Academic literature on the topic 'Overflow metabolism and mixed acid fermentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Overflow metabolism and mixed acid fermentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Overflow metabolism and mixed acid fermentation"

1

Xu, B., M. Jahic, G. Blomsten, and S. O. Enfors. "Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli." Applied Microbiology and Biotechnology 51, no. 5 (1999): 564–71. http://dx.doi.org/10.1007/s002530051433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hemschemeier, A., and T. Happe. "The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii." Biochemical Society Transactions 33, no. 1 (2005): 39–41. http://dx.doi.org/10.1042/bst0330039.

Full text
Abstract:
The photosynthetic green alga Chlamydomonas reinhardtii is capable of performing a complex fermentative metabolism which is related to the mixed acid fermentation of bacteria such as Escherichia coli. The fermentative pattern includes the products formate, ethanol, acetate, glycerol, lactate, carbon dioxide and molecular hydrogen (H2). H2 production is catalysed by an active [Fe]-hydrogenase (HydA) which is coupled with the photosynthetic electron-transport chain. The most important enzyme of the classic fermentation pathway is pyruvate formate-lyase, which is common in bacteria but seldom found in eukaryotes. An interaction between fermentation, photosynthesis and H2 evolution allows the algae to overcome long periods of anaerobiosis. In the absence of sulphur, the cells establish a photofermentative metabolism and accumulate large amounts of H2.
APA, Harvard, Vancouver, ISO, and other styles
3

Adler, Philipp, Lasse Jannis Frey, Antje Berger, Christoph Josef Bolten, Carl Erik Hansen, and Christoph Wittmann. "The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions." Applied and Environmental Microbiology 80, no. 15 (2014): 4702–16. http://dx.doi.org/10.1128/aem.01048-14.

Full text
Abstract:
ABSTRACTAcetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.
APA, Harvard, Vancouver, ISO, and other styles
4

Ciosek, Aneta, Katarzyna Fulara, Olga Hrabia, Paweł Satora, and Aleksander Poreda. "Chemical Composition of Sour Beer Resulting from Supplementation the Fermentation Medium with Magnesium and Zinc Ions." Biomolecules 10, no. 12 (2020): 1599. http://dx.doi.org/10.3390/biom10121599.

Full text
Abstract:
The bioavailability of minerals, such as zinc and magnesium, has a significant impact on the fermentation process. These metal ions are known to influence the growth and metabolic activity of yeast, but there are few reports on their effects on lactic acid bacteria (LAB) metabolism during sour brewing. This study aimed to evaluate the influence of magnesium and zinc ions on the metabolism of Lactobacillus brevis WLP672 during the fermentation of brewers’ wort. We carried out lactic acid fermentations using wort with different mineral compositions: without supplementation; supplemented with magnesium at 60 mg/L and 120 mg/L; and supplemented with zinc at 0.4 mg/L and 2 mg/L. The concentration of organic acids, pH of the wort and carbohydrate use was determined during fermentation, while aroma compounds, real extract and ethanol were measured after the mixed fermentation. The addition of magnesium ions resulted in the pH of the fermenting wort decreasing more quickly, an increase in the level of L-lactic acid (after 48 h of fermentation) and increased concentrations of some volatile compounds. While zinc supplementation had a negative impact on the L. brevis strain, resulting in a decrease in the L-lactic acid content and a higher pH in the beer. We conclude that zinc supplementation is not recommended in sour beer production using L. brevis WLP672.
APA, Harvard, Vancouver, ISO, and other styles
5

Yesilkaya, Hasan, Francesca Spissu, Sandra M. Carvalho, et al. "Pyruvate Formate Lyase Is Required for Pneumococcal Fermentative Metabolism and Virulence." Infection and Immunity 77, no. 12 (2009): 5418–27. http://dx.doi.org/10.1128/iai.00178-09.

Full text
Abstract:
ABSTRACT Knowledge of the in vivo physiology and metabolism of Streptococcus pneumoniae is limited, even though pneumococci rely on efficient acquisition and metabolism of the host nutrients for growth and survival. Because the nutrient-limited, hypoxic host tissues favor mixed-acid fermentation, we studied the role of the pneumococcal pyruvate formate lyase (PFL), a key enzyme in mixed-acid fermentation, which is activated posttranslationally by PFL-activating enzyme (PFL-AE). Mutations were introduced to two putative pfl genes, SPD0235 and SPD0420, and two putative pfl A genes, SPD0229 and SPD1774. End-product analysis showed that there was no formate, the main end product of the reaction catalyzed by PFL, produced by mutants defective in SPD0420 and SPD1774, indicating that SPD0420 codes for PFL and SPD1774 for putative PFL-AE. Expression of SPD0420 was elevated in galactose-containing medium in anaerobiosis compared to growth in glucose, and the mutation of SPD0420 resulted in the upregulation of fba and pyk, encoding, respectively, fructose 1,6-bisphosphate aldolase and pyruvate kinase, under the same conditions. In addition, an altered fatty acid composition was detected in SPD0420 and SPD1774 mutants. Mice infected intranasally with the SPD0420 and SPD1774 mutants survived significantly longer than the wild type-infected cohort, and bacteremia developed later in the mutant cohort than in the wild type-infected group. Furthermore, the numbers of CFU of the SPD0420 mutant were lower in the nasopharynx and the lungs after intranasal infection, and fewer numbers of mutant CFU than of wild-type CFU were recovered from blood specimens after intravenous infection. The results demonstrate that there is a direct link between pneumococcal fermentative metabolism and virulence.
APA, Harvard, Vancouver, ISO, and other styles
6

