Academic literature on the topic 'Outlier analyses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Outlier analyses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Outlier analyses"
Bhushan, A., M. H. Sharker, and H. A. Karimi. "INCREMENTAL PRINCIPAL COMPONENT ANALYSIS BASED OUTLIER DETECTION METHODS FOR SPATIOTEMPORAL DATA STREAMS." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-4/W2 (July 10, 2015): 67–71. http://dx.doi.org/10.5194/isprsannals-ii-4-w2-67-2015.
Full textSingal, J., G. Silverman, E. Jones, T. Do, B. Boscoe, and Y. Wan. "Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates." Astrophysical Journal 928, no. 1 (March 1, 2022): 6. http://dx.doi.org/10.3847/1538-4357/ac53b5.
Full textSvabova, Lucia, and Marek Durica. "Being an outlier: a company non-prosperity sign?" Equilibrium 14, no. 2 (June 30, 2019): 359–75. http://dx.doi.org/10.24136/eq.2019.017.
Full textWu, Zifeng, Zhouxiang Wu, and Laurence R. Rilett. "Innovative Nonparametric Method for Data Outlier Filtering." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 10 (September 18, 2020): 167–76. http://dx.doi.org/10.1177/0361198120945697.
Full textBae, Inhyeok, and Un Ji. "Outlier Detection and Smoothing Process for Water Level Data Measured by Ultrasonic Sensor in Stream Flows." Water 11, no. 5 (May 7, 2019): 951. http://dx.doi.org/10.3390/w11050951.
Full textCobb, Natalie L., Sigrid Collier, Engi F. Attia, Orvalho Augusto, T. Eoin West, and Bradley H. Wagenaar. "Global influenza surveillance systems to detect the spread of influenza-negative influenza-like illness during the COVID-19 pandemic: Time series outlier analyses from 2015–2020." PLOS Medicine 19, no. 7 (July 19, 2022): e1004035. http://dx.doi.org/10.1371/journal.pmed.1004035.
Full textReddy, Y. Harshavardhan, M. Hari Srinivas, Adnan Ali, and A. Zaheer Sha. "A Review on Outliers in IoT." South Asian Research Journal of Engineering and Technology 4, no. 6 (November 11, 2022): 134–41. http://dx.doi.org/10.36346/sarjet.2022.v04i06.001.
Full textHöhne, Jan Karem, and Stephan Schlosser. "Investigating the Adequacy of Response Time Outlier Definitions in Computer-Based Web Surveys Using Paradata SurveyFocus." Social Science Computer Review 36, no. 3 (June 1, 2017): 369–78. http://dx.doi.org/10.1177/0894439317710450.
Full textMao, Jialin, Frederic Scott Resnic, Leonard N. Girardi, Mario Fl Gaudino, and Art Sedrakyan. "Challenges in outlier surgeon assessment in the era of public reporting." Heart 105, no. 9 (November 10, 2018): 721–27. http://dx.doi.org/10.1136/heartjnl-2018-313650.
Full textBeasley, Charles M., Brenda Crowe, Mary Nilsson, LieLing Wu, Rebeka Tabbey, Ryan T. Hietpas, Robert Dean, and Paul S. Horn. "Reference Limits for Outlier Analyses in Randomized Clinical Trials." Therapeutic Innovation & Regulatory Science 51, no. 6 (November 2017): 683–737. http://dx.doi.org/10.1177/2168479017700679.
Full textDissertations / Theses on the topic "Outlier analyses"
Zhang, Ji. "Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy." University of Southern Queensland, Faculty of Sciences, 2008. http://eprints.usq.edu.au/archive/00005645/.
Full textCheng, Gongxian. "Outlier management in intelligent data analysis." Thesis, Birkbeck (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417120.
Full textAbghari, Shahrooz. "Data Modeling for Outlier Detection." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16580.
Full textScalable resource-efficient systems for big data analytics
Birch, Gary Edward. "Single trial EEG signal analysis using outlier information." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28626.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Mitchell, Napoleon. "Outliers and Regression Models." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc279029/.
Full textSoon, Shih Chung. "On detection of extreme data points in cluster analysis." Connect to resource, 1987. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1262886219.
Full textRobson, Geoffrey. "Multiple outlier detection and cluster analysis of multivariate normal data." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53508.
