both algorithms resulted in similar UAV 3D placement unlike for the outdoor-to-indoor scenario. Additionally, in both scenarios, the proposed algorithm that invokes PSO requires less iterations to converge to the minimum transmit power compared to that of the algorithm that invokes GD. Moreover, it is also observed that the rain attenuation increases the total path loss for high operating frequencies, namely at 24.9 GHz and 28.1 GHz. Hence, this resulted in an increase of UAV required transmit power. At 28.1 GHz, the presence of rain at the rate of 250 mm/h resulted in an increase of UAV required transmit power by a factor of 4 and 15 for outdoor-to-outdoor and outdoor-to-indoor scenarios, respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Alex, Akohoule, Bamba Aliou, Kamagate Aladji, Konate Adama, Oussama Tabbabi, and Asseu Olivier. "MEASUREMENTSBASEDEVALUATION OF PATHLOSSEXPONENTS IN URBAN OUTDOORENVIRONMENTS." International Journal of Advanced Research 9, no. 03 (2021): 72–79. http://dx.doi.org/10.21474/ijar01/12556.

Full text
Abstract:
In wireless networks, propagation models are used to assess the received power signal and estimate the propagation channel. These models depend on the pathloss exponent (PLE) which is one of the main parameters to characterize the propagation environment. Indeed, in the wireless channel, the path loss exponent has a strong impact on the quality of the links and must therefore be estimated with precision for an efficient design and operation of the wireless network. This paper addresses the issue of path loss exponents estimation for mobile networks in four outdoor environments. This study is based on measurements carried out in four outdoor environments at the frequency of 2600 MHz within a bandwidth of 70 MHz. It evaluates the path loss exponent, and the impact of obstacles present in the environments. The parameters of the propagation model determined from the measurements show that the average power of the received signal decreases logarithmically with the distance. We obtained path loss exponents values of 4.8, 3.53, 3.6 and 3.99 for the site 1, site 2, site 3 and site 4, respectively. Clearly the density of the obstacles has an impact on the path loss exponents and our study shows that the received signal decrease faster as the transmitter and receiver separation in the dense environments.
APA, Harvard, Vancouver, ISO, and other styles
6

Jimoh, AKAANNI, ISA Abdurrhaman Ademola, OGUNBIYI Olalekan, OLUFEAGBA Benjamin. Jimmy, and SANNI Tunde Abdulrahman. "AJ-Olu-1: An Innovative Path Loss Model for Typical Nigerian Urban Environments." KIU Journal of Science, Engineering and Technology 2, no. 1 (2023): 17–23. http://dx.doi.org/10.59568/kjset-2023-2-1-03.

Full text
Abstract:
The modeling of outdoor path loss propagation is critical in the planning and construction of the Global System for Mobile Communication (GSM) coverage area. For GSM signal prediction at any location inside its service region, a precise forecast based on critical characteristics and a mathematical model is required. Numerous research findings on path loss propagation model forecast for GSM mobile networks conducted in various cities in Nigeria revealed that the COST231-Hata model gives closer prediction to most of the practical measure path loss values. Based on the existing COST-23-Hata path loss model and outdoor measurements at 1800 MHz frequency range within Ilorin metropolis, this paper proposed a suitable path loss model. The developed model was used and validated in various locations throughout Ilorin city with the measured and COST-231 Hata models. The analysis of the results revealed that the developed model performed satisfactorily in terms of the closest path loss prediction to the practical measure path loss values at all study locations. It also has the lowest Square Root Means Error and Standard Deviation (SD) of any Base Station (BTS) tested in Ilorin, Nigeria. As a result, it is concluded that the newly developed AJ-Olu-1 model is more suitable for GSM 1800 network design and installation in Ilorin City, Nigeria, as well as other cities in Nigeria and other cities outside Nigeria with similar environments.
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Samman, Ahmed, Tharek Rahman, MHD Hindia, Abdusalama Daho, and Effariza Hanafi. "Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks." Symmetry 10, no. 12 (2018): 672. http://dx.doi.org/10.3390/sym10120672.

Full text
Abstract:
It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.
APA, Harvard, Vancouver, ISO, and other styles
8

Akinbolati, Akinsanmi, Isah Shaibu, and Chidozie Okpala. "Investigation of Error Margin of Some Path Loss Models Over Digital Terrestrial Television Channel in Katsina Metropolis." Nigerian Journal of Theoretical and Environmental Physics 1, no. 1 (2024): 1–8. http://dx.doi.org/10.62292/njtep.v1i1.2023.11.