Sieuwerts, Sander, Douwe Molenaar, Sacha A. F. T. van Hijum, et al. "Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in Streptococcus thermophilus and Lactobacillus bulgaricus." Applied and Environmental Microbiology 76, no. 23 (2010): 7775–84. http://dx.doi.org/10.1128/aem.01122-10.

Full text
Abstract:
ABSTRACT Many food fermentations are performed using mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yogurt fermentation by Streptococcus thermophilus and Lactobacillus bulgaricus (basonym, Lactobacillus delbrueckii subsp. bulgaricus) is one of the best-described mixed-culture fermentations. These species are believed to stimulate each other's growth by the exchange of metabolites such as folic acid and carbon dioxide. Recently, postgenomic studies revealed that an upregulation of biosynthesis pathways for nucleotides and sulfur-containing amino acids is part of the global physiological response to mixed-culture growth in S. thermophilus, but an in-depth molecular analysis of mixed-culture growth of both strains remains to be established. We report here the application of mixed-culture transcriptome profiling and a systematic analysis of the effect of interaction-related compounds on growth, which allowed us to unravel the molecular responses associated with batch mixed-culture growth in milk of S. thermophilus CNRZ1066 and L. bulgaricus ATCC BAA-365. The results indicate that interactions between these bacteria are primarily related to purine, amino acid, and long-chain fatty acid metabolism. The results support a model in which formic acid, folic acid, and fatty acids are provided by S. thermophilus. Proteolysis by L. bulgaricus supplies both strains with amino acids but is insufficient to meet the biosynthetic demands for sulfur and branched-chain amino acids, as becomes clear from the upregulation of genes associated with these amino acids in mixed culture. Moreover, genes involved in iron uptake in S. thermophilus are affected by mixed-culture growth, and genes coding for exopolysaccharide production were upregulated in both organisms in mixed culture compared to monocultures. The confirmation of previously identified responses in S. thermophilus using a different strain combination demonstrates their generic value. In addition, the postgenomic analysis of the responses of L. bulgaricus to mixed-culture growth allows a deeper understanding of the ecology and interactions of this important industrial food fermentation process.
APA, Harvard, Vancouver, ISO, and other styles
7

KIMOTO-NIRA, H., N. MORIYA, H. OHMORI, and C. SUZUKI. "Altered Superoxide Dismutase Activity by Carbohydrate Utilization in a Lactococcus lactis Strain." Journal of Food Protection 77, no. 7 (2014): 1161–67. http://dx.doi.org/10.4315/0362-028x.jfp-13-475.

Full text
Abstract:
Reactive oxygen species, such as superoxide, can damage cellular components, such as proteins, lipids, and DNA. Superoxide dismutase (SOD) enzymes catalyze the conversion of superoxide anions to hydrogen peroxide and dioxygen. SOD is present in most lactococcal bacteria, which are commonly used as starters for manufacturing fermented dairy products and may have health benefits when taken orally. We assessed the effects of carbohydrate use on SOD activity in lactococci. In Lactococcus lactis ssp. lactis G50, the SOD activity of cells grown on lactose and galactose was higher than that on glucose; in Lactococcus lactis ssp. cremoris H61, SOD activity was independent of the type of carbohydrate used. We also investigated the activity of NADH oxidase, which is related to the production of superoxide in strains G50 and H61. Activity was highest in G50 cells grown on lactose, lower on galactose, and lowest on glucose, whereas activity in H61 cells did not differ with the carbohydrate source used. The SOD and NADH oxidase activities of strain G50 in three carbohydrates were linked. Strain G50 fermented lactose and galactose to lactate, acetate, formate, and ethanol (mixed-acid fermentation) and fermented glucose to mainly lactate (homolactic fermentation). Strain H61 fermented glucose, lactose, and galactose to mainly lactate (homolactic fermentation). In strain G50, when growth efficiency was reduced by adding a metabolic inhibitor to the growth medium, SOD activity was higher than in the control; however, the metabolism was homofermentative. Aerobic conditions, but not glucose-limited conditions, increased SOD activity, and mixed-acid fermentation occurred. We conclude that the effect of carbohydrate on SOD activity in lactococci is strain dependent and that the activity of commercial lactococci can be enhanced through carbohydrate selection for mixed-acid fermentation or by changing the energy distribution, thus enhancing the value of the starter and the resulting dairy products.
APA, Harvard, Vancouver, ISO, and other styles
8

Sawers, R. G. "Formate and its role in hydrogen production in Escherichia coli." Biochemical Society Transactions 33, no. 1 (2005): 42–46. http://dx.doi.org/10.1042/bst0330042.