Full textENGLISH ABSTRACT: Outliers may be defined as observations that are sufficiently aberrant to arouse the suspicion of the analyst as to their origin. They could be the result of human error, in which case they should be corrected, but they may also be an interesting exception, and this would deserve further investigation. Identification of outliers typically consists of an informal inspection of a plot of the data, but this is unreliable for dimensions greater than two. A formal procedure for detecting outliers allows for consistency when classifying observations. It also enables one to automate the detection of outliers by using computers. The special case of univariate data is treated separately to introduce essential concepts, and also because it may well be of interest in its own right. We then consider techniques used for detecting multiple outliers in a multivariate normal sample, and go on to explain how these may be generalized to include cluster analysis. Multivariate outlier detection is based on the Minimum Covariance Determinant (MCD) subset, and is therefore treated in detail. Exact bivariate algorithms were refined and implemented, and the solutions were used to establish the performance of the commonly used heuristic, Fast–MCD.
AFRIKAANSE OPSOMMING: Uitskieters word gedefinieer as waarnemings wat tot s´o ’n mate afwyk van die verwagte gedrag dat die analis wantrouig is oor die oorsprong daarvan. Hierdie waarnemings mag die resultaat wees van menslike foute, in welke geval dit reggestel moet word. Dit mag egter ook ’n interressante verskynsel wees wat verdere ondersoek benodig. Die identifikasie van uitskieters word tipies informeel deur inspeksie vanaf ’n grafiese voorstelling van die data uitgevoer, maar hierdie benadering is onbetroubaar vir dimensies groter as twee. ’n Formele prosedure vir die bepaling van uitskieters sal meer konsekwente klassifisering van steekproefdata tot gevolg hˆe. Dit gee ook geleentheid vir effektiewe rekenaar implementering van die tegnieke. Aanvanklik word die spesiale geval van eenveranderlike data behandel om noodsaaklike begrippe bekend te stel, maar ook aangesien dit in eie reg ’n area van groot belang is. Verder word tegnieke vir die identifikasie van verskeie uitskieters in meerveranderlike, normaal verspreide data beskou. Daar word ook ondersoek hoe hierdie idees veralgemeen kan word om tros analise in te sluit. Die sogenaamde Minimum Covariance Determinant (MCD) subversameling is fundamenteel vir die identifikasie van meerveranderlike uitskieters, en word daarom in detail ondersoek. Deterministiese tweeveranderlike algoritmes is verfyn en ge¨ımplementeer, en gebruik om die effektiwiteit van die algemeen gebruikte heuristiese algoritme, Fast–MCD, te ondersoek.
Halldestam, Markus. "ANOVA - The Effect of Outliers." Thesis, Uppsala universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295864.
Full textAstl, Stefan Ludwig. "Suboptimal LULU-estimators in measurements containing outliers." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85833.
Full textENGLISH ABSTRACT: Techniques for estimating a signal in the presence of noise which contains outliers are currently not well developed. In this thesis, we consider a constant signal superimposed by a family of noise distributions structured as a tunable mixture f(x) = α g(x) + (1 − α) h(x) between finitesupport components of “well-behaved” noise with small variance g(x) and of “impulsive” noise h(x) with a large amplitude and strongly asymmetric character. When α ≈ 1, h(x) can for example model a cosmic ray striking an experimental detector. In the first part of our work, a method for obtaining the expected values of the positive and negative pulses in the first resolution level of a LULU Discrete Pulse Transform (DPT) is established. Subsequent analysis of sequences smoothed by the operators L1U1 or U1L1 of LULU-theory shows that a robust estimator for the location parameter for g is achieved in the sense that the contribution by h to the expected average of the smoothed sequences is suppressed to order (1 − α)2 or higher. In cases where the specific shape of h can be difficult to guess due to the assumed lack of data, it is thus also shown to be of lesser importance. Furthermore, upon smoothing a sequence with L1U1 or U1L1, estimators for the scale parameters of the model distribution become easily available. In the second part of our work, the same problem and data is approached from a Bayesian inference perspective. The Bayesian estimators are found to be optimal in the sense that they make full use of available information in the data. Heuristic comparison shows, however, that Bayes estimators do not always outperform the LULU estimators. Although the Bayesian perspective provides much insight into the logical connections inherent in the problem, its estimators can be difficult to obtain in analytic form and are slow to compute numerically. Suboptimal LULU-estimators are shown to be reasonable practical compromises in practical problems.