Full text
Abstract:
Due to rapid development in mobile communication technology in recent times, strong signal coverage has become a major necessity. However, path loss is one of the major challenges against strong signal coverage. Several path loss models have been developed for predicting wireless signal coverage for urban, sub-urban and rural areas. However, the need to investigate which model can best predict losses in an environment becomes necessary. This work is aimed at comparing the Error Margin of some Path loss Models over Digital Terrestrial Television (DTTV) channel using the Star Times DTTV Channel within Katsina metropolis. Seven path loss predicting models for outdoor macro cell wireless communication were used. They are; Free Space model, COST-231 model, (developed by the European Union Co-operative for Scientific and Technical Research Team) Hata - Okurmura model, Plane Earth model, Okumura model, Ericson model and ECC model. The measurement campaigns were in two seasons, the wet season was in August and dry season in November, 2021. Both measured and predicted path loss values were computed using empirical models. Statistical error analysis based on the RMSE was carried out to determine the error margins between measured and predicted values. Based on the result of path loss assessment and error analysis, COST-231 with the lowest RMSE value of 13.49 dB which is within the acceptable range for sub-urban city is the most preferred amongst the investigated models for path loss prediction over digital UHF channel in Katsina city
APA, Harvard, Vancouver, ISO, and other styles
9

Israr, Imran, Mahmood Ashraf Khan, Shahzad A. Malik, Shahid A. Khan, and Mustafa Shakir. "Path Loss Modeling of WLAN and WiMAX Systems." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 5 (2015): 1083. http://dx.doi.org/10.11591/ijece.v5i5.pp1083-1091.

Full text
Abstract:
<p>With the advancement in technology, there was need for efficient and high speed internet through which we could have access to multiple networks as per the user requirement. WLAN met this need to some extent but, due to its low range it was not recommended commercially. With the introduction of WiMAX there was an emerging need to select the best network amongst WiMAX or WLAN depending upon the user location. Pathloss with respect to these particular networks also needs to be compared. In this paper we compare the pathloss modelling for WiMAX and WLAN systems. Different Models have been compared with each other to know which model performs better by keeping same simulation environment. Path Loss models used for WLAN are Okumura, Hata, Cost-231 and Free Space Path Loss whereas models used for WiMAX are Free Space Path Loss, Okumura-Hata, Cost231-Hata and Stanford University Interim. In case of WiMAX three different scenarios Urban, Sub-Urban and Rural is considered where as in case of WLAN only outdoor environment is considered. With the Path Loss comparison, power received for these two technologies; WiMAX, and WLAN is also simulated. MATLAB is the tool used for simulations. Antenna Specifications for WiMAX and WLAN is kept same for all simulation environments.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

ARYANTA, DWI. "Analisis Prediksi Path Loss Teknologi Seluler 5G Pada Sel Micro Urban Wilayah Kota Bandung." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 3 (2021): 548. http://dx.doi.org/10.26760/elkomika.v9i3.548.