Full text
Abstract:
The production of dihydrogen by Escherichia coli and other members of the Enterobacteriaceae is one of the classic features of mixed-acid fermentation. Synthesis of the multicomponent, membrane-associated FHL (formate hydrogenlyase) enzyme complex, which disproportionates formate into CO2 and H2, has an absolute requirement for formate. Formate, therefore, represents a signature molecule in the fermenting E. coli cell and factors that determine formate metabolism control FHL synthesis and consequently dihydrogen evolution.
APA, Harvard, Vancouver, ISO, and other styles
9

Pieper, Rembert, C. R. Fisher, Moo-Jin Suh, S. T. Huang, P. Parmar, and S. M. Payne. "Analysis of the Proteome of Intracellular Shigella flexneri Reveals Pathways Important for Intracellular Growth." Infection and Immunity 81, no. 12 (2013): 4635–48. http://dx.doi.org/10.1128/iai.00975-13.

Full text
Abstract:
ABSTRACTGlobal proteomic analysis was performed withShigella flexneristrain 2457T in association with three distinct growth environments:S. flexnerigrowing in broth (in vitro),S. flexnerigrowing within epithelial cell cytoplasm (intracellular), andS. flexnerithat were cultured with, but did not invade, Henle cells (extracellular). Compared toin vitroand extracellular bacteria, intracellular bacteria had increased levels of proteins required for invasion and cell-to-cell spread, including Ipa, Mxi, and Ics proteins. Changes in metabolic pathways in response to the intracellular environment also were evident. There was an increase in glycogen biosynthesis enzymes, altered expression of sugar transporters, and a reduced amount of the carbon storage regulator CsrA. Mixed acid fermentation enzymes were highly expressed intracellularly, while tricarboxylic acid (TCA) cycle oxidoreductive enzymes and most electron transport chain proteins, except CydAB, were markedly decreased. This suggested that fermentation and the CydAB system primarily sustain energy generation intracellularly. Elevated levels of PntAB, which is responsible for NADPH regeneration, suggested a shortage of reducing factors for ATP synthesis. These metabolic changes likely reflect changes in available carbon sources, oxygen levels, and iron availability. Intracellular bacteria showed strong evidence of iron starvation. Iron acquisition systems (Iut, Sit, FhuA, and Feo) and the iron starvation, stress-associated Fe-S cluster assembly (Suf) protein were markedly increased in abundance. Mutational analysis confirmed that the mixed-acid fermentation pathway was required for wild-type intracellular growth and spread ofS. flexneri. Thus, iron stress and changes in carbon metabolism may be key factors in theS. flexneritransition from the extra- to the intracellular milieu.
APA, Harvard, Vancouver, ISO, and other styles
10

Wei, Xiao-Xing, Wei-Tao Zheng, Xue Hou, Jian Liang, and Zheng-Jun Li. "Metabolic Engineering ofEscherichia colifor Poly(3-hydroxybutyrate) Production under Microaerobic Condition." BioMed Research International 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/789315.

Full text
Abstract:
The alcohol dehydrogenase promoterPadhEand mixed acid fermentation pathway deficient mutants ofEscherichia coliwere employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. TheE. colimutant withackA-pta, poxB, ldhA, andadhEdeletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase genepflBdrastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. OverexpressingpflBvia the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineeredE. coliBWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Overflow metabolism and mixed acid fermentation"

1

Gustavsson, Robert. "On-line control of glucose feeding in an Escherichia coli fed-batch cultivation expressing a recombinant protein." Thesis, Linköpings universitet, Teknisk biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71305.

Full text
Abstract:
Soft sensors have been suggested as potent tools for on-line estimations of critical bioprocess variables to be able to control the biological process in an as high extent as possible. The formation of inhibitory by-products in the form of organic acids, caused by an overflow of glucose, is a problem in most bioprocesses expressing recombinant proteins.    In this project a new method of controlling the glucose feeding in an Escherichia coli fed-batch cultivation expressing the green fluorescent protein (GFP) was investigated. The new controller system implemented in the software controlled the feed rate based on on-line HPLC measurements of the concentration of organic acids.      The results showed that the controller managed to down-regulate the inhibitory organic acids to a low level as it tried to keep the glucose uptake rate at an optimum for maximum cell growth. The results suggested that the controller could be a powerful tool to create a more secure reproducibility and to generate high product yields in recombinant protein productions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!