AFRIKAANSE OPSOMMING: Tegnieke om ’n sein af te skat in die teenwoordigheid van geraas wat uitskieters bevat is tans nie goed ontwikkel nie. In hierdie tesis aanskou ons ’n konstante sein gesuperponeer met ’n familie van geraasverdelings wat as verstelbare mengsel f(x) = α g(x) + (1 − α) h(x) tussen eindige-uitkomsruimte geraaskomponente g(x) wat “goeie gedrag” en klein variansie toon, plus “impulsiewe” geraas h(x) met groot amplitude en sterk asimmetriese karakter. Wanneer α ≈ 1 kan h(x) byvoorbeeld ’n kosmiese straal wat ’n eksperimentele apparaat tref modelleer. In die eerste gedeelte van ons werk word ’n metode om die verwagtingswaardes van die positiewe en negatiewe pulse in die eerste resolusievlak van ’n LULU Diskrete Pulse Transform (DPT) vasgestel. Die analise van rye verkry deur die inwerking van die gladstrykers L1U1 en U1L1 van die LULU-teorie toon dat hul verwagte gemiddelde waardes as afskatters van die liggingsparameter van g kan dien wat robuus is in die sin dat die bydrae van h tot die gemiddeld van orde grootte (1 − α)2 of hoër is. Die spesifieke vorm van h word dan ook onbelangrik. Daar word verder gewys dat afskatters vir die relevante skaalparameters van die model maklik verkry kan word na gladstryking met die operatore L1U1 of U1L1. In die tweede gedeelte van ons werk word dieselfde probleem en data vanuit ’n Bayesiese inferensie perspektief benader. Die Bayesiese afskatters word as optimaal bevind in die sin dat hulle vol gebruikmaak van die beskikbare inligting in die data. Heuristiese vergelyking wys egter dat Bayesiese afskatters nie altyd beter vaar as die LULU afskatters nie. Alhoewel die Bayesiese sienswyse baie insig in die logiese verbindings van die probleem gee, kan die afskatters moeilik wees om analities af te lei en stadig om numeries te bereken. Suboptimale LULU-beramers word voorgestel as redelike praktiese kompromieë in praktiese probleme.
Lipkovich, Ilya A. "Bayesian Model Averaging and Variable Selection in Multivariate Ecological Models." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/11045.
Full textPh. D.
Books on the topic "Outlier analyses"
Aggarwal, Charu C. Outlier Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47578-3.
Full textAggarwal, Charu C. Outlier Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6396-2.
Full textRousseeuw, Peter J. Robust regression and outlier detection. New York: Wiley, 1987.
Find full textMeier, Alan. An analysis of outliers in the RSDP. Berkeley, Calif: Applied Science Division, Lawrence Berkeley Laboratory, University of California, 1988.
Find full textWeissmuller, Johnny J. Automated test outline development: Research findings. Brooks Air Force Base, Tex: Air Force Human Resources Laboratory, Air Force Systems Command, 1989.
Find full textR, Spiegel Murray, and Wrede Robert C, eds. Schaum's outline of advanced calculus. 3rd ed. New York: McGraw-Hill, 2010.
Find full textSchaum's outline of theory and problems of vector analysis. Maidenhead: McGraw-Hill, 1988.
Find full textBook chapters on the topic "Outlier analyses"
Kontala, Janne, Mika Lassander, and Nurit Novis-Deutsch. "Searching for Uncommon Worldviews: ‘Idiosyncratic’ and ‘Divided’ Outlooks in a Global Sample of Young Adults." In The Diversity Of Worldviews Among Young Adults, 113–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94691-3_6.
Full textAggarwal, Charu C. "An Introduction to Outlier Analysis." In Outlier Analysis, 1–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_1.
Full textAggarwal, Charu C. "Outlier Detection in Discrete Sequences." In Outlier Analysis, 311–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_10.
Full textAggarwal, Charu C. "Spatial Outlier Detection." In Outlier Analysis, 345–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_11.
Full textAggarwal, Charu C. "Outlier Detection in Graphs and Networks." In Outlier Analysis, 369–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_12.
Full textAggarwal, Charu C. "Applications of Outlier Analysis." In Outlier Analysis, 399–422. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_13.
Full textAggarwal, Charu C. "Probabilistic and Statistical Models for Outlier Detection." In Outlier Analysis, 35–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_2.
Full textAggarwal, Charu C. "Linear Models for Outlier Detection." In Outlier Analysis, 65–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_3.
Full textAggarwal, Charu C. "Proximity-Based Outlier Detection." In Outlier Analysis, 111–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_4.
Full textAggarwal, Charu C. "High-Dimensional Outlier Detection: The Subspace Method." In Outlier Analysis, 149–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_5.