Full text
Abstract:
ABSTRAKImplementasi teknologi seluler 5G di Indonesia perlu dilakukan kajian dalam beberapa aspek. Analisis nilai path loss pada sistem seluler merupakan pendekatan dalam aspek large scale fading untuk menghitung cakupan layanan. Penelitian ini melakukan kajian nilai path loss dengan mengambil kondisi di Kota Bandung dengan karakter sel urban mikro outdoor. Model prediksi yang digunakan pada kajian ini meliputi model SUI, ABG, CI, dan NYUSIM simulator menggunakan frekuensi kerja 3,5 GHz dan 28 GHz dengan lebar pita 100 MHz dan 800 MHz. Hasil pengujian memperlihatkan simulator NYUSIM memberikan nilai prediksi path loss yang paling mendekati nilai rata-rata path loss dengan nilai margin sebesar 1,25 dB untuk frekuensi 3,5 GHz dan 1,8 dB untuk frekuensi 28 GHz. Frekuensi kerja 28 GHz memiliki nilai path loss lebih tinggi dibandingkan frekuensi 3,5 MHz sebesar 19 dB. Nilai path loss pada kondisi LOS dan NLOS berdampak pada penurunan nilai path loss sebesar 35% pada frekuensi 3,5 GHz dan 26% pada frekuensi 28 GHz.Kata kunci: path loss, micro cell, urban, NYUSIM, LOS, NLOS ABSTRACTThe implementation of 5G cellular technology in Indonesia needs to be studied in several aspects. Analysis of the path loss value on the cellular system is an approach in the aspect of large scale fading to calculate service coverage. This research studies the path loss value by taking conditions in the city of Bandung with the character of outdoor micro urban cells. The prediction models used in this study include the SUI, ABG, CI, and NYUSIM simulators using working frequencies of 3.5 GHz and 28 GHz with a bandwidth of 100 MHz and 800 MHz. The test results show that the NYUSIM simulator provides a path loss prediction value that is closest to the average path loss value with a margin value of 1.25 dB for the 3.5 GHz frequency and 1.8 dB for the 28 GHz frequency. The 28 GHz working frequency has a path loss value higher than the 3.5 MHz frequency of 19 dB. The path loss value in LOS and NLOS conditions has an impact on reducing the path loss value by 35% at a frequency of 3.5 GHz and 26% at a frequency of 28 GHz.Keywords: path loss, micro cell, urban, NYUSIM, LOS, NLOS
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Outdoor path loss models"

1

Liechty, Lorne Christopher. "Path Loss Measurements and Model Analysis of a 2.4 GHz Wireless Network in an Outdoor Environment." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16308.

Full text
Abstract:
Careful network planning has become increasingly critical with the rising deployment, coverage, and congestion of wireless local area networks (WLANs). This thesis outlines the achieved prediction accuracy of a direct-ray, single path loss exponent, adapted Seidel-Rappaport propagation model as determined through measurements and analysis of the established 2.4 GHz, 802.11g outdoor WiFi network deployed on the campus of the Georgia Institute of Technology. Additionally, the viability of using the obtained model parameters as a means for planning future network deployment is discussed. Analysis of measured data shows that accurate predictive planning for network coverage is possible without the need for overly complicated modeling techniques such as ray tracing. The proposed model performs with accuracy comparable to other commonly accepted, more complicated models and is offered as a simple, yet strong predictive model for network planning having both speed and accuracy. Results show, that for the area under study, the standard deviation of the prediction error for the proposed model is below 6.8dB in all analyzed environments, and is approximately 5.5dB on average. Further, the accuracy of model predictions in new environments is shown to be satisfactory for network planning.
APA, Harvard, Vancouver, ISO, and other styles
2

Saeed, Asad, Habib Ur Rehman, and Muhammad Hassan Masood. "Performance Analysis and Comparison of Radio Propagation Models for Outdoor Environment in 4G LTE Network." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3241.

Full text
Abstract:
The dissertation concerns about the path loss calculation of Radio Frequency (RF) propagation models for 4G Long Term Evolution (LTE) Network to prefer the best Radio Frequency propagation model. The radio propagation models are very significant while planning of any wireless communication system. A comparative analysis between radio propagation models e.g. SUI model, Okumura model, Cost 231 Hata Model, Cost 231-Walfisch Ikegami and Ericsson 9999 model that would be used for outdoor propagation in LTE. The comparison and performance analysis has been made by using different geological environments e.g. urban, sub-urban and rural areas. The simulation scenario is made to calculate the lowest path loss in above defined environments by using selected frequency and height of base station antennas while keeping a constant distance between the transmitter and receiver antennas.<br>Asad Saeed C/O Muhammad Awais Hovslagargatan 47 LGH 1004 19431 Stockholm Sweden Mob: 0046723333734
APA, Harvard, Vancouver, ISO, and other styles
3

Manan, Waqas. "Propagation channel models for 5G mobile networks. Simulation and measurements of 5G propagation channel models for indoor and outdoor environments covering both LOS and NLOS Scenarios." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17219.

Full text
Abstract:
At present, the current 4G systems provide a universal platform for broadband mobile services; however, mobile traffic is still growing at an unprecedented rate and the need for more sophisticated broadband services is pushing the limits on current standards to provide even tighter integration between wireless technologies and higher speeds. This has led to the need for a new generation of mobile communications: the so-called 5G. Although 5G systems are not expected to penetrate the market until 2020, the evolution towards 5G is widely accepted to be the logical convergence of internet services with existing mobile networking standards leading to the commonly used term “mobile internet” over heterogeneous networks, with several Gbits/s data rate and very high connectivity speeds. Therefore, to support highly increasing traffic capacity and high data rates, the next generation mobile network (5G) should extend the range of frequency spectrum for mobile communication that is yet to be identified by the ITU-R. The mm-wave spectrum is the key enabling feature of the next-generation cellular system, for which the propagation channel models need to be predicted to enhance the design guidance and the practicality of the whole design transceiver system. The present work addresses the main concepts of the propagation channel behaviour using ray tracing software package for simulation and then results were tested and compared against practical analysis in a real-time environment. The characteristics of Indoor-Indoor (LOS and NLOS), and indoor-outdoor (NLOS) propagations channels are intensively investigated at four different frequencies; 5.8 GHz, 26GHz, 28GHz and 60GHz for vertical polarized directional, omnidirectional and isotropic antennas patterns. The computed data achieved from the 3-D Shooting and Bouncing Ray (SBR) Wireless Insite based on the effect of frequency dependent electrical properties of building materials. Ray tracing technique has been utilized to predict multipath propagation characteristics in mm-wave bands at different propagation environments. Finally, the received signal power and delay spread were computed for outdoor-outdoor complex propagation channel model at 26 GHz, 28 GHz and 60GHz frequencies and results were compared to the theoretical models.
APA, Harvard, Vancouver, ISO, and other styles
4

Kidner, David B. "Digital terrain models for radio path loss calculations." Thesis, University of South Wales, 1991. https://pure.southwales.ac.uk/en/studentthesis/digital-terrain-models-for-radio-path-loss-calculations(6733f679-d3c0-4a25-916f-0464321ea520).html.

Full text
Abstract:
This work addresses the problem of digital terrain modelling for estimating radio path propagation within a mobile communication system. The ideal requirements are for a data structure which is storage efficient and computationally efficient for calculating profiles, whilst elevation errors should be constrained and radio path loss errors should be minimised. For a digital terrain model (DTM) to be considered viable as an alternative to the regular grid, it should: (i) produce a storage saving of at least 75% over the regular grid; (ii) be error constrained to a maximum absolute error of 10 metres; (iii) produce only a small overall average elevation error; (iv) preserve critical terrain characteristics such as ridges, peaks and slopes; (v) produce 95% of profiles to within a radio path loss error of ± 6 decibels; and (vi) be as computationally efficient as the regular grid. This research focuses on the implementation of a number of prototype DTMs, including a regular grid, sub-sampled grids, variable density grids, elevation difference grids, polynomial models of fixed and variable degree, surface patch quadtrees, and triangulated irregular networks (TINs). Each of these DTMs are examined in terms of the criteria outlined above. No DTM fulfils all of these requirements. The user should identify the relative importance of each requirement before selecting a specific model. For this study, computational efficiency is identified as the criterion which can be considered the least important. With this in mind, two original DTMs are developed. These are optimised with respect to storage and error constraints. The proposed Huffman-encoded DTM represents the deviations of a regular grid of heights from linearly predicted values as variable-length codes, whilst the Implicit TIN is a storage-efficient triangulated irregular network which reconstructs the original topology of the triangulation at the application stage. Both methods produce storage savings approaching 90% over the regular grid for the data sets tested and are suitable for parallel implementations.
APA, Harvard, Vancouver, ISO, and other styles
5

Alfaro, Hidalgo Luis Adolfo. "Experimental path loss models for UWB multistatic radar systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14656/.

Full text
Abstract:
The use of Ultra-Wideband (UWB) radio technology in a multistatic radar system has recently gained interest to implement Wireless Sensor Networks (WSN) capable of detecting and tracking targets in indoor environments. Due to the increasing attention towards multistatic UWB systems, it is important to perform the radio channel characterization. In this thesis we focus on the characterization of the path loss exponent (α). To perform the present work, the followed methodology was to collect experimental data from the UWB devices using a suitable target, this information was processed with a clutter removal algorithm using the Empty Room (ER) approach, then the contribution of the target was isolated to produce a graph of energy as a function of the product between the target-to-transmitter and the target-to-receiver distances in a bistatic configuration. Finally, using this plot it was properly obtained the value of the path loss exponent. As as additional experimental result, the main statistical parameters associated to the residual clutter were calculated, which are expected to allow having a better understanding and characterization of the radar system performance in the experimental environments.
APA, Harvard, Vancouver, ISO, and other styles
6

Akkasli, Cem. "Methods for Path loss Prediction." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-6127.