Full textConference papers on the topic "Outlier analyses"
Kim, Hyun-Ki, and Si-Yeol Shin. "Application of Statistical Geo-Sapatial Information Analyses to Outlier Detection." In 5th Asian-Pacific Symposium on Structural Reliability and its Applications. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2219-7_p147.
Full textGao, Rui, Li Shen, Kwee-Yan Teh, Penghui Ge, Fengnian Zhao, and David L. S. Hung. "Effects of Outlier Flow Field on the Characteristics of In-Cylinder Coherent Structures Identified by POD-Based Conditional Averaging and Quadruple POD." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9561.
Full textFlamini, Vittoria, and Boyce E. Griffith. "Optimal Constitutive Parameters and Subject Specific Variability: An Application to the Aortic Sinuses." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14633.
Full textNigam, Nidhi, Tripti Saxena, and Vineet Richhariya. "Global high dimension outlier algorithm for efficient clustering & outlier detection." In 2016 Symposium on Colossal Data Analysis and Networking (CDAN). IEEE, 2016. http://dx.doi.org/10.1109/cdan.2016.7570924.
Full textYousri, Noha A., Mohammed A. Ismail, and Mohamed S. Kamel. "Fuzzy outlier analysis a combined clustering - outlier detection approach." In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413873.
Full textXu, Honglong, Rui Mao, Hao Liao, Minhua Lu, and He Zhang. "Closest neighbors excluded outlier detection." In 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS). IEEE, 2016. http://dx.doi.org/10.1109/icoacs.2016.7563058.
Full textRuffolo, Alessandro. "Outlier Analysis for SETI." In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-iaa.9.p.03.
Full textXiaohui Liu. "Strategies for outlier analysis." In IEE Two-day Colloquium on Knowledge Discovery and Data Mining. IEE, 1998. http://dx.doi.org/10.1049/ic:19980546.
Full textDalmia, Ayushi, Manish Gupta, and Vasudeva Varma. "Query-based Graph Cuboid Outlier Detection." In ASONAM '15: Advances in Social Networks Analysis and Mining 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2808797.2810061.
Full textShih, H. H., C. Long, M. Bushnell, and K. Hathaway. "Intercomparison of Wave Data Between Triaxys Directional Wave Buoy, ADCP, and Other Reference Wave Instruments." In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67235.
Full textReports on the topic "Outlier analyses"
Peter, J. M., M. G. Gadd, C. Jiang, and J. Reyes. Organic geochemistry and petrology of sedimentary exhalative Pb-Zn and polymetallic hyper-enriched black shale deposits in the Selwyn Basin, Yukon. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328017.
Full textMathew, Jijo K., Christopher M. Day, Howell Li, and Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Full textSadler, Brian M., and Stephen D. Casey. On Periodic Pulse Interval Analysis with Outliers and Missing Observations. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada454910.
Full textMontgomery, Raymond B., and Athelstan Fred Spilhaus. Examples and outline of certain modifications in isentropic analysis. Woods Hole Oceanographic Institution, December 2022. http://dx.doi.org/10.1575/1912/29557.
Full textTaplin, Ross, and Adrian E. Raftery. Analysis of Agricultural Field Trials in the Presence of Outliers and Fertility Jumps. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada242454.
Full textMatheu, Enrique E., Robert L. Hall, and Raju V. Kala. Folsom Dam Outlet Works Modification Project: Dynamic Stress Analysis of Overflow and Nonoverflow Sections. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427798.
Full textMichael G. McKellar and Edwin A. Harvego. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750?C Reactor Outlet Temperature. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/984544.
Full textMacdonald, Stuart, Kamil Yilmaz, Chamin Herath, J. M. Berger, Suraj Lakhani, Lella Nouri, and Maura Conway. The European Far-Right Online: An Exploratory Twitter Outlink Analysis of German & French Far-Right Online Ecosystems. RESOLVE Network, May 2022. http://dx.doi.org/10.37805/remve2022.2.
Full textBodnenko, Dmytro M., Halyna A. Kuchakovska, Volodymyr V. Proshkin, and Oksana S. Lytvyn. Using a virtual digital board to organize student’s cooperative learning. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4419.
Full textLinke, Ethan, Nazmina Mahmoudzadeh, and Darren Holland. Prioritising Foodborne Disease with Multi-Criteria Decision Analysis. Food Standards Agency, November 2021. http://dx.doi.org/10.46756/sci.fsa.gex408.
Full text