Full text
Abstract:
<p>Large scale path loss modeling plays a fundamental role in designing both fixed and mobile radio systems. Predicting the radio coverage area of a system is not done in a standard manner. Wireless systems are expensive systems. Therefore, before setting up a system one has to choose a proper method depending on the channel environment, frequency band and the desired radio coverage range. Path loss prediction plays a crucial role in link budget analysis and in the cell coverage prediction of mobile radio systems. Especially in urban areas, increasing numbers of subscribers brings forth the need for more base stations and channels. To obtain high efficiency from the frequency reuse concept in modern cellular systems one has to eliminate the interference at the cell boundaries. Determining the cell size properly is done by using an accurate path loss prediction method. Starting from the radio propagation phenomena and basic path loss models this thesis aims at describing various accurate path loss prediction methods used both in rural and urban environments. The Walfisch-Bertoni and Hata models, which are both used for UHF propagation in urban areas, were chosen for a detailed comparison. The comparison shows that the Walfisch-Bertoni model, which involves more parameters, agrees with the Hata model for the overall path loss.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Paulsson, Felix, and Issa Bitar. "An evaluation of coverage models for LoRa." Thesis, Jönköping University, JTH, Avdelningen för datateknik och informatik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54152.

Full text
Abstract:
LoRaWAN is a wireless network technology based on the LoRa modulation technology. When planning such a network, it is important to estimate the network’s coverage, which can be done by calculating path loss. To do this, one can utilize empirical models of radio wave propagation. Previous research has investigated the accuracy of such empirical models for LoRa inside cities. However, as the accuracy of these models is heavily dependent on the exact characteristics of the environment, it is of interest to validate these results. In addition, the effect of base station elevation on the models’ accuracy has yet to be researched. Following the problems stated above, the purpose of this study is to investigate the accuracy of empirical models of radio wave propagation for LoRa in an urban environment. More specifically, we investigate the accuracy of the models and the effect of base station elevation on the models’ accuracy. The latter is the main contribution of this study. To perform these investigations, a quantitative experiment was conducted in the city of Jönköping, Sweden. In the experiment a base station was positioned at elevations of 30, 23, and 15m. The path loss was measured from 20 locations around the base station for each level of elevation. The measured path loss was then compared to predictions from three popular empirical models: the Okumura-Hata model, the COST 231-Walfisch-Ikegami model, and the 3GPP UMa NLOS model. Our analysis showed a clear underestimation of the path loss for all models. We conclude that for an environment and setup similar to ours, models underestimate the path loss by approximately 20dB. They can be improved by adding a constant correction value, resulting in a mean absolute error of at least 3,7-5,6dB. We also conclude that the effect of base station elevation varies greatly between different models. The 3GPP model underestimated the path loss equally for all elevations and could therefore easily be improved by a constant correction value. This resulted in a mean absolute error of approximately 4dB for all elevations.
APA, Harvard, Vancouver, ISO, and other styles
8

Sundaram, Preethi. "New Results For Characterization Of Indoor Channels In Two Ism Bands (900-928 Mhz And 2.4-2.5 Ghz)." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1140462634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Costa, Julio C. "Analysis and optimization of empirical path loss models and shadowing effects for the Tampa Bay area in the 2.6 GHz band." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vyčítal, Jaroslav. "Šíření signálů bezdrátových komunikačních systémů IEEE 802.11." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377156.

Full text
Abstract:
This paper deals with the propagation of waves. Here is the wavelength distribution according to the wavelength. It focuses on the UHF and SHF band in which IEEE802.11n operates. Contains model breakdown by cell type. Describes which propagation methods are dominant in the cell type. Several propagation patterns are presented, which are then modeled in Matlab environment.The models are then compared to experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Outdoor path loss models"

1

Kidner, David B. Digital terrain models for radio path loss calculations. 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Outdoor path loss models"

1

Abolade, Robert O., Dare J. Akintade, Segun I. Popoola, Folasade A. Semire, Aderemi A. Atayero, and Sanjay Misra. "Calibration of Empirical Models for Path Loss Prediction in Urban Environment." In Computational Science and Its Applications – ICCSA 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58817-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Phillips, Caleb, Scott Raynel, Jamie Curtis, et al. "The Efficacy of Path Loss Models for Fixed Rural Wireless Links." In Passive and Active Measurement. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19260-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ebongue, Jean Louis Fendji Kedieng, Mafai Nelson, and Jean Michel Nlong. "Empirical Path Loss Models for 802.11n Wireless Networks at 2.4 GHz in Rural Regions." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16886-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sudhamani, Chilakala, Mardeni Roslee, Lee Loo Chuan, Athar Waseem, Anwar Faizd Osman, and Mohamad Huzaimy Jusoh. "Comparison of UMi, UMa, and RMa Path Loss Models of 5G mmWave Communication System." In Intelligent Sustainable Systems. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8031-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhavanam, Bhanu Pratap Reddy, and Prashanth Ragam. "Assessing the Performance of ZigBee RF Protocol using Path loss models for IoT Application." In Atlantis Highlights in Computer Sciences. Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-314-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Risi, Ikechi, Clement Ogbonda, and Isabona Joseph. "Development and Comparative Analysis of Path Loss Models Using Hybrid Wavelet-Genetic Algorithm Approach." In Advances in Artificial Systems for Logistics Engineering III. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36115-9_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qu, Xue, Daizo Kojima, Laping Wu, and Mitsuyoshi Ando. "The Effect of Moral Hazard on Rice Harvest Loss." In The University of Tokyo Studies on Asia. Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-9156-9_6.

Full text
Abstract:
AbstractIn Chap. 5, the mediation path that the negative effect of harvest outsourcing services on operators’ work attitudes will lead to increased rice harvest losses is examined through mediation analysis models. In the previous chapters, the effect of service providers’ moral hazards on rice harvest losses has not been studied directly. In this chapter, we focus only on farmers using harvest outsourcing services and directly explore the effect of service providers’ moral hazards on rice harvest losses.
APA, Harvard, Vancouver, ISO, and other styles
8

Shanker, Yashu, and D. K. Lobiyal. "Comparisons of UTD-PO and FKE Models for Path Loss Prediction over an Irregular Terrain." In 5G Wireless Communication System in Healthcare Informatics. CRC Press, 2023. http://dx.doi.org/10.1201/9781003368311-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Devarajan, Niveditha, and Sindhu Hak Gupta. "Implementation and Analysis of Different Path Loss Models for Cooperative Communication in a Wireless Sensor Network." In Smart Innovations in Communication and Computational Sciences. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2414-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Hongcheng, Zhuoyu Zhang, Yunchuan Liu, Liangliang Zhang, Cunlin Zhang, and Jingsuo He. "Path Loss and Multipath Channel Characteristics of 220–330 GHz Communication in Outdoor L-Shaped Street Based on Ray Tracing Method." In Springer Proceedings in Physics. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-4886-3_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Outdoor path loss models"

1

Moreno, Martín, Daniela Oxman, Jorge Sandoval, et al. "NB-IoT Path Loss Experimental Measurements in Urban Outdoor Environments." In 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2024. http://dx.doi.org/10.1109/csndsp60683.2024.10636491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wojtuń, Jarosław, Cezary Ziółkowski, Jan M. Kelner, et al. "Millimeter Wave Path Loss for Diverse Antenna Patterns in Outdoor Environment." In 2025 35th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2025. https://doi.org/10.1109/radioelektronika65656.2025.11008380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Santosh, B. Chinna Raja Satya, B. Nooka Appa Rao, B. Ashok Reddy, D. Sainadh, P. Chitra, and G. Jegan. "Path Loss Models Analysis for Tetra hertz Frequency." In 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2025. https://doi.org/10.1109/csnt64827.2025.10967669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, Frost, Aditya Bhaskara, Jie Wang, and Neal Patwari. "Less is More: Improved Path Loss Prediction Using Simple Interpolation Models." In 2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2024. http://dx.doi.org/10.1109/dyspan60163.2024.10632815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miranda Saravia, Alejandro Rommel, Leoni Marti Miranda Saravia, Marcelo Molina Silva, and Carlos V. Rodríguez Ron. "Comparing WINNER Path Loss Models with Machine Learning at 5.8 GHz." In 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP). IEEE, 2024. https://doi.org/10.1109/lacap63752.2024.10876377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Corre, Yoann, Julien Stephan, and Yves Lostanlen. "Indoor-to-outdoor path-loss models for femtocell predictions." In 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC 2011). IEEE, 2011. http://dx.doi.org/10.1109/pimrc.2011.6140082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nadir, Z., and H. Al Lawati. "LTE path-loss prediction models' comparative study for outdoor wireless communications." In 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Luca, D., F. Fiano, F. Mazzenga, C. Monti, S. Ridolfi, and F. Vallone. "Outdoor Path Loss Models for IEEE 802.16 in Suburban and Campus-Like Environments." In 2007 IEEE International Conference on Communications. IEEE, 2007. http://dx.doi.org/10.1109/icc.2007.809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chizhik, Dmitry, Jinfeng Du, Guillermo Castro, Mauricio Rodriguez, Rodolfo Feick, and Reinaldo A. Valenzuela. "Path Loss Measurements and Models at 28 GHz for 90% Outdoor Suburban Coverage." In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8609374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milijic, Marija, Zoran Stankovic, and Ivan Milovanovic. "Hybrid-empirical neural model for indoor/outdoor path loss calculation." In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6143174.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Outdoor path loss models"

1

Pettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/41034.

Full text
Abstract:
We describe what we believe is the first effort to develop a physics-informed neural network (PINN) to predict sound propagation through the atmospheric boundary layer. PINN is a recent innovation in the application of deep learning to simulate physics. The motivation is to combine the strengths of data-driven models and physics models, thereby producing a regularized surrogate model using less data than a purely data-driven model. In a PINN, the data-driven loss function is augmented with penalty terms for deviations from the underlying physics, e.g., a governing equation or a boundary condition. Training data are obtained from Crank-Nicholson solutions of the parabolic equation with homogeneous ground impedance and Monin-Obukhov similarity theory for the effective sound speed in the moving atmosphere. Training data are random samples from an ensemble of solutions for combinations of parameters governing the impedance and the effective sound speed. PINN output is processed to produce realizations of transmission loss that look much like the Crank-Nicholson solutions. We describe the framework for implementing PINN for outdoor sound, and we outline practical matters related to network architecture, the size of the training set, the physics-informed loss function, and challenge of managing the spatial complexity of the complex pressure.
APA, Harvard, Vancouver, ISO, and other styles
2

Hart, Carl R., D. Keith Wilson, Chris L. Pettit, and Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, 2021. http://dx.doi.org/10.21079/11681/41182.

Full text
Abstract:
Conventional numerical methods can capture the inherent variability of long-range outdoor sound propagation. However, computational memory and time requirements are high. In contrast, machine-learning models provide very fast predictions. This comes by learning from experimental observations or surrogate data. Yet, it is unknown what type of surrogate data is most suitable for machine-learning. This study used a Crank-Nicholson parabolic equation (CNPE) for generating the surrogate data. The CNPE input data were sampled by the Latin hypercube technique. Two separate datasets comprised 5000 samples of model input. The first dataset consisted of transmission loss (TL) fields for single realizations of turbulence. The second dataset consisted of average TL fields for 64 realizations of turbulence. Three machine-learning algorithms were applied to each dataset, namely, ensemble decision trees, neural networks, and cluster-weighted models. Observational data come from a long-range (out to 8 km) sound propagation experiment. In comparison to the experimental observations, regression predictions have 5–7 dB in median absolute error. Surrogate data quality depends on an accurate characterization of refractive and scattering conditions. Predictions obtained through a single realization of turbulence agree better with the experimental observations.
APA, Harvard, Vancouver, ISO, and other styles
3

Cobeen, Kelly, Vahid Mahdavifar, Tara Hutchinson, et al. Large-Component Seismic Testing for Existing and Retrofitted Single-Family Wood-Frame Dwellings (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/hxyx5257.

Full text
Abstract:
This report is one of a series of reports documenting the methods and findings of a multi-year, multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER and funded by the California Earthquake Authority (CEA). The overall project is titled “Quantifying the Performance of Retrofit of Cripple Walls and Sill Anchorage in Single-Family Wood-Frame Buildings,” henceforth referred to as the “PEER–CEA Project.” The overall objective of the PEER–CEA Project is to provide scientifically based information (e.g., testing, analysis, and resulting loss models) that measure and assess the effectiveness of seismic retrofit to reduce the risk of damage and associated losses (repair costs) of wood-frame houses with cripple wall and sill anchorage deficiencies as well as retrofitted conditions that address those deficiencies. Tasks that support and inform the loss-modeling effort are: (1) collecting and summarizing existing information and results of previous research on the performance of wood-frame houses; (2) identifying construction features to characterize alternative variants of wood-frame houses; (3) characterizing earthquake hazard and ground motions at representative sites in California; (4) developing cyclic loading protocols and conducting laboratory tests of cripple wall panels, wood-frame wall subassemblies, and sill anchorages to measure and document their response (strength and stiffness) under cyclic loading; and (5) the computer modeling, simulations, and the development of loss models as informed by a workshop with claims adjustors. Quantifying the difference of seismic performance of un-retrofitted and retrofitted single-family wood-frame houses has become increasingly important in California due to the high seismicity of the state. Inadequate lateral bracing of cripple walls and inadequate sill bolting are the primary reasons for damage to residential homes, even in the event of moderate earthquakes. Physical testing tasks were conducted by Working Group 4 (WG4), with testing carried out at the University of California San Diego (UCSD) and University of California Berkeley (UCB). The primary objectives of the testing were as follows: (1) development of descriptions of load-deflection behavior of components and connections for use by Working Group 5 in development of numerical modeling; and (2) collection of descriptions of damage at varying levels of peak transient drift for use by Working Group 6 in development of fragility functions. Both UCSD and UCB testing included companion specimens tested with and without retrofit. This report documents the portions of the WG4 testing conducted at UCB: two large-component cripple wall tests (Tests AL-1 and AL-2), one test of cripple wall load-path connections (Test B-1), and two tests of dwelling superstructure construction (Tests C-1 and C-2). Included in this report are details of specimen design and construction, instrumentation, loading protocols, test data, testing observations, discussion, and conclusions.
APA, Harvard, Vancouver, ISO, and other styles
4

SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, 2022. http://dx.doi.org/10.18057/icass2020.p.353.

Full text
Abstract:
The seismic bearing capacity of an incomplete single-layer reticulated dome during construction is significantly lower than that of a complete dome. To assess the seismic resilience of incomplete single-layer reticulated domes and find the most unfavorable construction stage, a new curve of recovery functionality and methodology of seismic resilience during construction were established in this study. Under the combined action of the bending moment and axial force, the damage state criterion of circular steel pipes was improved through hysteresis simulation analysis. Based on the elastoplastic time-history analysis of different construction models, the damage state levels of all structural members were employed to estimate the functionality loss after an earthquake event. The repair path and the repair time of damaged steel pipes were defined, and the structural recovery functionality was computed to assess the seismic resilience. The proposed methodology in this paper was illustrated using a 40-meter span of the Kiewitt-8 dome with six circular grids considering both the construction process and seismic hazards. The results indicate that seismic resilience is related to the incomplete structural form of the dome during construction. The repair time will be the longest, and the seismic resilience will be the lowest if the incomplete dome suffers the earthquake during the construction period when installing the fourth circular grid from outside to inside.
APA, Harvard, Vancouver, ISO, and other styles
5

SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION. The Hong Kong Institute of Steel Construction, 2023. http://dx.doi.org/10.18057/ijasc.2023.19.1.10.

Full text
Abstract:
The seismic bearing capacity of an incomplete single-layer reticulated dome during construction is significantly lower than that of a complete dome. To assess the seismic resilience of incomplete single-layer reticulated domes and find the most unfavorable construction stage, a new curve of recovery functionality and a new methodology of seismic resilience during construction were established in this study. Under the combined action of the bending moment and axial force, the damage state criterion of circular steel pipes was improved through hysteresis simulation analysis. Based on the elastoplastic time-history analysis of different construction models, the damage state levels of all structural members were employed to estimate the functionality loss after an earthquake event. The repair path and the repair time of damaged steel pipes were defined, and the structural recovery functionality was computed to assess the seismic resilience. The proposed methodology in this paper was demonstrated using a 40-meter span of the Kiewitt-8 dome with six circular grids considering both the construction process and seismic hazards. The results indicate that seismic resilience is related to the incomplete structural form of the dome during construction. The repair time will be the longest and the seismic resilience will be the lowest if the incomplete dome suffers an earthquake during the construction period when installing the fourth circular grid from outside to inside.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography